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Abstract. We deal with the geometrical foundations of a covariant scheme,
which is developed to give a "co-ordinate independent" perturbation expansion
of SU(2)xSU(2) chiral theories with pions and nucleons. The pion fields
play the role of local co-ordinates on a 3-D manifold with constant curvature
in isospace. The presence of the nucleon isospinor field forces us to deal with
the problem of endowing the manifold with a spin structure. In this way the
nucleon isospinor is accommodated in the fiber space of the principal fiber
bundle of the tangent bundle of the manifold.

0. Introduction

The non-linear realizations of the chiral group G = SU(2)x SU{2) are studied
from the geometric point of view in [1]. In this reference the 3-dimensional
non-linear realization associated with the pion isovector field is considered as a
group of co-ordinate transformations on a 3-dimensional isospace of constant
curvature leaving invariant the line element. In this treatment the pion field
components are taken to be the co-ordinates in the curved isospace. The various
non-linear models (i.e. chiral invariant Lagrangian densities which are functions
of the pion field only) result from a specific choice of the co-ordinate system used
to parametrize the manifold. It is known, however, that the 5-matrix elements
should be independent of the choice of the pion field in term of which the
Lagrangian density is defined. A co-ordinate independent formulation of per-
turbation theory is developed in [2, 3]. In the present article we would like to
extend the formalism of [2, 3] to cover the case of SU(2) x SU(2) invariant
Lagrangian densities which are functions of the pion isovector as well as the
nucleon isospinor fields. Consequently we are forced to deal with the problem
of "laying down a spinor field" upon the manifold under consideration, that is,
it is necessary to endow the manifold with a spin structure. This structure is
defined by means of a field of driads. The dreibein fields, therefore, play an essential
role in our formalism.
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In conclusion we remark that the present work provides the necessary geo-
metric background for the work of Reference [4].

1. The Spin Structure

Consider the 3-sphere S3 C R4 of radius Fπ, Fπ being the pion decay constant.
The group G acts transitively on S3. As a manifold S3 is orientable. Thus, the
tangent bundle of S3 has the rotation group 50(3) as structural group. The tangent
bundle is also trivial [5]. There exist three cross-sections of the bundle which
are no-where linearly dependent [6]. Applying the Gram-Schmidt process we
obtain an orthonormal set of cross-sections s1? s2, s3 i.e. sa(π) - sb(π) = δab for each
π = ( π ί , π2, π3)eS3. We recall that the pion fields are taken to be the co-ordinates
on S3. The inner product is defined in terms of the Riemannian metric g = g^ dπ' ® dπj

of the manifold. Now the cross-sections of the tangent bundle are vector fields.
Hence, with respect to a local chart the cross-sections acquire the form

so that
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Thus, the dreibein fields of [3] are the components of the cross-sections sa with
respect to a local chart.

Let ξ be the principal fibre bundle of the tangent bundle with structural
group S0(3). The total space of ξ is denoted by E(ξ) and the base B is the mani-
fold itself. If it is possible to replace the structural group S0(3) by its 2-fold
covering group Spin(3), then one says that S3 can be given a spin structure. It can
be shown that an orientable compact Riemannian manifold M admits a spin
structure if and only if its second Whitney characteristic class C2(M) is null
[7,8]. For the 3-sphere C2(S3) = 0 holds [5], and the manifold is parallelizable.
Thus, S3 can be given a spin structure. This implies the existence of a pair (η, f)
consisting of (i) a principal bundle η over B with Spin(3) as a structural group,
and (ii) a map f:E(η)^>E(ξ) such that the following diagram is commutative [8].

E(η) x Spin(3) -> E(η)

lfxφ I B
E(ξ)xSO(3) -^E(ξ)^

where φ is the sta'ndard Spin(3)->SO(3) homomorphism. Consequently with
regards to the bundle η the fiber above each point PeB is a 2-dimensional complex
space (spin space) with Spin(3) structμre. This fact will enable us to deal with the
covariant perturbation expansion of chiral theories with pions and nucleons.
It is clear that the spin structure of the manifold is indispensable in order to
accommodate the nucleon isospinor field.
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2. Geometry of the Bundle

We would like to examine the spin space in some detail. We introduce the Clifford
algebra SΓ (over the field R), which contains the unit element e0 and is generated
by e0 and three other elements el9 e2, e3. The elements {ea} is a system of 2 x 2
matrices

(the indices α, 6,..., and A,B,... are tensor and spin or indices respectively).
The elements e0, et, e2, e3 satisfy

eoeo = eθ9 eoea = eaeo = ea, eaeb + ebea = 0 (αφft),

and

el = e0 (α,ft = l,2, 3).

The regular elements of 2Γ form a multiplicative group denoted by ^"*. Now,
if X G J * , the mapping 3~3y^xyx~γ is an endomorphism of 2Γ> which may be
represented by a matrix Θ(x). Moreover the map x->Θ(x) is a representation
of 5^*. Let ^ be a vector subspace of 2Γ which is spanned by eί9 e2, e3. Consider
the set of those elements x e J * which are such that Θ(x) maps Jί into itself.
This is a subgroup of ^"*. We are, now, in position to define the Spin (3) group.

Spin(3). Let H be the group of elements xe<f* such that Θ{x){Jί)C -Jί with
detΘ(x)= 1. The component of e0 in i/ is called the spin or group, Spin(3).

The contraction of Θ{x) to Jί is an endomorphism of Jί denoted by φ(x).
φ(x) is represented by an orthogonal matrix in terms of the basis {el5 62, e3}

φ{x)ea = Rabeb, with RRT = 1.

Thus, for each βeSpin(3) ReS0(3) such that

QeaQ-ι = Rbaeb (1)

The Pauli matrices τa form a natural basis for Jί. With respect to this basis let
Γi(π) = si(π)τβ.Then

{Γ(π), Γ / (π)} + =2^(π)e 0 (2)

which describes the Clifford algebra on the curved isospace under consideration.
With the field of cross-sections sa is associated a spinor basis h; which is

normalized to unity. A contravariant spinor Ψ is defined as follows:

Ψ(hQ-ι) = QΨ(h) βeSpin(3)

where Ψ(h) = (ΨA). In terms of the components ΨA the above transformation
equation reads

ψ'A = QAψB.

The contravariant spinors form a complex vector space S. Similarly one can
introduce the dual space S*, the space of covariant spinors. A covariant spinor
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is defined as follows:

ΦQiQ-^ΦWQ-1 βeSpin(3)

where Φ(h) = (ΦA). The components ΦA obey the transformation law

The inner product is defined as: ΦΨ = ΦAΨ
A.

For the basis h the following relations hold

h h —P hA hB — PAB hA h — λA

nA'nB~£AB 5 n -n —ε , n -nB — oB

where

Connections. A connection on ξ\v (where {U} is a collection of open sets which
covers S3) is defined by

where X is a vector field on U. With respect to a local co-ordinate chart {π} on U
we obtain, using for convenience Vk instead of {Vv)x,

K(sa)= Vk& d/dπ^is^ + Γ^) d/dπ1

where Γ)k are the Christoffel symbols associated with the metric gu. Hence the

components of the dreibein fields satisfy the differential equation

Sa;k= ^abkSb (3)

On the other hand the connection V must be compatible with the metric. Hence

0=d(sa.sb) = (Vsa.sb) + (sa. Vsb) = Cab + Cba.

It follows that the connection metric (Cab) is skew-symmetric i.e. Cab=C[aby

A spinorial connection is an infinitesimal connection in the fiber space of η.
To the dreibein field connection C there corresponds a spinorial connection Ω.
C is a 1-form in the fiber space of ξ which takes values in the Lie algebra of 50(3),
whereas Ω is a 1-form in the fiber space of η, which takes values in the Lie algebra
of Spin(3). Hence

Ω = φ~1C.

Using the matrix representation of C and making use of the standard homo-
morphism between Spin(3) and £0(3) as obtained from (1) we deduce that

Ω = ( l/8)Cj ;τ β ,τ b ] . (4)

So far we have developed some of the local geometry of the manifold. It is
necessary, however, to find consistency conditions which make the global definition
of the connection possible. To this end we consider systems ([/, {sa}, C), and
(£/', {s;}, C") with Un U' + 0. Then for any vector field 7defined on the intersection
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UnU' the computation of VY in either connection must yield the same results.
On the overlap we have

φ) = Rab(π)sb(π)9 πeUnU'

Thus

This yields the transformation law for C, namely

Now, with regards to the spin basis we have: VxhA= — ΩAhB. Dreibein field
rotations induce Spin (3) transformations in the spin space. Thus, for every
ReSO(3), there exists QeSpin(3) such that the local basis transforms as h-^hQ'1.
The connection Ω transforms like

Let Ψ be a contravariant spinor. Then VkΨ=ΨihA, where Ψi=Ψfk-ΩikΨ
B.

Similarly for a covariant spinor Φ the following holds: VkΦ=ΦA.kh
A where

ΦA.k = φAik + ΦβΩ^. Here we have made use of the fact that (Vkh
B) -hA=-hB ( VkhA).

It is clear that due to the transformation properties of the connection Ώ, Ψ\ and
ΦA.k transform like ψΛ and ΦA respectively.

Parallel Transfer. Let γ be a congruence of geodesies on S3. The family of tangent
vectors y(ή is parallel with respect to γ by definition. Hence Vx(X)y(t) = 0, where
X = y(t). In terms of a local chart {π'} the vector X acquires the form X = ζkd/dπk

and the previous equation reduces to

iCk = O (5)

which is the familiar equation for the geodesies used in [2] .

We turn, now, to the condition for the parallel transfer of the spin space.
A family of contravariant spinor fields Ψ(t) is said to be parallel with respect to
the same congruence of geodesies if

Writing Ψ= ΨΛhA we readily obtain

dΨΛ/dt - ΩikΨ
Bdζk/dt = 0. (6)

Similarly for a covariant spinor field Φ(t) propagated parallely along the geodesies
we have

which yields

dΦJdt + ΦBΩ
B

Akdζk/dt = 0. (7)

Remark. Equations (5)-(7) constitute a complete set of relations to be used in a
covariant expansion of any quantity which is a co-ordinate scalar.
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3. The Model

Consider a Lorentz invariant Lagrangian density with SU(2) x SU(2) symmetry,
which is a function of the pion isovector field as well as the nucleon isospinor.
The most general expression for such a family of Lagrangian densities with
minimal coupling (i.e. with at most two derivatives) is given by

+ ίΦ- ψΨ-mΦΨ + κ/2Φγ5 fψ, (Φ = Φ®y)

where Jj>= PπΎb and Jf= ^πT f . Here the covariant spin or Φ is identified with
the conjugate complex to the contravariant spinor Ψ. Under co-ordinate trans-
formations π-»π'(π) the quantities F transform like the components of a contra-
variant vector, that is

Γί(π') = (dπ'i/δπj)Γj(π).

However, because the group G induces isometric transformations on S3, we
deduce that there exists a matrix geSpin(3) such that

Hence bilinear quantities, in terms of the spinor fields, which are constructed
with the F transform as tensors [1]. It is, therefore, clear that JS?K is a co-ordinate
scalar.

Consider the total action £[π, Ψ9 Φ] = J JS?κ(x)Λc, with κ = F~1} Our aim
is to construct a covariant perturbation expansion of X with the terms of the
expansion transforming covariantly under pion field redefinition (recall that a
pion field redefinition is tantamount to co-ordinate transformations on S3).
To this end a classical pion field φ is introduced, which satisfies the differential
equation

where J(x) is a classical source associated with the field φ, and X = ϊ1-\-(X2 where
Z1 corresponds to pure pion self-interaction. This terminology is qualified by the
fact that the classical field φ satisfies

«no->
In the following we intend to give a covariant expansion of ϊ [ π , ψ, Φ] around φ.
This is achieved in two steps:

(i) First the functional X[π9 ψ, Φ] is expanded around φ yielding

(9)

1 This choice for K implies the absence of pion-nucleon interactions in the case of vanishing curvature
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where πι = φ[ + χ\ {n} is a shorthand for the set of indices k1 ...kn, and χ{n} = χkl.. .χkn.

Moreover 91 is a spinorial tensor of valence L the components of which are

given by ^ '

with the arrows indicating left and right functional derivatives which take into
account the anticommuting nature of the spin or fields. We remark that in general
summation over repeated indices implies integration over their associated space-
time co-ordinates.

(ii) We now turn into the integral curves of (4)-(6) .Any integral curve of (4)
is determined by a point on the manifold together with a direction at that point.
The former is taken to be an arbitrary point P(φι)eS3 with ζi(t)\t=0 = φ\ and the

direction is determined by a unit tangent vector at P, namely —

r.t is obtained by differentiating the biscalar quantity

Thus, we obtain

Π u
= —, where

( = 0 S

Γi 1 i2C
t2

The coefficients of t"(n>l) are given from (4) by differentiation with respect to ί
and replacing the second and higher derivatives of ζι by means of (4) and the
resulting equations. Putting t=s we finally obtain:

π' = φ'- Σ nr'Γl^ (10)

where Γί

{n) = Γi

kl k are the generalised Christoffel symbols with Pk= — δ[ and
)
Similarly the integral curves of the first order equations (5) and (6) are deter-

mined by a "point", which is taken to be the corresponding point in the fiber
space above P. Applying the same procedure as above we obtain:

SM=V+ £ n\~^i{n)W

Br^ (11)
n= 1

Σ nr^BC2B

A{n)r^ (12)
n=l

where Ωβ{n} and Ωβ{n] are the generalised connections in spin space:
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where σ before an expression indicates symmetrization with respect to the chiral
indices k, l,m,.... Inserting (10), (11), and (12) in (9) one readily obtains the cova-
riant expansion:

f nΓ1 c5 Sl. f c l...k n[.φ] ψΓkK..Γkn (13)
n=l

where

and so on.

4. Covariant Perturbation Theory2

We shall develop, now, a covariant perturbation theory using functional integral
techniques. The starting point is the generating functional for connected Green's
functions, LU [J, η], given by

exp i LU [J, */] = ΛΓx J Π Π dπί Vβ^) Y\dψAl\ dΦB

(14)

where η is a spinor source of the anticommuting type, and N is a normalization
factor fixed by the condition expiLU[0] = l. We remark that the factor }/g(π)
with g(π) = άεi{gij{π)) is required to maintain a formal in variance of the functional
measure with respect to the pion field redefinitions. The covariant expansion
for % as well as the expansions (10), (11), and (12) are, now, inserted. After changing
the integration variables from πι to Π and from (ΦA, ΨΛ) to (ωA, ψΛ) all the ex-
ponentials are expanded out except for the term that involves

In this way the functional integral is reduced to a series of functional integrals
that can be calculated (formally) in a standard way. These integrals are, either
of the Gaussian type

= ldet(%1;iJ)T1 2Σ(iGkJίkJ2)...{iGkJ2n-ίkj2n)

where the sum is over all possible pairings of the Γί, s, and Gιj[φ] is the full propa-
gator (containing all possible tree insertions), which is the inverse of 2i ; f ι 7 [0] i.e.

The results of this section were first circulated in a preprint form in reference [4]
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or of the type

dωA Y\ dψA sxpi{ώ 'Ά-ψ + ώ-η + if-ψ}...ψAώB...

δ *
θ £ | { ( j )M,A

 s'" iδrf

where B is the operator inverse to (z$ί) satisfying

J ώc''(ΐSl)2[x, x" Φ3 JBg[x", x' φ] = δ$δ(x - x')

Thus in order to calculate the functional LLJ [J, η] we need to know the vertices
Xί.{n)(n = 3,4, ...), and 9Iβ ί { w }(n=l, 2,...). The former are given in [3]. We turn
our attention, therefore, to the vertices 3Iβ.{M}: Starting from

ςXltφ'] = i(I/>)iίφ-]-ml

with

we obtain

where (f)lj is a differential operator given by

with j9(l) indicating differentiation with respect to xi9 and RmnW is the Riemann
curvature tensor associated with S3. Hence, due to the constant curvature situation,

Rmnkl = K 2(9mkdnl ~ 9ml9nd^Xm ~ Xn)^(Xm ~ Xk)^(Xm ~ Xl)

These results can be generalised to the nth derivative case giving rise to

(15)

and

+ (1/2FJy5(τa)isaiRi ik2r i...Rl«-J ίk2nrn(r) r

k"2n + ί (nZl). (16)

In deriving these formulae we have used the fact that the covariant derivative
of the Riemann tensor is zero, as well as the fact that the Weyl derivative of the
dreibein field is zero, that is

Furthermore owing to the form of the generating functional only the symmetric
part of the vertex functions makes a contribution. Therefore, complete sym-
metrization of the chiral indices is understood in (15), and (16).
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