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Abstract. The classical concept of K-flow is generalized to cover situations
encountered in non-equilibrium quantum statistical mechanics. The ergodic
properties of generalized K-flows are discussed. Several non-isomorphic
examples are constructed, which differ already in the type (II,, ITI,, and III,)
of the factor on which they are defined. In particular, generalized factor
K-flows with dynamical entropy either zero (singular K-flows) or infinite
(special non-abelian K-flows) are constructed.

Introduction

The motivation for this paper stems from the following schematic description of
the purpose of non-equilibrium statistical mechanics.

Given a dissipative, thermodynamical system {Ng, ¢, p(IR™)}, devise: (i) a
thermal bath {9z, ¢}, and (ii) an interaction between g and Ny, in such a
manner that the following conditions be satisfied. Firstly, the composite dynamical
system {M=Ng@ g, d=ds® g, &R)} should be conservative, and under-
standable from the laws of hamiltonian mechanics. Secondly, y(IR*) should appear
as the restriction, to the system 91 of interest, of the total evolution &(R); namely,
for every (normal) state y on g, every observable N in 9, and all positive
times ¢, one should have:

@ dr; a(t) NI =w; p(O)[N]) . (1)

To be specific, we shall assume that ¢ and ¢y are thermal equilibrium states,
respectively for the von Neumann algebras 9tg and Ng. In line with the ideas of
non-equilibrium thermodynamics, we shall further assume that p(R™) is a semi-
group of positive, linear maps of 9t into itself such that ¢sy(t)=¢g for every
teR*, and that {y; y(t)[N]) approaches {(¢s; N> when ¢ tends to + o, for every
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(normal) state 1 on Ny, and every observable N in ig; we also assume p(t)[I]=1
for all relR* and y(0)=id; in particular we note that the adjoint y(t)* transforms
states into states. Finally, in line with the ideas of non-equilibrium statistical
mechanics, we shall require that &(IR) is a group of automorphisms of 9 with
Poa(t)=¢ for every teR. We admit that several limiting procedures might be
necessary to pass from ordinary hamiltonian mechanics to the automorphism
group &(R). Amongst these we are quite willing to accept the “thermodynamical”
and the “long-time, weak-coupling” limits, provided that these limits be
mathematically controlled.

In agreement with [26] we will, throughout this paper, mean by “thermal
equilibrium” state ¢ (resp. ¢ or ¢) a faithful normal state on R (resp. Nz or N).
We denote by a4(R) and oxz(R) the modular automorphism groups corresponding
respectively (via [24]) to ¢ and ¢5. We note that ¢ then satisfies the Kubo-
Martin-Schwinger boundary condition with respect to the automorphism group
6(IR) defined on N by 6(t)=04(t)® ag(t). We will refer to &(RR) as the evolution of
the composite system when the interaction between 95 and 9ty is switched off.
An interpretation of the fact that ¢ should indeed satisfy the KMS condition with
respect to the “free” evolution G(IR)=+&(IR) is proposed in our discussion of the
concrete model of Example I11.2 below.

We next remark that the understanding of the mechanism of the passage
from the conservative evolution &R) to the dissipative evolution p(R*) only
involves the restriction &(R) of &(R) to the a(IR)-stable von Neumann algebra:

N={a(t)[N][teR, Ne Ry} . 2)

Since ¢(IR) commutes with @IR) and since 9y is 6(IR)-stable, 9t is 6(IR)-stable as
well. Upon defining ¢ and o(IR) as the respective restrictions of ¢ and &(IR) to Ni,
we see that ¢ is an equilibrium state on N, satisfying the KMS condition w.r.t.
o(R). Furthermore, there exist then conditional expectations &, from 9N onto
N, & from N onto N, and & from N onto Ny with & =66, determined
uniquely by the conditions:

$ebo=¢;doE=¢;do6=0. 3)
Our condition (1) can thus be rewritten as:
Eod(t)od =y(t)& forall teR™ 4

or if we restrict our attention to M, as:
Eooft)e& =(t)o& forall teR™. 3)

The relations (4) or (5) precisely express, in the von Neumann algebraic language,
that the reduced evolution y(IR*) is obtained from the conservative evolutions
a(IR) or o(IR) by a “projection technique”. As a consequence of (4) it is easily seen
that y(t) are not only positive, as we explicitely assumed in the beginning but are
in fact completely positive, faithful maps. This implies that one can actually
reconstruct canonically from {9, y(R™)}: a von Neumann algebra N, a group
o(R) of automorphisms of 9, and a conditional expectation & from It onto 9t
such that (5) and (2) are satisfied.
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We finally remark that the “backward trajectory”
oA ={us)[N]ls<t, NeNg}"

of 915 in I is o(IR)-stable, increasing in ¢, and that {<7,|teR} generates N.

These remarks motivate the principal aim of this paper, namely: to isolate
those properties which extend to the aggregate {I, ¢, «(R), o7,} the essential
features encountered in the classical theory of K-flows. These properties, once
identified, will be verified to hold in physical situations of relevance for non-
equilibrium statistical mechanics. We shall show that this extension carries over
to the quantum mechanical realm, the ergodic and other spectral properties of
classical K-flows.

In Section I we give the basic definitions for what we call generalized K-flows;
we then prove, in that section, some of their general ergodic and hereditary
properties. Section 11 is devoted to the study of some consequences of an additional
assumption which we term “weak-reversibility”. Non-isomorphic examples of
generalized K-flows are constructed in Section III, showing explicitly that this
concept leads to a genuine generalization of the classical K-flow theory. We also
indicate in this section how one of these examples is intimately linked with a
statistical mechanical description of the thermodynamical system corresponding
to the diffusion of a quantum particle in a harmonic well. In Section IV we discuss
a generalization of the concept of dynamical entropy; we show that the resulting
entropy is strictly positive on every non-singular generalized K-flow; we compute
it for various special non-abelian factor K-flows where it happens to be infinite;
as in the case of the classical K-flow associated to Brownian motion, the proof
proceeds by embedding Bernoulli shifts of arbitrary large entropy in the quantum
K-flows considered.

We might finally mention to close this “introduction” that some of the ideas
to be developed in the following pages have been approached with lesser generality,
in previous publications [9]; most of the proofs then presented are now superseded
by those given in the present paper which is self-contained, and can thus be read
independently of [9].

I. Generalized K-Flows

1. Definition. A generalized K-flow is an aggregate {9, ¢, «(IR), o/} where 9t is a
von Neumann algebra acting on a separable Hilbert space £; ¢ is a faithful normal
state on 9t; «(IR) is a group of automorphisms of 9 such that: (a) for each Net
the function te R—a(t)[N]eMN is str.-op. continuous, (b) ¢ea(t)=¢ for all telR;
and <7 is a von Neumann subalgebra of 9t satisfying the following fourconditions:
(1) .o/ Cat)[./] for teIR™ ;(ii) the von Neumann algebra generated by {a(t)[o/]|te R}
coincides with R; (iii) €I is the largest von Neumann algebra contained in all
ot)[«/], with t running over IR; (iv) ./ is stable under the modular group
a(R) canonically associated to ¢.

We recall (for details, see § 13 in [24a]) that, given a faithful normal state ¢
on a von Neumann algebra 9, there exists a unique continuous one-parameter
group o(IR) of automorphisms of N with respect to which ¢ satisfies the Kubo-
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Martin-Schwinger (KMS) boundary condition. It is this group which is called
the modular group canonically associated to ¢. The set 9, of fixed points of N
under ¢(IR) is a von Neumann subalgebra of 9t which we refer to as the centralizer
of 9 with respect to ¢; this nomenclature is justified by the fact that 9t,=
{NeNR|<{¢p; [N, M]>=0 for all MeN}. We can assume without loss of generality
that there exists in § a vector @ cyclic and separating for 9 such that {¢; N> =
(@, N®) for all Nedt.

2. Definition. A generalized K-flow {3, ¢, a(IR), o7} is said to be regular if every
maximal abelian subalgebra of the centralizer 9, of 9t w.r.t. ¢, is already maximal
abelian in Jt. At the opposite extreme, {N, ¢, «(R), o/} is said to be singular if

3. Remarks. (i) We will explicitly construct, in Section 111, a regular, as well as a
singular generalized K-flow where 9t is a factor of type III, in the classification
of Connes [4], thus proving the existence of non-isomorphic generalized K-flows.

(ii) The distinction between «(R) and a(IR) should be kept in mind throughout
this paper. In line with our motivation, as presented in the introduction, we shall
occasionally refer to o(IR) as the “true evolution” and to o(RR) as the “free evolution”,
although this nomenclature should not be given too much of a metaphysical
meaning. The point however is to distinguish them. Indeed oft,)=a(t,) for any
t1, t, %0 occurs exactly when 9t=CI, a trivial situation in which we are clearly
not interested. Besides this trivial case, the dimension of the Hilbert space
on which 9t acts must be infinite (as will follow immediately from Theorem 5
below). Actually, o(R) should be regarded as a rather drastic perturbation of
o(R) in a sense which we are now going to make precise.

Since ¢oa(t)=¢=¢pea(t) for all teR, both «R) and o(R) are unitarily
implementable; the condition U(t)® = &= U’(t)® for all teR determines uniquely
the corresponding unitary groups. Let H and H’ be their respective generators.
Form now V=H—H’ and H,=H’+ AV with 4eR strictly positive. We further
remark after [24], that the uniqueness of ¢(IR), and the fact that ¢eoo(t)=¢ for all
teR, imply that «(R) and o(IR) commute. Consequently o,(IR) defined by a,(t)=
a(At)a((1—A)t) is a continuous group of automorphisms of 9t with ¢oo,(t)=¢ for
all teIR. The generator of the corresponding unitary group is precisely H,. Clearly
the aggregate {9, ¢, a,(R), o/} is again a generalized K-flow, however small
A>0 might be chosen. Hence the K-flow property is stable under the perturbation
V—AV(4>0); which is to say that H [resp. «(R)] is a drastic perturbation of H’
[resp. o(IR)]. This will be further emphasized, in the case of regular generalized
K-flows by the comparison of the respective ergodic properties of a(R) and a(RR).

(i) The condition that o7 be o(IR)-stable, and the commutativity of «(R) and
o(R), clearly imply that .of,=o(t)[.«/] is also g(IR)-stable, for every telR. This is
known [24] to be equivalent to the existence, for every telR, of a unique faithful
normal conditional expectation &, from 3 onto o, such that ¢-&,=¢, a fact
which we shall use repeatedly in the sequel.

(iv) In previous papers [9] we imposed, instead of condition (I.1.iii) above,
the apparently stronger condition ﬂ,[&/@]:ﬂ?d), where [«/,®] denotes the
closure of the linear manifold .o/, @ ={A®P|Ae.o/,}. Since @ is separating for N,
this condition clearly implies that (),/,=CI, which is our present condition
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(L.1.iii). The converse is however also true, as we shall presently see, thus solving
a question left open in [9a, Remark 3.2.i].

4. Lemma. For every generalized K-flow: (),[«/,@]=C®.

We derive this lemma as an immediate consequence of part (iii) of the following
strong-martingale theorem.

Sublemma. Let ¢ be a faithful normal state on a von Neumann algebra i, {</ |te R}
be a collection of von Neumann subalgebras of M such that: (i) for every te R, o,
is stable under the modular group o(R) canonically associated to ¢, and (ii) s=<t
implies of (C .ot ,; let further, for each teR, &(.|.,) be the faithful normal conditional
expectation from N onto of, such that ¢po&(.|sZ)=¢. Then: (i) there exists a
unique faithful normal conditional expectation &( . |(,.</,) from N onto (., such
that ¢o&(. |\l )=¢; (ii) for every NeWM, &N\t )=s-lim,_,_,E(N|Z);
(iii) with ® denoting the vector in 9, cyclic and separating for RN, associated to
¢ : mt[%t(p] = [(mtﬂt)¢]'

Proof. For every s, teR with s<t we have:

E=[oA Q)< [ PI=E,.

Upon denoting by the same symbol a closed subspace of § and the corresponding
orthogonal projection, we have thus:

(V[ @]=E=s-lim,_, _E,.

At fixed Ne®, fixed de 9, and fixed £>0, we can thus find, since @ is separating
for M, an XeN and a TeR such that:

&~ X[ <e/3|N|
and
I(E,—EJN®||Ze/3|X| forall s,t<T.

From [24] we know that, for each telR, &(-|.<7) is a projection of norm 1, and
E(N|of )P=EN® for all NeNt. We have thus for all s, t<T':

|6(N|.of ) — E(N|.of ) |

< 6N )P — XB)| + [ E(N|.L )b — X D)
+ | E(N|L )X D—E(N|.ot )X P||

S2UNJe3INI+ (X e/31X | =&

ie. N=lim, _, &(N|o/) exists strongly on $ for every Ne. Since &(N|.oZ,)e
o/ C .o/, for all s<t, we have that Ne.«Z, for all teR and thus Ne(),./,. On the
other hand:

N®=s-lim,,_,ENO=EN®,
so that ER®C([),«7,)®, and thus, since @ is cyclic in $ for N:
([ @1=ESS (A )P]1E( [, D]
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which proves (iii). Now our condition {.«, is a(R)-stable for every telR} implies
that (ﬂ,%,) is 6(R)-stable. There exists consequently [24] a unique faithful normal
conditional expectation &(.|("),#Z,) from 9 onto ([),.«Z,) such that ¢=&(.|(),.«2) =,
thus proving (i). Furthermore [24] this conditional expectation is determined by
the relation é"(N|ﬂ,&/,)<D=FN<P where F is the projector onto [(ﬂ,&i,)(b],
which, by (iii), is E. We have thus for every Ne .

EN|()A)P=EN®=lim,,_ ENOP=N®.

Since @ is separating for 9t we have thus, see the proof of (iii),
EN|(t)=N=s-lim,_,_ ,E(N|s)

which proves (ii). g.e.d.

Remark. We see that &(.|.o/ _,) is a decreasing martingale in the sense of Arveson
[3] so that, from (i) and the obvious consistency relations between conditional
expectations on a refining collection of o(IR)-stable von Neumann subalgebras,
(ii) can be obtained as a consequence of Theorem 6.1.7 in [ 3]. Hence our argument
contains in particular, an alternate proof of Arveson’s result, for the special
martingales considered here. This path however would not noticeably shorten
the proof of (iii) (which is the result we are actually interested in).

5. Theorem. Let {:M, ¢, a(IR), o7} be a generalized K-flow, and H be the generator
of the strongly continuous, one-parameter, unitary group U(IR) implementing o(IR),
with U(t)®@=¢® for all teR. Then: (i) Sp(H)=1{0}; (ii) Y€ and HY =0 imply
Y =Ad with AeC; (iii) H has homogeneous Lebesgue spectrum on the ortho-
complement $* of CP in H.

Proof. By construction of U(IR), H® =0; it is thus sufficient to consider the restric-
tion UH(R) of U(R) to $H*. For every seR let now Ef =[.«/,®]©CP. One then
checks easily from Definition 1 and Lemma 4, that {U*(t), EX|s, teR} defines on
$H* a system of imprimitivity based on R. Since § (and thus H*) is assumed to be
separable, von Neumann uniqueness theorem [15] is applicable to the situation
considered here (see, for instance, Theorems III.1.5 and 6 in [8]); we thus have
Ht=@® 9, with 9, U(IR)-stable, and the restriction U ,(R) of U(R) to $, is unitarily
equivalent to V(R) defined on #*(R, dx) by (V(t)¥)(x)=P(x—t). qe.d.

Remark. This theorem extends thus to the generalized K-flows of Definition 1 an
important property of classical K-flows proven first by Sinai [22], and already
generalized to some special non-abelian K-flows in [9a]. It should however be
pointed out here that no assertion is made yet on the multiplicity of the absolutely
continuous part of the spectrum of H. As pointed out in [9a], the spectral properties
of H stated in the above theorem already imply strong ergodic properties, which
we now state for generalized K-flows. These are listed below in an order which
make their proof follow immediately from the theorem and from general results
on quantum dynamical systems collected in pp. 181-187 of [8].

Corollary. For every generalized K-flow {N, ¢, ((R), o/ } we have: (i) ¢ is extremal
a(R)*-invariant; (ii) ¢ is strongly mixing i.e. for every N, Me: limy,_ (¢;
No(t)[M1)> =<d; NY<{¢; M), (iii) for every invariant mean n on R, any ¥, ¥,€9H
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and any NeJ:n(¥y, o )[NT¥,)=(¥,, n[N]¥;) with y[N1={¢;N>I; (iv)
o(R) acts in a n-abelian manner on ¢, i.e. for every N{,N,, N3, N,eNn<o;
N [o(.)[N,],NsIN>=0; (v) ¢ is the only normal, a(IR)*-invariant state on N,
(vi) the algebra of fixed points of 9t under a(R) reduces to CI.

Remarks. (i) An asymptotic abelianness property stronger that (iv) above will be
obtained in Section II, under the additional assumption of weak-reversibility.
(1)) Properties (v) and (vi) of the above corollary reinforce our Remarks (I.3.ii)
on the structural differences between the “true evolution” o(IR) and the “free
evolution” ¢(IR). Indeed, whereas ¢ is KMS for o(IR), (v) above implies that N
admits no faithful normal state with respect to which o(IR) would satisfy the KMS
condition. Moreover, even to assume (vi) to hold for g(RR) as well, amounts exactly
to imposing that the flow be singular; in other words, for any non-singular
generalized K-flow, the perturbation V from ¢(IR) to «(IR) destroys all the non-
trivial invariants of the “free-motion”, and this remains true if V is replaced by
AV, however small one might choose 4> 0.

6. Theorem. Let {N, ¢, «(R), o/} be a generalized K-flow, and H® be the generator
of the strongly continuous, one-parameter, unitary group U°(R) implementing o(IR),
with U°(t)@=® for all teR. Then: (i) SpH’) is a subgroup of the additive group
IR; (ii) the following conditions are equivalent: (a) 0 is a non-degenerate eigenvalue
of H, (b) {M, ¢, «(R), o/} is singular, (c) Sp,(H?)= {0} with multiplicity 1, (d) ¢ is
extremal o(R)*-invariant, (€) N is a factor and o(R) acts in a n-abelian manner on ¢ ;
(iil) if dimH =2, any of the above conditions (a)~(e) implies Sp(H)=R and N is a
type 11, -factor; (iv) if O is an isolated point in Sp(H?), then {N, ¢, uR), o/} is
regular; (v) if Sp(H?) is discrete, then {N, ¢, (IR), =/} is regular.

Proof. ¢oa(t)=¢ for all teR implies that ¢(IR) commutes with «(R) and thus
U’(R) commutes with U(IR), the unitary group implementing o(IR). From part
(vi) of the corollary to Theorem 5 above, we see that all the conditions of Theorem
3.2 in [12] now hold for every generalized K-flow, so that (i) is thus established.
To prove (ii), we form ,={¥PeH|U(t)¥ =exp(—iit)¥ for all telR} and N, =
{NeWR|a(t)[N]=exp(—iit)N for all teR}. From [10] we know that $,=[N,P]
and thus in particular $,=[9,9]. Since @ is separating for N, this proves the
equivalence of (a) and (b). Let us now see that these conditions imply (c). Let
2eSp,(H?) and X eN,. We have then X*e9t_; and X*X, X X*e M, Our condition
(b) now implies X*X =x2I and X X* =y?I with x, yeIRR". From | X*X|| = || X X*||
we conclude that x=y and thus, in particular, {(¢; X*X>={¢; XX*>. On the
other hand ¢ KMS w.r.t. o(R) and XeN, imply {¢p; XN)>=e *(¢; NX) for
every NeWt. These two equalities together give (1 —e *){¢; X*X)> =0, i.e. either
A=0, or | X&||=0 for all XeN, and thus &, =[9,®]={0} which is to say that
Sp,(H?)={0}. The multiplicity statement in (c) follows then from (a). Conversely
(c) trivially implies (a). We now remark (see for instance Theorem I1.2.8 in [8])
that (a) implies (d); and (see for instance Corollary 2 pp. 206-207 in [8]) that (d)
is equivalent to (¢). Furthermore (see again Theorem I1.2.8 in [8]) (e) and (d)
imply (a). This concludes the proof of (ii). To prove (iii) we use Corollary 3.2.3 and
Corollary 3.2.7 in [4] to see that Sp(H?) is either {0}, wZ or R. The first case
would imply 9t, =9 which is ruled out by the conjunction of (b) and dim$=2.
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If the second case were realized, part (vi) of the corollary to Theorem 5 would
imply that ¢ is homogeneous and periodic in the sense of Takesaki [25] whose
Proposition 1.7 would in turn imply that {9, ¢, «(IR), o/} is regular; this again is
ruled out by the conjunction of (b) and dim $ = 2. Hence (b) only allows Sp(H?)=R.
Again from Corollary 3.2.7 of [4], we conclude that S(9t)=[0, oo[, i.e. M is of
Type I11,. Part (iii) is thus proven. Part (iv) follows immediately from Lemma 4.2.3
in [4]. Part (v) follows finally from the remark that if one replaces in [25] the
average over one period of ¢(R) by an arbitrary invariant mean over IR itself,
then Takesaki’s proof of his Proposition 1.7 extends from the case o(IR) periodic
to the case o(IR) almost periodic i.e. Sp(H?) discrete, which is the assumption
in(v). g.e.d.

Remark. We shall construct, in Section I1I, a regular generalized K-flow with 9t
a type II1, factor, and Sp,(H?) dense in IR, thus ruling out the possibility of proving
the converse of the implications (iii) and (iv) of the above theorem.

7. Theorem. Let {N, §, «(IR), o/ } be a generalized K-flow with ¢ not a trace on N;
and let H be defined as in Theorem 5. Then H has homogeneous Lebesgue spectrum
with infinite multiplicity on the orthocomplement $* of C® in $.

Proof. From Theorem 5, we already know the “homogeneous Lebesgue spectrum”
part of the present theorem; we thus only have to prove infinite multiplicity.
Let M be the von Neumann algebra generated on $* by the system of imprimitivity
{U(t), EX|s, teR} defined in the proof of Theorem 3. Let further U’(IR) be defined
asin Theorem 6, and V(IR) be its restriction to $*. Notice now that V(IR) commutes
with UX(R) follows from ¢(R) commutes with «(IR); the latter property, together
with the condition that .o/ be o(IR)-stable, implies also that «(s)[.o/] is o(IR)-stable;
this in turn implies that V(R) commutes with E} for every seIR. Consequently,
V(R)SI'. We now proceed by contradiction. Suppose indeed that H were to
have homogeneous Lebesgue spectrum on $* with multiplicity n < oo. We could
then write $*=9H,@C" with Ho=L*(R, dx); and M=B(H,)QCI. V(R)CM'
would then imply V(t)=1® v(t) with v: R—->%(C") a finite-dimensional, continuous
unitary representation of IR. Consequently, »(IR) and thus V(R) would have
discrete spectrum, with at most finitely many different eigenvalues; so would
then have H°. Because of Theorem 6.1, this however would imply that H”=0, and
thus o(R)=id, that is to say ¢ would be a trace on ). q.e.d.

Remark. This theorem extends the result of Sinai [22] to a large class of generalized
K-flows of possible interest to quantum statistical mechanics (see for instance
Section IIT).

8. Theorem. Let {M, ¢, x(R), o/} be a generalized K-flow; N, be the centralizer
of M with respect to ¢; ay(R) (resp. ) be the restriction of «(R) (resp. ) to N,;
and o/ 4 be the von Neumann algebra Nyn.of. Then {MNy, ¢, ay(R), o7 4} is a regular
generalized K-flow.

Proof. We first should note that ¢-u(t)=¢ for all teIR implies that 91, is stable
under «(R). Hence o4(R) is indeed a continuous group of automorphisms of 9,
with ¢eay(t)=¢ for all teR. Furthermore .o/¢=a,(t)[.o7,]=N,No/, and the
following properties are thus immediately inherited from the corresponding
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conditions on {N, ¢, (IR), o/ }:.o/,C.o/¢ for all teR™ and (),o/?=CI. Since N,
is the centralizer of 9t w.r.t. ¢, the modular group o 4(IR) of 9, w.r.t. ¢ is the identity
map, so that we trivially have .«7,, is g ,(IR)-stable, and (M), =N, The proof of the
theorem will consequently be complete when we get \/,/¢ =9, which we shall
now proceed to prove. Since ¢ is faithful and normal and ¢ea(t)=¢ for all teIR,
N is o(R)-finite in the sense of Kovacs and Sziics [14]. We therefore know that
the unique normal faithful conditional expectation from 9t onto 9, satisfying
po8(.Iy)=¢ is given, for every Ne, by &(N|N,)=N,nA (N, s(R)), where
(N, o(R)) intersects N, at exactly one point and is defined as the weak closure
of the convex hull of the orbit of N under ¢(IR). Our condition that .o be a(R)-
stable thus implies, for every telR, &(.7,|9,)SN,N.o/,; since on the other hand
oAV =E(A?IN)CE(A,|N,), we have: P =8(</,|N,). Our condition N=\/,.,
means that for every Ne 9, there exists {4,e <7, with teR} such that N=u.w.-lim4,.
In particular for every NeW, the u.w.-continuity of the projection &(.[9)
implies: N=&(N|N,)=~E(u.w.-limA4,|N,)=uw.-lim&(4,|N,). Hence for every
NeN, there exists {B,e.o/¢ with teR} such that N=u.w.-lim B, which is to say
that 9, C\/,.o7¢; since /¢ SN, for every reR, we get N,=\/,./¢. qed.

Remarks. (i) This theorem will play a central role in the computation of the
dynamical entropy of generalized K-flows (see Section IV); (ii) As a consequence
of this theorem, we see that every non-singular generalized K-flow contains at
least one sub-flow which is a regular generalized K-flow; (iii) The conclusion of
the theorem had already been obtained [9¢] under the additional condition that
a(IR) be periodic. The present extension is motivated by the existence (see Section
ITI) of regular generalized K-flows for which o(RR) is not periodic. (iv) Except
possibly for the regularity of the resulting K-flow, the present proof extends
moreover immediately to the case where 9, is replaced by 9t°, the algebra of
fixed points of 9 under a group G={g} of automorphisms of 9 satisfying the
following conditions: (a) ¢og=¢ for all geG, (b) G commutes with «(IR), and
(c) o/ is G-stable; notice, in particular, that condition (a) doesn’t need to be imposed
separately in case 9t is a finite factor. (v) The gist of the proof is to show that, for
certain subalgebras X of N, &(7,|X) is a von Neumann algebra, namely of,nX,
so that the u.w.-continuity of the conditional expectation &(.|X) can be used to
prove the distributive law Xn(\/,.«Z,)=\/(Xn.Z,). (vi) When, however, 9 is
abelian this distributivity holds unrestrictedly; hence the first part of the proof
of the theorem shows that whenever 9t is abelian, every a(IR)-stable subalgebra X
of M inherits the (regular!) K-flow structure of {N, ¢, «(IR), .«7}. Another type of
hereditary behaviour is exemplified by the following two results.

Scholium A. Let {IM, ¢, a(R), o#} be a generalized K-flow with o/ N’ SRAIN.
Then the aggregate {3, o (R), d, 7.} is a regular generalized K-flow, where 3=
NI, o (IR) (resp. ¢) is the restriction of a(IR) (resp. ¢) to 3, and of .= N3.

Proof. For any Ae.o/ and any Ze3 we have AS(Z|.A)=E(AZ|A)=E(Z|A)A;
hence &(3|.7)S.o/no/’. On the other hand our condition &/N.o/'C3 implies
A =E(ANS|A)CEF|.). Hence E(3|.o)=onod'. Moreover o/n32
AN 24NN =9/N3, so that we have o7, =&(3|). Since 3 is a(IR)-stable:
3=a)3]2ut) [N ]|=.,Nno;, and the preceeding reasoning shows as
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well that o (t)[ .7, ] =o,nJ=E(3|.<7,). Instead of appealing to the u.w.-continuity
of the conditional expectation, as we did in the proof of the preceeding theorem,
we now use the fact that {&( . |.<,)|te R} is an increasing martingale with \ /,.o7,= 9.
A slight modification of the sublemma to Lemma 4 (or alternatively of Arveson’s
Proposition 6.1.9 in [3]) shows that, for every Ne®, N=s-lim,, ,&(N|</,). In
particular every element Z in 3 can thus be seen as a s-lim of elements &(Z|.«Z,) in
a()[.#.] as t—o0. Consequently 3C\/ o (t)[.o7,]; since /,C3 we have thus
3=\/(t)[.«.]. The remainder of the scholium follows by the same argument
as that used in the first part of the proof of the theorem, and from the fact that 3
is abelian. q.e.d.

Remark. For any generalized K-flow {M, ¢, a(R), .o/}, this scholium confirms
that: .o/ (resp. o7 ,) be a factor implies 9 (resp. 9,) is'a factor; it is in agreement
with: 3 (resp. 3,=%,nIN}) is either equal to €I, or is infinite dimensional.

Scholium B. Let {9, ¢, a(RR), o/} be a generalized K-flow; N, be the von Neumann
subalgebra of M generated by {M,;|AeSp,(H°)} with N, ={NeN|o(t)[N]=
exp(—ilt)N for all teR}; afIR) (resp. ¢) be the restriction of a(R) (resp. ¢) to
Ny A=A, Then N, ¢, o0 (R), o7 ,} is a regular generalized K-flow.

Proof. a(R) commutes with ¢(IR) implies that each 9,, and thus 9, itself, is stable
under «(R); hence a,IR) is indeed a continuous group of automorphisms of
9N, o, being a(R)-stable we further have &N, |.o7,) SN, N.o/, and thus N, |.o7,)=
9t,ne/,. From Theorem 6(i) we see that the algebraic sum ) ,9, is already u.w.-
dense in ,; hence the u.w.-continuity of &(.|.</,) allows to pass from the above
relation to &M, )=N,not, =0 (t)[</,]. We can therefore appeal, as in
Scholium A, to the fact that {&(.|.</,)|teR} is an increasing martingale with
\/,#2,=M, and thus conclude that \/,u(t)[./]=N, Jow N, is clearly o(R)-
stable so that the modular automorphism group of R, associated to ¢ is simply
the restriction ¢,(R) of o(R) to N,; hence o/, is o (R)-stable. We further have
Vedt) [ =R, (V()Z)=CI, and finally .«,Ca(t)[.«/,] for all teR*. Hence
{N, b, 2 R), o/,} is indeed a generalized K-flow. Its regularity follows from
Theorem 6(v) since the restriction of H to [0, ®]=),[9N,&] has clearly discrete
spectrum. g.e.d.

Remarks. (i) This scholium can be looked upon as a strengthening of Rem (ii)
under Theorem 8. (ii) The above proof would go through as well if one were to
replace M, by N, where ¢ is any subgroup of Sp,(H’); in particular, we could
have taken ¢ = {0}, in which case we would have been back in the situation covered
by Theorem 8; or, if Sp,(H)=# {0}, we could have taken for any 1eSp,(H?) with
A=%0, o=AZ in which case ¢ would have been a periodic homogeneous state
on N,

II. Weak Reversibility

1. Definition. A generalized K-flow {0, ¢, «(IR), o7} is said to be reversible, if there
exists a von Neumann subalgebra .27 of 9t such that {3, ¢, &(R), .o } is a generalized
K-flow with &(IR) defined by &(t) =a(—1t) for every teR. A generalized K-flow is
said to be weakly reversible if W=\/,o/; with o£;=Nn.<,.
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Remarks. (i) We shall construct, in Section III, generalized K-flows which are
reversible and weakly reversible. (i) If 9t is abelian, then the flow is trivially
weakly reversible. The question as to whether these “classical” K-flows are all
reversible seems to have been a long-standing problem (for some elaboration on
this point see Ex. I11.1 below). (iii) On the opposite extreme, every weakly reversible
generalized K-flow for which 9t is a factor is also reversible. (iv) This is in particular
true if we replace in (iii) the condition 9 be a factor by the condition .o be a
factor (see for instance the remark under Scholium 1.8.A). (v) If, in addition to the
condition of remark (iv), we impose that the von Neumann algebra generated
by .7 and /¢ be stable under «(R), then 9t is isomorphic (see [24c]), for each teR,
to ./, ® /¢; we shall construct, in Section III, an example of such a flow, whose
structure is very much reminiscent of that of a Bernoulli flow. (vi) Coming back
to the general meaning of the weak reversibility condition, we note that, whereas
\/-#,=MN is to be seen as a condition on the “distant future”, the condition
vtﬂf=92 appears as one involving the “remote past”. In fact, in the same way
as \/,.Z, =N implies (), Z:CNAN, the condition \/,.o7¢=N implies in turn
that (),«/,SMN'; hence one of our defining conditions for a generalized K-flow,
namely (),4,=ClI, actually follows, when 9t (or /) is a factor from the weak
reversibility condition \/,.2/¢ = 9. This symmetry between the roles of .o/ and /¢
is further emphasized by the following remark. (vii) The condition that s =t imply
of 2.9/, imposes that o/ "o, = E(A(| ) for all s=1. From a martingale argument
similar to that used repeatedly at the end of Section I, we see that /¢ =\/ (.o n.Z}).
It is then easily seen that the symmetric relation, namely .o7,=\/(s/,n.2Z}),
implies the weak reversibility property \/,.o7¢=N.

2. Theorem. Let {N, ¢, o(R), o/} be a weakly reversible generalized K-flow;
A (resp. &) be the C*-subalgebra of M generated by {of,|teR} (resp. by {</¢|teR}).
Then: (i) both W and € are strongly dense in N; (i) for each AeWN and each CeC:
lim,, , [[[4, «((t)[C]]]| =0, (iii) for every faithful normal state y on 9t: Sp(Hj)2
Sp(H?) where Hj, is the generator of the continuous, one parameter, unitary group
Uy (R) implementing the modular automorphism group o (IR) canonically associated
to .

Proof. Denoting by | ) the set-theoretical union, we clearly have | ),.o/,CUCN,
and | J . CECN. | .o/, is strongly dense in N by definition of a generalized
K-flow, and ( J,.o7¢ is strongly dense in 9% by the condition of weak-reversibility.
This proves (i). To prove (ii), we first note that for arbitrary, but fixed, Ae 2,
CeC and ¢>0, one can find finite x,yelR and A,eo/,, C,eo/ such that
[4,, aO[C,]]1=0 for all tzx—y, [A—A,|=e/4||C|, and |C—C,|=¢/L with
L=4||A||+¢/||C|. We have then for every t=x—y:||[[4, «(O)[C]]| ZI[A— A4,
o)[CNIl + [[4eo)C=C]l + I[A.«@LCII £ 2e/41CIH) x |C| +
2(| Al +¢/4||C|) x e¢/L=¢. Hence for every Ae, Ce® and ¢>0, one can find
a finite TelR such that ||[A4, a(t)[C]]| ¢ for all t=T. This proves (ii). To prove
(i) we draw from (i) and (ii) that «(IR), with IR equipped with its natural order,
is a net of automorphisms of 9t satisfying the conditions: (a) ¢ = ¢-u(t) for all
teR, with ¢ faithful normal state on 90; and (b) there exists a weakly dense sub*-
algebra of 9t, namely €, which is strongly o(IR)-central, i.e. for every Ce€ there
exists a weakly total self-adjoint subset of M, namely A, such that [ 4, a(t)[C]]—0
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strongly for every Ae Q. The assumptions of Theorem 1 in [1] are thus satisfied,
the conclusion of which is precisely part (iii) of the present theorem. g.e.d.

Remarks. The first two conclusions of the theorem strengthen considerably the
n-abelianness property (iv) of the corollary to Theorem 5. Indeed a statement on
averaged time behaviour, in the weak-operator topology, is now replaced by the
convergence, in the norm topology, of point-wise limits in ¢. (ii) The third conclusion
of the theorem shows in particular that when 9 is a factor, its type as determined
by Connes’ invariant S(9), can be obtained directly from the spectrum of H°
itself (see Corollary 3.2.5.d in [4]).

III. Examples
1. Classical Flow of Brownian Motion

A K-flow is defined, in classical probability theory (see for instance [2]) as an
aggregate (2, i, T(R),{) where (2, 1) is a non-atomic Lebesgue space (i.e. is
isomorphic to [0, 1] with Lebesgue measure); T(R) is a group of automorphisms
of (€2, 1) such that for each measurable subset X € Q, the subset {(w, )| T(t)[w]e X}
is measurable in 2 x IR; and { is a g-algebra of measurable subsets of Q satisfying
the following three conditions: (i) (S T(¢)[{] for every teR™; (ii) the c-algebra
generated by {T(t)[{]|teR} coincides with the og-algebra of all measurable
subsets of Q; and (iii) {0, Q} is the largest o-algebra, of measurable subsets of Q,
contained in all T(t)[{] with ¢ running over R

With these ingredients we construct the following objects: H= §,ﬁ2(§2 w;
9t the image of (2, y) under n: f € £ °(Q, wy—n(f)eB(H) defined by n(f)P(w)=
[(@)¥(w) for every Ye$H; d:n(f)eN—=($;n(f))=u(f)=]f(0)duw)eC; for
each teR, at):n(f)eN + at)[n(f)] = n(fT(t)eN; o ={n(x,)|c}" where y.
denotes the indicator function of the measurable subset &.

The aggregate {N, ¢, o(R), o/} just constructed is clearly a regular generalized
K-flow. This route can be treaded in the opposite direction starting from any
generalized K-flow {M, ¢, «(R), .«/} under the necessary and sufficient condition
that .o be abelian (recall that throughout the paper § is assumed to be separable!);
we therefore refer to these particular dynamical systems as classical K-flows.

With the classical notation in hand, we now want to comment briefly on the
reversibility question for classical K-flows of finite entropy (for the latter concept,
see [2,17] or Section IV below). For an arbitrary, but fixed t,e R*, and with
n running over Z, we write To(n) for T(nt,). From the K-flow properties of {Q, u,
T(R), {} we conclude immediately that: (i) (S To(n)[{] for every neZ*; (i) under
To(Z), { generates the o-algebra of u-measurable subsets of Q; (iii) {@, Q} is the
largest o-algebra of u-measurable subsets of Q, contained in all Ty(n)[{] with n
running over Z. This is to say that { induces on the discrete-time, dynamical
system {€Q, u, To(Z)} the structure of a K-system. By Corollary 3 to Theorem 2
in [19] this system is reversible; i.e. there exists a partition (, into u-measurable
subsets of Q, which induces on {Q, u, T,(Z)} the structure of a K-system, with
To(n)=Ty(—n) for every ne Z. We next remark that the properties of the original
K-flow imply that the “reversed” flow {@Q, u, T(IR)}, with T(t)=T(—t) for every
telR, is ergodic, measurable and of finite entropy. The combination of the above
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two remarks with the results recently proven in [20] (see in particular Section IV
there; some statements to the same end-effect were announced, without proof,
in [18], see in particular Theorem 2 and Corollary to Theorem 3 there) points
to the existence of a partition { into p-measurable subsets of Q such that {€Q, u,
T(R), {} becomes a K-flow; this supports thus the conjecture that every classical
K-flow of finite entropy is reversible. The finiteness of the entropy actually is not
necessary for reversibility, as can be seen, for instance from the following example.
The question of whether there might still exist classical K-flows, with infinite
entropy, which are not reversible is however not yet settled.

An inspiring example of a classical K-flow is provided by the flow of Brownian
motion [11]. Let indeed Q=%(R)* be the dual of the Schwartz space S(R) of
real-valued, rapidely decreasing functions on IR; Z be the o-algebra of subsets
of Q generated by the cylinder sets &(f, ..., f,; B)={weQ|(Kw; f1D, ..., w; f,))
e B}, where n runs over Z, {f,,...,f,} runs over the collection of n-tuples of
elements f;e #(R), and B runs over the Borel subsets of R". Let further C: f e #(R)
exp{— @[ f]*/4}eR be the characteristic function of Brownian motion,
where © is an arbitrary, but fixed, element of IR, with @=1, and ||.|| denotes the
#*qnorm on #(R). From Bochner-Minlos theorem, we know that {C(f)=
foexp(—iw; fY)du(w)| f e #(R)} defines a unique measure p on (2, Z). We next
define, for every teR, the mapping S(t): (R)—» F(R) by: SO)[f1(x)= f(x—1);
and from this the group T(IR) of automorphisms of (2, ) by: <T®)[w]; f>=
Kaw; SE)Lf]1). We finally define &,={fe L (R)|supp[f]1C(—o0,0]}, and { the
g-subalgebra of Z generated by the cylinder sets &(f,..., f,; B) with f,e%,.
It is then easy to check that {Q, u, T(R), {} is a K-flow, and the corresponding
classical K-flow is reversible, and evidently weakly reversible. From our point of
view, one of the most stricking interests of this classical example is that so much
of its essential structure persists, mutatis mutandis, in the next examples, where 9t
will be the “opposite” of an abelian von Neumann algebra, namely a factor.

2. Regular Generalized K-Flows, with 9t Type 111 ,-Factors

For every A€]0, 1[, we now construct a regular generalized K-flow {9, ¢, o(R),.o7}
for which 9t is a factor of type III,. To this effect, we consider the functional
b:feT rexp{—0|f]*/4}eR where 7 =L, dx) and @ =(1+A)/(1—1). We
know (see for instance Theorem III.1.7 in [8]) that (;3 determines uniquely, up to
unitary equivalence: (a) a separable Hilbert space $; (b) a mapping W:feJ
W(f)eu®) with W(/)W(g)=W(f +g)exp{ilm(f,g)/2} and W(Af) weakly
continuous in AR for every f €7 ; (c) a vector ®eH such that ¢(f)=(P, W(f)P)
for all fe7 and Span {W(f)|fe7 } dense in . Let 9t be the von Neumann
algebra on $ generated by {W(f)|feZ }, and ¢ be the state on 9t defined by:
{p;N>=(®,N®)for all Ne . We next introduce the group «(IR) of automorphisms
of 9 by defining, for each telR, a(t) as the extension to It of a(t)[W(f)]=W(u,f)
with u,e %(J") defined by (u, f)(x)=exp(—ixt) f (x) for every f € 7. For an arbitrary,
but fixed acR*, we single out the vector f,e7 :f(x)=a'? [(a*+x*)n]~ }/*; we
finally define  ,=CI. Span{uf,|s<0} and o/={W(f)|feT,}". To check
that {9, ¢, «(R), .o/} is a generalized K-flow, and to obtain easily the special
properties of this aggregate, it is convenient to remark that an explicite realization
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can be obtained as follows. Let {$p, Wy, @} be the (irreducible!) Fock representa-
tion of the CCR on J; and introduce &, =[1/(1—A)]"2, é_ =[i/1—=2)]'2. We
can now identify § with $r® Hp, @ with @@ & and W(f) with W&, /)@ Wp
(E_ f*) where f* is defined by f*(k)=f(k)* (f standing for the Fourier transform
of fin 7).

Upon noticing now that ¢ satisfies the KMS condition w.r.t. the group o(RR)
of automorphisms of 9t defined by o(t)[W(f)]=W(A*"f), we conclude that
{N, ¢, a(R), o/} is a generalized K-flow, that It is a factor and that Sp(H?)=(In1)Z.
One further checks easily that &/“={W(f)|fe T}’ that o is a factor, that N
can be seen as .«/,®.o/¢, and that ‘ﬁ:\/,a(t)[yﬂ]. From Remark (iii) under
Definition II.1, one has thus that {9, ¢, «(R), ./} is not only weakly-reversible,
but also is reversible. By Remark (ii) under Theorem II.2, we have S(9)=
{A"neZ},1e. Nisa type I11,-factor. Consequently ¢ is periodic and homogeneous
(see Corollary under Theorem 1.5) in the sense of Takesaki, so that (see Proposition
[.7 in [25]) every maximal abelian von Neumann subalgebra of the centralizer
N, of N (w.r.t. @) is already maximal abelian in N. Hence the generalized K-flow
just constructed is regular.

From a mathematical point of view, this example shows first of all that the
concept of generalized K-flows covers more than classical K-flows. This example
was already noticed in [9b]; what is new here is that we now have noted its weak-
reversibility, proved its reversibility, determined its factor type, and shown its
regularity. This example thus establishes explicitly that the additional conditions
of weak-reversibility, reversibility and regularity can be superimposed without
contradictions to the structure of generalized K-flows, even when 9t is a factor
(i.e. the opposite of an abelian von Neumann algebra!).

From a physical point of view, the interest of this example is that it brings
into contact the general scheme for non-equilibrium statistical mechanics outlined
in the introduction and the theory of generalized K-flows. Specifically, let 9g=
{W(zf)|zeC}" and Ng={W(f)I(/, f)=0}". Then N=N;® Nk and ¢p= s g
with ¢g (resp. ¢g) the restriction of ¢ to Mg (resp. Ng). Furthermore N=
{a(t)[Ng]|teR}". Finally, with & denoting the unique faithful, normal conditional
expectation from N onto Ny with po& = : Eau(t)6 =7(t)&, te R™, defines a contin-
uous semi-group y(IR™) of completely positive, faithful maps from g into itself
with ¢eyp(t)=¢ for all telR*. To be completely specific, for each telR*, y(¢) is
determined by:

YOIW(zf)1=Wle™“zf,) exp {—O|z*(1 —e™>")/4}.

One thus sees that, at fixed ze €, each one of the abelian von Neumann subalgebras
N, ={Wzf,)|LeR} CNy is stable under y(IR*). Transposing then p(IR™) to the
predual (M,), of N,, one finally checks that y(R™),, restricted to (N,),, is the
integral solution of a diffusion equation in a harmonic well:

{0,—D.[Z+VE)o:+ V(O 1)=0
with (., 1)e Z1(IR, d¢) defined by:
Py OIW Az f ) =[wE, e *ed¢
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and
VA =3238%Q2=2|z7*0 ", D,=}a|z|*O.

(In these expressions Plank’s constant //2n and the natural temperature f=1/kT
have been normalized to 1 for notational convenience.)

Hence {N,, ¢, y(IR*)} is a bona fide dissipative thermodynamical system the
evolution of which is governed by recognizable transport equations. {Ng, g}
serves as a thermal bath for this thermodynamical system, in the sense described
in the introduction.

Since all the details necessary to a complete physical interpretation of this
model can be found in [7, 9b, ], let it only be said here that {9t, ¢, «(R)} is obtained,
in the interaction picture, as the thermodynamical limit, followed by the long-time
weak-coupling limit of an infinite chain Z of one-dimensional harmonic oscillators;
N, corresponds to a single harmonic oscillator in the chain, the remainder of
which corresponding to 9tz. More specifically, one starts from a finite assembly
of harmonic oscillators interacting through a translation invariant Hamiltonian.
The first of the above-mentioned limits extrapolates from the Hamiltonian
mechanics of this finite system to that of the chain Z. The reason for this limit is
to remove to infinity the recurrences proper to finite systems. The second limit
consists in taking the combined limits A—0, t— oo, with A2t=¢ fixed. It is in this
rescaled time ¢ that our evolution o(RR) is expressed. The reason for this limit is to
compress to t=0 the intermediary regimes developing on the microscopic time-
scale; and thus to isolate the asymptotic character of the thermodynamical
equations, in a time-scale adjusted to the coupling constant 1. Consequently, the
resulting «(IR) contains the cumulative long-time effects of the evolution, and it is
thus different from the free evolution ¢(IR). Consistency requires that the same
limiting procedure be simultaneously applied to the equilibrium state ¢, of the
system; this state evidently only feels the “A—0” part of this limit. This explains
why ¢ happens indeed to be KMS with respect to the free evolution o(R)=a(RR).

3. A Regular Generalized K-Flow, with 9t a Type I1,-Factor

Let {M, ¢, u(R), o/} be any one of the reversible regular generalized K-flow
constructed in (2) above. Since N is a type 111, factor, and since the flow is regular,
the centralizer 9, of 9, with respect to ¢, is non-trivial. From the physical point
of view, we recall that 90, is the algebra of the constants of the motion under the
“free” evolution o(RR). Let a4(R) (resp. ¢) be the restriction of «(RR) (resp. ¢) to Ny,
and .o/, be the von Neumann algebra &/ n9t,. From Theorem 1.8 we know that
(N4 b, 4y(R), 7, } is a regular generalized K-flow. From Theorem 1.5, we conclude
that the Hilbert space [9t,®] is infinite-dimensional. From Theorem II.2.iii, we
next conclude (via Corollary 12 in [5] or Theorems 2.4.1 or 4.2.6 in [4], or
Takesaki’s analysis [25]) that 9, is a factor, of type II; since ¢ is a faithful normal
finite trace on N, and [N, @] is infinite dimensional. We have thus indeed obtained
a regular generalized K-flow with 9t a type II,-factor. We furthermore remark
that {:M,, ¢, «,(R), o7, } inherits, from our initial flow {N, ¢, «(RR), .o}, the property
of being weakly reversible and thus of being reversible since N, is a factor.
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4. Regular Generalized K-Flows, with %t Type I11,-Factors

For every weR™ irrational we construct a regular generalized K-flow with N
a type I1I,-factor, depending on w. To this effect, let {N,, ¢,, a(R), o;} (i=1, 2)
be two regular generalized K-flow of the type constructed in (2) above, with
w;=—1Inj; (i=1,2) and w/w,=w. Form now the von Neumann algebra 9t=
N, ®IN, acting on the separable Hilbert space H=9H;®H,. Since N; (i=1,2)
are factors, so is 9. Let ¢ be the faithful normal state ¢, ® ¢, on It corresponding
to the cyclic and separating vector @ =&, ® &,. Let further o(IR) be the continuous
group of automorphisms of 9t defined by o(f) =0, (t)® a,(t); clearly ¢pooa(t)=¢
for all teR. Let finally o/ =.o/; ® o/,. From the weak reversibility of the compo-
nent K-flows, we have: \/,a(t)[ﬂ”] N=\/,u()[«/] and (), (t)[/]=CI=
().o(t)[.«/]. Notice furthermore that o(R), defined for each teR by a(t)=0,(1)®
0,(t), is the modular group of automorphisms of 9t for ¢. We have thus that
{N, ¢, «(R), o7} is a weakly reversible, generalized K-flow, with 9 a factor. Clearly

=H{®I+I®HS so that H’ is diagonizable, with eigenvalue spectrum
{kiw{ +ky,|k, k,eZ} dense in IR since w is taken to be irrational. Hence
Sp(H°)=R. From Theorem II.2 S(M)=IR*, which is to say that 9t is of type III;.
Moreover, the diagonalizability of H’ also implies, by Theorem 1.6.v, that the
flow is regular. We have thus indeed constructed a weakly reversible, reversible,
regular generalized K-flow where 9t is a type 111, factor, depending on w.

The physical interpretation of this flow follows along the same lines as in (2)
above.

5. A Singular Generalized K-Flow, with Mt a Type I11,-Factor

Let 7 =%*(R?, dx,dx,), and let u(R) (i=1, 2) be the continuous, one-parameter
groups of unitary operators on .7 defined respectively by u;(t) f(x,, x,)=f(x; —t,
X,) and u,(t) f (x4, X,)=f(x,, X, —1) for all €. One has thus lim,_, (f, u(t)g)=0
for every f,ge 7, and i=1, 2. With h; denoting the generator of u(IR) we clearly
have:

0=<k=exp(—h)[1+exp(—h)] '<1.

Let now 9 be the C*-algebra of the canonical anticommutation relations on

7 ; 5,(IR) be the continuous group of automorphisms of A defined by &,(t)[a(f)]=
a(u l(1,‘ f); in the sequel we will write 6(IR) for &,(R), and &IR) for &,(IR). Let further
$ be the state on A defined by (¢:I1>=1 and:

(b5 a*(f)...a*(falgy)...alg,)) =0b,, Det A

where A is the nxn matrix A;;=(f, k,g)).

This is a particular case of the situation studied in [10], and we thus have:
$ is a gauge-invariant, generalized free state on €A; N = nd,(QI) is a factor; G(R)
is the modular automorphism of 9t associated to ¢; the centralizer Sﬁ¢ of 9 is
trivial; for i=1,2, every peq* and every A4, Be, lim,_,  {({; [a(t)[A], B]>=0;
and ¢oa(t)=¢ for all teRR.

In order to get a flow involving an algebra of observables rather than fields,
we introduce Fe Aut() defined by z[a(f)]=wa(f), wey, for all fe7 . Let then
A={A4eA|F[A]=A)}. Since ¥ commute with &(R),M= {ms(W}" is a(IR)-stable.
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This implies: .

(i) there exists a unique faithful normal conditional expectation & from N
onto M such that ¢ =¢&’; (ii) the restriction of &,(R) to M is again a continuous
automorphism group of this algebra. Let now N be the restriction of M to H=
[Mid]; we denote by «(RR) [resp. o(R) and ¢] the restriction of &(R) [resp. 6(IR)
and ¢] to M. Clearly ¢ is KMS on N w.r.t. o(R), and ¢o(t)=¢ for all te R; more-
over ifld, =CI implies 9N, =CI, and thus I is a factor. A straightforward computa-
tion shows that 9t =CI would imply k, =0, so that 9t is non-trivial.

To show that {9, ¢, «(R)} supports a generalized K-flow, we still have to
identify the refining subalgebra .o7. To this effect we define 7, as the closure
in 7 of Lo={feL (R supp[ f1CR x (— o0, 0]}; and A, the C*-subalgebra
of U generated by {a(f)|f €T o}; we then form iﬁ?o=n¢(§lo)”m§ﬁi=é”(nd,(QNIO)”I?jE)
and we define .o/ as the restriction of M, to . Clearly .o/ is 6(R)-stable, .of Ca(t)[.o/]
for all teR*, and \/,a(t)[/]="N.

We still have to prove that (), o(t)[.«/]=CI. This is done as follows. Let &
be the set of all regions of R* of the form Q=R x Q, with Q, CR compact; #
becomes a directed set under the usual inclusion. For every Qe # we now form
the CAR C*-algebra A(Q) on L*Q,dx,dx,)CT ; and the local algebra of
observables A(Q) =A(Q)NA. Clearly U is the C*-inductive limit of {A(Q)|Qe F}.
We next consider, for every Qe % :

A(Q) =" AWQ")

where the union [ ) is taken over all Q"€ disjoint from Q. Define now B(Q)=
7yA(Q))'|$, and

%=ﬂgef;%(ﬁ)-

Clearly ﬂta(t)[d]g%g‘ﬁm‘ﬁ’, the second inclusion steming directly from the
local commutativity in 9. Since N is a factor (), a(r)[./]=CI. Hence {N,¢,o(R),.o/ }
is a generalized K-flow. It is singular, since 90, =CI; and, see for instance Theorem
1.6, 9t is a type III;-factor.

We should remark that this K-flow is also weakly reversible; and thus reversible,
since Mt is a factor. Hence this example shows not only that singularity is compatible
with the structure of generalized K-flows, but also that it is compatible with the
additional conditions of weak reversibility and reversibility.

To conclude this section, we note that all the generalized K-flows we
constructed are mutually non-isomorphic.

IV. Dynamical Entropy

1. For a classical system {Q, u, T(R)} the concept of dynamical entropy can be
approached in two ways which are conceptually different but nevertheless
mathematically equivalent. Whereas in both approaches the dynamical entropy
H(T) is defined as the sup of H(T, {) over all finite measurable partitions { of Q,
the difference comes in the definition of H(T, (), the entropy of the partition {
under the flow T(RR).
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In the first approach, one defines:
H(T, {)=lim, o H(\/ T[]/ ...\/ T"[{D/n+1)

where T is T(1); C\/...\/T "[{] is the smallest measurable partition of Q which
refines all T*[{] (0<k<n); and for any finite partition { of Q into mutually disjoint
measurable subsets &, H({)=),h[u(&,)] where h is the continuous function
h:xe[0, 1]+ —xlogxeR".

In the second approach, one defines:

H(T, {)=lim, ., H|T ' [T\/..\/T"[{])

where H({,|{,) is the conditional entropy of {; with respect to {,. Since one can
prove (see for instance [2,17]) that both definitions give the same value for
H(T,{), it is only a matter of taste as to which definition one prefers, as long as
one deals with a classical dynamical system. Notice also (see for instance [17])
that one can replace in the definition of H(T) the sup over all finite measurable
partitions by the sup over all countable measurable partitions { with H({) < co.

When it comes to generalize the concept of dynamical entropy to a quantum
dynamical system {:M, ¢, o(IR)] two difficulties have to be mastered.

The first difficulty is that if { denotes an arbitrary (finite) partition of the
identity into mutually orthogonal projectors F,e9t, then the measurement of {
can perturb the state ¢, thus introducing a stochastic element which does not
pertain to the time evolution. This effect will be eliminated by restricting the
class of admissible partitions {, so that the non-vanishing of H(x) will indeed
reflect a stochastic behaviour in o(IR) itself.

The second difficulty is that { and o(t)[{] might not commute, so that the
question comes as to what object should take the place of \/, the refinement which
appears in the above two definitions of H(T, {). Connes and Stermer [ 6] succeeded
in extending the first definition in such a manner that it becomes useful for the
classification of Bernoulli shifts on the hyperfinite II,-factor. In [9c] we were
concerned with extending the second definition of H(T, {), which we also consider
here as giving a more intuitive feeling of what kind of stochastic behaviour is
involved when a quantum dynamical system has strictly positive entropy. We
shall compute this entropy for some generalized K-flows at the end of this section.

2. Let 9t be a von Neumann algebra acting on a separable Hilbert space £;
¢ be a normal state on I; and { be a partition of the identity on $ into mutually
orthogonal projectors F,e9. Following von Neumann [16], we describe the
effect of the measurement of { as changing ¢ into the state ({[¢]=)  FidF)
where for every Xe9t we denote by X¢X the positive linear mapping X¢X:
NeRi—>{¢; X*NX)eC.If ¢ is faithful, we write 1, =<¢; F,» and ¢, = A, 'F,dF;
we note then that 4,>0, >, 4, =1, and ¢, can be considered as either a normal
state on 9%, or as a faithful normal state on the reduced von Neumann algebra
FNRF, =N, acting on F,$. The effect of the measurement of { thus appears as a
“channeling” operation which changes ¢ into the mixture {[¢]=) ; ,¢,. Clearly
in the classical case, where 9 is abelian, {[¢]=¢ for all {. In the non-commutative
case, we still have the following easy result which we record here for future reference
in the sequel.
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Lemma. Let {N, ¢, o(IR)} be a dynamical system where: N is a von N eumann algebra
acting on a separable Hilbert space §; ¢ is a faithful normal state on N; and «(R)
is a group of automorphisms of N such that ¢ea(t)=¢ for all teR. Let further {
be a partition of the identity on § into mutually orthogonal projections F eN. Let
Sfinally 0, be the von Neumann algebra of fixed points of N under the modular
group o(R) canonically associated to ¢. Then the following four conditions are
equivalent: (i) ([p] =, (i) {CN,, (ii) a(t)[{]C Ny for every teR; (iv) {u(t)[{][te
R}"CN,.

Proof. Upon feeding NF, and F,N into (i), one checks that (i) implies
{(¢;[N,F,1>=0, ie. FeN, which is (ii). Since ¢oa(t)=¢ for every teR, o(R)
commutes with ¢(IR) and thus 9, is «(IR)-stable; hence (ii) implies (iii). Clearly (iii)
and (iv) are equivalent, and (iii) implies (ii) as a particular case. Since F e,
implies {F,¢F;; N>={¢; F.N) for all NeW, (ii) implies (i). g.e.d.

Definition. Let {M, ¢, 2(R)} be a dynamical system as in the Lemma. A partition {
of the identity on & into mutual orthogonal projectors F,e9t is said to be
admissible, if it satisfies any, and thus all, of the four conditions of the lemma.
By extension, a von Neumann subalgebra 9t C9t is said to be admissible if M N,
We denote by Z the set of all admissible partitions {C9%, and by M the set of all
admissible von Neumann subalgebras of 9t.

3. Let now M be a von Neumann algebra acting on a separable Hilbert space £,
and suppose further that 9 admits a normalized, faithful normal trace ¢. Let {
be a partition of the identity on § into mutually orthogonal projectors F,eI.
To define H (), the entropy of { with respect to ¢, we can ignore 9t and simply
restrict our attention to the abelian von Neumann algebra {” generated by the
F/’s; we are thus in a classical situation and can therefore appeal to Khinchin’s
theorem [13] to conclude that the only reasonable definition of H,({) is
Yh[{¢; Fi>] (compare with IV.1 above).

Suppose now for an instant that 9t is moreover finite-dimensional. For any
two partitions {; and {, of the identity into minimal projectors of 9, there exists
U unitary in I such that Ady[{,]={,. Since moreover ¢-Ady=¢, we have
H y({1)=H 4({,). We can therefore define the entropy of M w.r.t. ¢ as H ,(I) = H 4({)
where { is any partition of the identity into minimal projectors in 9. Furthermore,
since every partition { of the identity into mutually orthogonal projectors in Mt
can be refined into a partition {,, of the identity into minimal projectors in 9,
one checks easily that H,(90)=H4{)+ ), AH, (M) with 4, ¢, and I, defined
from {={F,} asin IV.2 above. Hence ) ; A, H, (M,) appears indeed as the residual
entropy of M w.r.t. ¢, after the measurement of { has been performed, i.e. it is the
entropy of M conditioned by { w.r.t. ¢. This remark might serve as a further
motivation for the following definition.

Definition. Let ¢ be a normalized, faithful normal trace on a finite von Neumann
algebra 9 acting on a separable Hilbert space §. Let {, ={F,} be a partition of
the identity on § into mutually orthogonal projectors F,e; and let {={G;}
be similarly defined. We call Hy(|(;)=) A H,,(0) the entropy of { conditioned
by {, with respect to ¢.
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Remarks. (i) This definition does evidently not require that { and {; commute.
(ii) Upon noticing that &(.|(;): MeMM—Y , {P,; M) F,el] is the unique faithful
normal conditional expectation from I onto {{ with ¢o&(.|{)=¢, we have:

H¢(C|(1)=z,’<¢§ h[éa(Gj|C1)]> 5

this expression coincides with the conditional entropy Hy({|{}) introduced in
[9c]. (iii) In particular, H 4(|{,) reduces to the classical expression when { and (,
do commute. (iv) In [6] a conditional entropy H,(X|X,) is defined for X and X,
finite-dimensional subalgebras of I, namely:

Sup,es {2 u({d; RIECa )1 — (@3 h[E(x, [ X))}

where S is the set of all finite families x={x,} of positive elements of M with
kak=1 ; one verifies that one has, in case { and {; are finite partitions, H,({|{;)=

Hy(L"1C7).

Lemma. Let ¢ be a normalized, faithful normal trace on a finite von Neumann
algebra M acting on a separable Hilbert space . Let { be a partition of the identity
on $ into mutually orthogonal projectors F e, and let (o, {;, and {, be similarly
defined. Then: (i) H,({]{,)=0; (ii) a necessary and sufficient condition for H,((|(,)
to vanish is that [S{y; (iii) (E{o implies Hy(C]0y) = Hy(olly); (i) (€L, implies
H (LI )= Hy(C1E,)

Proof. (i) follows directly from the definition. To prove the sufficiency in (ii),
notice that {C{; means {"<{] which implies, for every F,e(, that &(F|{;)=F;
and thus h[&(F,|{{)]=0; by Rem (ii) above, this indeed implies H ,({|{;)=0.
Conversely 0=H ,(|¢,)=) K& Fi>h[{$;; G,;>] implies, since ¢ is faithful,
that h[{¢y; G;>]1=0 for every k, j; consequently {¢,; G, is either 0 or 1. Since ¢,
is normal and ) ;G;=1I, for each k there exists exactly one j, say j(k), such that
{¢y; G;»=1. This implies {¢; F;[I—G;4]F,>=0; since ¢ is faithful, we thus
have Fi[I—G;u,]F,=0,ie. F,S Gy, Since { and (, are partitions of the identity,
this implies indeed {C{,, thus proving (ii). To prove (iii), it is sufficient to prove
that, for every normal state v on M, (S, implies H ({)<H ({,). Since however
{<S{, and {{ abelian, we can restrict p to {§ and be in a classical situation where
this result is well-known (see for instance [ 17]) to follow directly from the concavity
of h, thus establishing (iii). Finally (iv) follows from the classical Jensen’s inequality
(see for instance [17]); by Rem (ii) above we have indeed:

Hy(18)= 2kl ¢s RLEFICHD
=2 4{P; E(MLE(FIL )]0
< 2ulPs RIS(EFJIC)IC)TD
=24l hIE(F L)1) =Hy(L1Co) -
This concludes the proof of the lemma.
Remark. The four conclusions of this lemma confirm, if needed, the interpretation

of Hy((|{,) as a conditional entropy which indeed quantifies the information
gained by measuring { once {; has been measured.
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4. Keeping in mind that measurements in quantum mechanics are classical
operations, and thus are performed via partitions, we propose the following
definition.

Definition. Let ¢ be a normalized, faithful normal trace on a finite von Neumann
algebra I acting on a separable Hilbert space £; 2 be a von Neumann subalgebra
of M; and { be a partition of the identity on $ into mutually orthogonal projectors
in M. We define the entropy of { conditioned by N with respect to ¢ as:

H (1) =TInfy, o y(C184) -

Remarks. (i) The consistency relation H 4({|{;)=H 4(|{}) follows from Lemma
IV.3.ii. (ii) If A is abelian and {{,|ae D} is an increasing family of finite partitions
of the identity in A, with {{,JaeD}"=%, then a simple increasing martingale
argument shows that lim, H,((|()=),<{¢;h[E(F,|W]>. This establishes in
particular the consistency of the present approach with that followed in [9c].
(i) The operator concavity and continuity of & lead easily to an extension of
Jensen’s inequality to the non-commutative case, namely (hed —&oh) is a positive
map. This allows to generalize the argument of Lemma IV.3 to give, for a general
von Neumann subalgebra 2 of M: H (| W=D, {¢p; h[E(F,|W]I). (iv) When R
is a von Neumann algebra acting in a separable Hilbert space and admitting a
faithful normal state ¢, the above definition extends Hy from Z xZ to ZxM
with Z and M defined in IV.2. The mapping H,:({, WeZ x M—H ,({|WeR™"
so defined satisfies all the conclusions of Lemma IV.3 where we now replace (;
and {, by arbitrary (i.e. not necessarily abelian!) von Neumann subalgebras 2,
and A, in M, with {, and { now running over Z.

5. Definition. Let M be a von Neumann algebra acting in a separable Hilbert
space ; ¢ be a faithful normal state on N; «(IR) be a continuous group of auto-
morphisms of 9 with ¢eo(t)=¢ for all telR; { be a partition of the identity on $
into mutually orthogonal projectors F, in 9t; 2,({) be the von Neumann algebra
generated by {a(k)[{]|keZ, —n<k<0}. If { is admissible in the sense of Definition
IV.2, we now define the entropy of { under o(IR) as:

H (L, o) =1lim, ., o Hy({|A(0)) -

We further define the entropy of the dynamical system {3, ¢, s(R)} as:
H y(o)=Sup H 4(C, )

where the sup is taken over all admissible partitions { with H,({)< co.

Remarks. (i) By Lemma IV.2, { admissible implies that { and 2,({) are in 9N, the
centralizer of 9t with respect to ¢. We can therefore restrict our attention to
M=9N, and ¢|N,, and thus use the results of IV.3 and 4 above. (ii) In particular
H ,(£|0,(0)) is a positive, monotonically non-increasing function of neZ*, so that
the limit H,({, ) indeed exists. (iii) The value + oo is, in principle, allowed by the
definition of H4(«); it actually occurs, as we shall see in subsection 7 below, in
quite a number of non-isomorphic examples. (iv) Because of Remark (iii) to
Definition IV.3, the entropy H 4() reduces to the classical Kolmogorov dynamical
entropy when 9 is abelian. (v) From a rigidly operational point of view, one might
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object that ,({) may perhaps contain partitions which are out of reach of labora-
tory procedure involving only a finite number of physically implementable steps;
in this spirit, one should then not be allowed to take, in the definition of
Hy(L|W(0), the “Inf” over all partitions {; in (). We should nevertheless
remark that the introduction of such restrictions would only make H ,(o) larger.
This would thus only soften the standards by which we decide that a flow is
stochastic. In particular, the validity of our next theorem, which is the principal
result of this section, would not be affected, nor would the discussion presented
in the subsequent, and last, paragraph of this paper.

6. Theorem. The entropy of every non-singular generalized K-flow {:, ¢, «(IR), .o/}
is strictly positive.

Proof.Let 9, be the centralizer of M with respect to ¢; P be any projector in the
von Neumann algebra .o/ ,=N;n.o/; and {={P,I—P} be the corresponding
partition of the identity. Clearly { is admissible. Since { is finite, H 4({) < oo. Hence
Hy(2)=0 implies in particular lim,_, , H,({|U,({)=0. Since &(.|A,()) is an
increasing martingale, with \/,2,(0)=A={amn)[(]|neZ n<0}’, H (| 2)=0.
Consequently, by Remark IV.4iv, {C, and thus {C{an)[,]lneZ n<0}".
However by Theorem 1.8 .o, Co(t)[.# ], i.c. o —t)[.o/ 4], for every teR™.
Hence {Ca(—1)[/,], and thus Pea(—1)[./,]. Since P was chosen arbitrarily
in .o/, this means ./ ,Co(—1)[.o,]. By Theorem 1.8 again this implies .o/ ,=
w(—1)[.o/,] and thus o7 ,=a(t)[ 4] for all telR. On the other hand, still by
Theorem 1.8, we have (),o(t)[,]1=CI and \/,a(t)[.Z,]=N,, which is to say
now that N, =CI, i.e. {N, ¢, «(IR), o7} is singular. g.e.d.

7. We now show that the entropy of all the generalized K-flows constructed in
Section III can be explicitely computed.

We first examine Example 111.2.

For any f,e7, let W(w) be the von Neumann subalgebra of 9N generated by
{W(zf,)ze C}; let further N y(w) = N(w)NN,. The latter is the algebra of constants
of the motion for a single harmonic oscillator; it is therefore abelian, with spectrum
isomorphic to Z . Furthermore ¢|9%4(w) induces on Z . the canonical equilibrium
measure v given by v, (n)=A41""1—2).

For any (not necessarily complete) orthonormal system % ={f, |weQ}
in 7, we can identify Ny(F)=(X),0N4(@) as a von Neumann subalgebra of
N, Ny(F) is again abelian, with spectrum Z%. The product state ¢|N,(F)=
Rwecade With ¢, =¢|N,(w), induces on Z% the product measure v=_X), 0V

For any finite positive integer N, we can find {f,|1<k< N} with f,e #(R),
supp(fz) < [0, 1], and (fy, fi) = O

We now take for Q the set {w=(k,n)|1<k<N,neZ}; and for & the system
{fo=funm=tfrlweQ}, with {f,|]ISk<N} chosen as just indicated above;
and u,=u,_, where {u,|te R} is the unitary group on 4 which induces on 9t our
automorphism group «(RR). Notice in particular that we have indeed (f,, f,)=
O e

This choice of # has the following remarkable properties. (i) The spectrum X
of the abelian von Neumann algebra N,(%) is Z% =(Z" )", i.e. it is the countable
product of copies of the countable space Y =Z7 (i) ¢ induces on Y a probability
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measure 4, with mass p, at y=(n,...,ny)eY given by p,=uen,,....,ny=
[ [¥=1v(n) with v(m)=4""(1—21), m=n,, 1<k=<N. The entropy of this distribu-
tion is:

S(Ya :uO)= - Zerpy ]ngy:NSO(/{)
with:

0<So(A)= =2,z V(1) logv(n) < co .

(iii) ¢ induces on X a probability measure u=(X),zu, With u,=p, on Y. (iv)
N4(F) is a(Z)-stable. (v) «(Z) induces on X a group T(Z) of u-measurable, u-
preserving transformations with T(n)=T" given by:

(T[x])i,n:(x)i,n- 1-

These properties add up to the assertion that {X, u, T(Z)} is a generalized classical
Bernoulli shift (see for instance p. 110 in [21]). Its entropy H,(T) is thus equal to
S(Y, u,), which is finite. Therefore [23], it has a finite generator.

Consequently, for each finite positive integer N there is a partition { in our
original K-flow {:M, ¢, «(IR), o } which has finite entropy and such that H({, )=
NSo(A). The entropy of the generalized K-flow {M, ¢, «(IR).o/} constructed in
Example 111.2 is therefore infinite.

This proves as well that the generalized K-flow constructed in Example I11.3
has infinite entropy, since it is the flow induced by {3, ¢, «(R), o7} on its centralizer
9t, where the above argument is actually carried out.

We might also remark that this argument also shows that a dynamical entropy
defined along the line followed by Connes and Stermer [6] would also take
infinite value on this flow.

Remark (iii) to Scholium 1.8.B shows that a generalized K-flow of the type
constructed in Example 1I1.2 is always contained as a subflow of any of the
generalized K-flows constructed in Example I11.4. Consequently the latter have
also infinite entropy.

Actually an argument quite similar to that used for the analysis of Example
II1.2 can be used for the classical case considered in Example II1.1. Consequently
we have back the classical result that the flow of Brownian motion on R has
infinite entropy.

We should perhaps emphasize that in spite of the common Bernoulli structure
emerging in all the generalized K-flows of Examples I11.1 to II1.4, these flows,
although they all have infinite entropy are mutually non-isomorphic.

Finally, the flow of Example IIL.5 is singular, and hence has no non-trivial
admissible partition. Its entropy thus vanishes trivially. This however should be
interpreted carefully. Whereas Theorem I11.6 shows in effect that one can separate,
for every non-singular generalized K-flow, the stochastic elements in the time
evolution o(IR) from those stochastic elements which might be introduced by the
quantum measurement process, such a clean separation is not possible in the
case of singular generalized K-flow. Whatever stochastic elements the “true”
evolution a(R) of a singular generalized K-flow might have, these can simply
not be detected from the constants of motion under the “free” evolution o(IR)
since these singular flows do not admit any non-trivial such constant.
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The point of this section was precisely to show how this separation can be
done for every non-singular generalized K-flow; this applies in particular to
every regular generalized K-flow. We recall that classical K-flows are regular in
the sense of our Definition 1.2, and that a regular, non-classical, generalized
K-flow can canonically be associated to a quantum transport equation such as
that governing the diffusion of a quantum particle in a harmonic well.
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Note Added in Proof. The fact that Rudolph’s work [207 supports the conjecture that (finite-entropy)
classical K-flows are reversible, also follows from recent work by B. M. Gurevich (private communica-
tion, June 1976).








