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Abstract. It is shown that the discrete spectrum of the n-particle Schrδdinger
operators in the center-of-mass frame is finite for short-range potentials.

Section 1

1. The general structure of the spectrum of Schrδdinger operators of multi-
particle systems, namely the location of the essential spectrum, was determined
in [1,2] (see also [3]). These results were subsequently improved by many authors
(see [4—7] and References in these articles). Further and exhaustive information
on the essential spectrum of the Schrδdinger operator of a multiparticle system
has been obtained in scattering theory [8]. Thus, the fundamental problem in this
field is now to investigate the point spectrum and, in particular, the discrete
spectrum1.

2. It was shown in [1, 2] that the discrete spectrum of a Schrδdinger operator
is at most countable a set whose unique point of accumulation (if any) is the
infimum of the continuous spectrum (for determination of this point, see below).
The Schrδdinger operators of atom-type systems have infinite discrete spectra
[1]. Thus, the basic problem in a qualitative description of the discrete spectrum
of the Schrδdinger operator is to find classes of potentials for which the discrete
spectrum is finite or infinite2. A solution to this problem is also important for
scattering theory (see [9-11]), stability and spectra theory of quantum systems.

3. Familiar examples in physics indicate that one such class is apparently
that of the so-called short-range potentials, i.e., potentials which decrease suf-
ficiently rapidly at infinity.

There is already a considerable literature devoted to the proof that the discrete
spectrum of the Schrόdinger operator for short-range potentials is finite. The
most complete results in this area may be found in [12-14]. These papers establish

1 The set of isolated eigenvalues of finite multiplicity is called here the discrete spectrum. The point
spectrum is the set of all eigenvalues of finite multiplicity.
2 A useful discussion of these questions can be found in [16].
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that the discrete spectrum is finite for systems with short-range interaction, on
the assumption that the subsystems defined by the infimum of the limit spectrum
are stable. The results of [12,14] take the symmetry of the system into account.

4. This paper contains a result concerning the finiteness of the discrete spectrum
of the Schrodinger operator of a multiparticle system with rapidly decreasing
potentials; this result seems to be close to the best possible. The class of potentials
for which the proof is given is described by inequality (1.2) and Condition A. We
have made no attempt to carry out the proof for the broadest possible assumptions
on the potentials. Condition (1.2) may be somewhat weakened as to the restrictions
on the smoothness of the potentials, without serious modifications in our proof.
The restriction on the rate of decrease in this condition cannot be relaxed: the
potentials which fall at infinity as |x |" 2 ~ ε Vε>0 satisfy the condition and if the
potentials in atom-type system decrease at infinity as \x\~2 with certain coefficients
(obeying Condition A), the corresponding Schrodinger operator has an infinite
discrete spectrum (see [16]).

It was proved in [15] that if Condition A fails to hold the Schrodinger operator
of a three-particle system may have an infinite discrete spectrum, even if the
potentials are infinitely differentiable and have compact support.

5. A few words about the method proposed in this paper to study the discrete
spectrum of Schrodinger operators. As usual, σJ^A), σc(A) and D(A) will denote
the discrete spectrum, continuous spectrum and domain of definition of an
operator A.

Instead of a single Schrodinger operator H we shall consider a family of
operators H(g), gelR1, such that H(0) = H. The family H(g) will be associated with
a family of operators L(z, g) = LH(z, g), ze(£\σc(H\ with the following properties:

(i) L(z,g) are compact operators in some Banach space B;
(ii) (H{g)-zE)φ = 0, φeD(H)<-»(£ + L(z, g))φ = 0,φeB.
It turns out that the total multiplicity of the discrete spectrum of H is intimately

related to the behavior of the operator-valued function L(μ, g) (where μ is the
infimum of the continuous spectrum of//) in the neighborhood of g = 0.

6. The Schrodinger operator of an n-particle system in the coordinate re-
presentation, in atomic units (me l = l,e=l,h=l), has the form

= f {-l/2mdΔJ(x)+i Σ ViJtXi-Xjmx), (1.1)

where m ^ O , At is the Laplacian with respect to xi9 and the functions 7f/x) (in
this paper) satisfy the conditions

J h/fc)Γ°(l + \k\)θom°dk < C, (1.2)

, # 0 > f ( l - 2 / m 0 ) ,

where vij(k) = \Vij{x)eikxdx. A sufficient condition for (1.2) to be valid for Vu(x)
in the x-representation is that

j I Vu{x + h)- V^xψ^dx < C\h\θom'°, l/m'o + l/m0 = 1.
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When condition (1.2) is satisfied, the operator Hn is defined on S(IR3") and the
subordination inequality holds [17]:

| | F ^ / | | ^ ρ α | | / / (

0 " ) / | | + ρ - 3 - / 2 | | / | | , α > 0 , (1.3)

where ρ > 0 is arbitrary. It follows from (1.3) (see [17]) that Hn has a unique
selfadjoint extension.

7. We now define certain subspaces of the configuration space R3" (see [7]):
the subspace R{0) of relative movement of the system

and the subspace R{c) of center-of-mass movement of the system:

Defining a scalar product in R3" by

n

(x9x)1= Σ m^Xi), (1.4)
i=ί

where (xf, xf) is the usual scalar product in R3, one readily shows ([7]) that the
spaces R{0) and R{c) are mutually orthogonal in the sense of this scalar product,
and moreover

= ]R3\ (1.5)

It follows from (1.5) that

(see, e.g., [20]). This decomposition of L2(R3") induces a representation of the
operator Hn:

where E{0) and Eic) are the identity operators in L2(R{0)) and L2(R{c)\ respectively,
the operator H is defined in L2(R{0)) by

where Δ is the Laplacian in L2(R{0)) [in the sense of the scalar product (1.4)], the
operator T(c) is defined in L2{R{c)) by

where Δ{c) is the Laplacian in L2(R{c)) in the sense of the scalar product (1.4). The
subordination inequality (1.3) for Hn implies (see [7]) a subordination inequality
for the operator H:

\Wf\\SQa\\HofHQ-3nl2\\flot>0, (1.6)

where ρ is an arbitrary positive number. By virtue of this inequality, H has a unique
selfadjoint extension [17], for which we retain the same notation H.
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8. We now proceed to describe the compound systems, that is to say, the
systems derived from the original system by neglecting the interaction between
certain of its subsystems.

A partition of the set {1, ...,n} is defined as a collection of disjoint nonempty
subsets ci such that u c ^ U , ...,n}. We shall sometimes use the term "system"
for the whole set {1, ...,n} and the terms "subsystems" (clusters) for the subsets cv

Partitions will be denoted by lower case roman letters: a,b,c,... . The number of
subsets in a partition a is denoted by k(a\ and the set of all partitions by ja/; in
addition, we set jtfs = {ae jtf:k(a) = s}. We partially order the partitions as follows.
If b is obtained from a by breaking up certain subsystems in a, we write b C a
("b is contained in α"). The smallest partition containing a and b is denoted by
aub:aub = sup(α, b\ and the largest partition contained in a and b by anb:anb =
inf(α, b).

9. Let H{"} denote the operator obtained from Hn by deleting the operators Vf 1

for which ί and j belong to different subsets in the partition a. Set

μ= min inf H™.
a,k{a)> 1

The fundamental theorem on the spectrum of Schrόdinger operators is:

Theorem ([1, 3])3. (i) The essential spectrum of the operator H coincides with the
half-line [μ, 4- GO).

(ii) The discrete spectrum of H (if it exists) lies to the left of the point μ and
its only point of accumulation (if any) is μ.

10. All the analytical manipulations in this paper will be carried out in the
so-called momentum space, in which they are somewhat more easily described.
This representation is obtained from the more familiar coordinate representation
by the Fourier transformation F of the basic space L2(R3") and the corresponding
transformation FH^'1 of the operator Hn. We shall therefore translate some
of our definitions into the language of the momentum representation and add
some new definitions. The old notation will be retained for the operators Hn, //,
Ho, V, H{a] in the new representation; this will involve no confusion, since all our
deliberations will be in the momentum language.

The Schrόdinger operator Hn in the momentum representation is

i 1

(V\ff)(p) = jυtjpt-qi)δ(Pi + Pj-q,~qj) Π Φ *
fcΦi.j

11. We define a scalar product in the momentum space R3/ί (see [11]) which
is dual (in the sense of the Fourier transform) to the scalar product (1.4) in the
configuration (coordinate) space:

ip,PΪ=im;1(pi,pι). (1.7)

See also [2, 7].
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To each partition a there corresponds a pair of spaces Ra and Ra (the space of
relative movement of particles in subsystems of a and the space of CM movement
of these subsystems), defined by

keCι

and

if there exists ckea such that ί,jeck}nR.
With these definitions, we have [in the sense of the scalar product (1.7)]

R. (1.8)

If k(a)= 1, the spaces Ra and Ra are the Fourier-duals of R{0) and R{c\ respectively.
It follows from (1.8) that

L2(R) = L2(Ra)®L2(Ra). (1.9)

In accordance with (1.5), the operator H^ admits the decomposition

where Ea and E^] are the identity operators in L2(Ra) and L2(Ra), respectively;
Ha is the internal movement operator of the subsystems ctea, each relative to its
center of mass, defined in the space L2(Ra); T^n) is the relative movement operator
of the centers of mass of subsystems qeα, defined in L2(Ra) by

( W X P J = Σ (2 Σ >*1\ - i Σ Pj
i = l \ jecf / \jeCι

The operators iία satisfy subordination inequalities similar to (1.6) and so possess
unique selfadjoint extensions. For α e j / l 5 we set H = Ha, E = Ea. The operator H
has the same structure as H{n):

Let ^ = { α e j / , σ d(Hfl) 9 μ}usrfn. Let φα)/c be the eigenfunctions of the operator
i/α 4, α e j / , k(a)<n, belonging to the eigenvalue μ.

We shall use the notation

12. We can now proceed to the main topic of this paper - the discrete spectrum
of the operator H. We associate with H a one-parameter family of Berezin's

4 Henceforth the index k of the eigenfunctions will be omitted.
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operators L(z) = LH(z) ([18], see also [19]), defined by induction on partitions a
in the space D(H0):

kφa

n - 1

Π Π (£ + £6(z)Γ1(£+ Σ ^ ) V (1-10)

The symbol f j denotes a product of the appropriate operator factors in some
be Ms

arbitrary but fixed order. Note that if z lies outside the continuous spectrum of Ha,
then La(z) is a bounded operator in D(H0) and E + La(z\ zφσ(Ha), has a bounded
inverse. We set

n-ί

F(z)=Π Π (£ + 4(z)Γ%(z). (Ml)

It is evident from (1.10) and (1.11) that the operators L(z) and H — zE are related by

E + L(z) = F(z)(H-zE). (1.12)

13. If z lies in the continuous spectrum of H, the operator L(z) is no longer
bounded on D(H0). We shall farther be interested in the limit of the family of
operators L(λ) as λ-^μ — 0. This limit will be studied in specially chosen scales of
Banach spaces, to whose construction we now proceed.

Let

where Na(pa;θ), aes/\s/lf are the estimating functions introduced in [10]. We
recall one property of these functions:

HNJj>a;θϊ]kdpa<C,θk>3.

The Banach spaces in question are defined as follows:

Bm,θ(Ra)=Na(θ)Lm(Ra),

and

β 14,..= Σ.

We define a linear mapping of Bmθ by

Denote the image of Bmθ under the homomorphism π by Bmy.
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Bmθ becomes a Banach space if we define the norm by

π/=/

14. In the sequel we shall need a certain relationship which holds in the above
spaces. Let/eJ3 m ι β , ψeBm>θ(R). Then

\(Lφ)\-\ίf(p)Φ(p)dp\SC\\f\\BmJφ\\BnιMR), (1.13)

Throughout this section we shall assume that the following condition is
fulfilled by the potentials5. Let

j/= {aes/, k(a)> 1 there exists b£α such that μeσd(Hb) and bes/m+1}.

Let L\z) denote the restriction of the operator La(z) to D(Ha).
Condition A. The potentials Ft/x) have the property that the equation

φ + La(μ)φ = 0 has no nontrivial solutions of the form

. fbeNl(θ)Lm(RbnR°),
be a τ\Pb)~fJ'Ok(b),n
beJ

§(0>§(1 — 2/m), for any α in J / . (See the note added in proof.)

15. Lemma 1.1. The operator L(λ\ λ^μ, is uniformly bounded, continuous in
the operator topology with respect to λ, and compact in Bmθ, m>6, $ > f ( l — 2/m).

Lemma 1.2. The operator F(λ\ λ^μ, are bounded from Bm Θ(R) to Bmθ; for
λ — μthe operator has an inverse which maps Bm θ continuously into Bm Θ(R), m>6,
θ> | (1 -2/m).

Lemma 1.3. The operator H — μE is continuous from Bmθ to Bmθ(R), m>6,
θ> | (1 -2/m).

The proofs of these lemmas will be given in the next section.
16. Let 'W denote the class of operators in L2{R) satisfying the conditions:

(i) the operators of Ψ" are nonpositive, (ii) the operators of Ψ* are continuous
from L ^ + Z^K) to S(R).

Consider the family of operators

With the family H(g) we associate a two-parameter family of operators L(z, g\
defined by6

L(z9g) = Uz) + gF(z)W. (1.14)

It follows from (1.13), (1.14) that

E + L(z,g) = F(z)(H(g)-zE). (1.15)

17. Using Equation (1.15) and Lemma 1.1, one obtains the following

5 For the definition of the estimating functions NJ(pJ;0), see [19]. We note here only that
\{Na

b{pa

h θ))kdpa

b<C,kθ>Z.
6 The operators L{z,g) are obtained from H(g) according to the same principle as L(z) from H.
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Lemma 1.4. // λ(g) is a point of the discrete spectrum of H(g) and ψ(g) is a
corresponding eigenfunction, then ψ(g)eBmθ and ψ(g) is an eigenfunction of the
operator L(λ(g),g) belonging to the eigenvalue —1.

18. Assume that the operator L(μ) has an eigenvalue — 1. We wish to evaluate
the first derivatives with respect to g9 at the point g = 0, of the eigenvalues of
L(μ, g) which equal — 1 at g = 0.

Let ££ be the eigensubspace of the operator L(μ, 0) = L(μ) that corresponds
to the point — 1 of the spectrum, and ψ an arbitrary function in if for which
there exists an eigenfunction ψ(g) of L(μ, g) corresponding to a real eigenvalue
such that ψ(0) = ψ. Let λψ(g) be the eigenvalue corresponding to ψ(g)9 λψ(0)= — 1.
The defining equation for ψ(g) is

L(μ, g)ψ{g) = λψ(g)ψ(g). (1-16)

By Lemmas 1.1 and 1.2, the vector-valued functions ψ(g) in Bmθ and the function
λψ(g) are analytic for ge[09 ε], where ε is some positive number. Let

dΨ(θ) ^ i m

 dλM ^ ( L 1 7 )

dg 9 = 0 dg

Differentiating the Equation (1.16) with respect to g and setting g = 0, we obtain

0. (1.18)

In view of Equation (1.13) for z = μ and Lemmas 1.2, 1.3, we transform Equation
(1.18) to the form

) = 0. (1.19)

By Lemma 1.2 and the assumptions on W, we deduce from (1.19) the equation

Wψ + (H-μE)xpil)-λil)F~1(μ)ψ = 0. (1.20)

We now take the scalar product [in the sense of L2(R)] of Equation (1.20) with
ψ; this is legitimate in view of (1.13) and Lemmas 1.2, 1.3. The result is

1 ~

Consider the second term in the numerator of Equation (1.21). Using (1.13) and
the fact that S(R) is everywhere dense in Bmθ one readily shows that the operator
H — μE may be transferred to the second factor in the scalar product:

((H-μE)ψ{1\ψ) = (ψ{1\(H-μE)ψ). (1.22)

The term on the right of this equality vanishes. Indeed, it follows from (1.13) and
Lemmas 1.1-1.3 that

(φ, (H-μE)xp) = (φ9F~ x(μ)(E + L(μ))ψ) = 0 (1.23)

for all φeBmθ. (Recall that ψ is an eigenfunction of the operator L(μ) in B belonging
to the eigenvalue -1.) Using (1.17), (1.22), and (1.23), we obtain from (1.21)

dλψ{g)

dg

(Wψ,ψ)

0 = 0

(1.24)
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19. Having prepared all the necessary material for the proof of our main
theorem, we now proceed to state and prove it.

Theorem 2. Let the potentials Vtj in the operator H satisfy inequality (1.2) and
Condition A. Then the discrete spectrum of H is finite.

Proof. Suppose, on the contrary, that H has an infinite discrete spectrum. By
Theorem 1, its only point of accumulation is μ. Define H(g), L(z, g), 5£ and λψ(g),
ψeJ£, as before.

Since W is a compact operator in L2(R\ it follows that the operator H(g) has
the same limit spectrum as H, for any finite g. Since W is a nonpositive operator,
it thus follows that for any positive g the operator H(g) also has an infinite discrete
spectrum, whose point of accumulation is precisely the infϊmum μ of the continuous
spectrum of H. Let λn(g), n = ί,2,..., denote the eigenvalues of H(g\ Orgg^Ξl,
belonging to the discrete spectrum. It was shown previously that

Λi(0)-+μ a s n->oo,0e[0,1]. (1.25)

It follows from Lemma 1.4 that

Z#Λ(0), 0 ) 3 - l , 0 e [0,1]. (1.26)

By (1.25), (1.26), Lemma 1.1 and the theorem stating that the set of singular points
of a compact operator is closed (see Appendix), it follows that

σ(L(μ,g))3-U0SgSU (1.27)

for any operator W in ψ*.
We now prove a contradiction to (1.27): there exist operators W in iΓ for each

of which there is a positive ε such that σ(L(μ,g))^ —1 for 0<g<ε. To this end,
we assume that, in addition to (i), (ii), the operator W satisfies the condition:
W is strictly negative on if, i.e., there exists C > 0 such that

(1.28)

But by Lemma 1.2

and so it follows from (1.24) and (1.28) that for any function ψ

dλψ(g)
* 0 .

9 = 0dg

This is the desired contradition, and the proof is complete.

Section 2

In this section we shall prove Lemmas 1.1 and 1.2 of Section 1. The integral
equations for multiparticle systems outside the continuous spectrum of the
Schrδdinger operator have been studied by many authors ([2, 3,11, 21, 22]). There
are also results on the behavior of the Faddeev-Yakubovskii equation at the
end-point of the continuous spectrum and the Berezin equation on the continuous
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spectrum. Our investigation differs from all these in the conditions imposed on
the potentials and the estimates that the various integral operators in the equation
are desired to satisfy.

It follows readily from Equation (1.10) that the operator L(λ) admits a re-
presentation as a linear combination of monomials of the type Π\_Raι(λ)Va^]; an
analogous representation holds for F(λ). Thus, in order to establish estimates
for L(λ) we must first study the operators Ra(λ). The operators Ra(λ) will be studied
with the help of equations involving the operators La(λ), Fa(λ% and so on. According
to this approach, the natural way of investigating the operators L(λ), F(λ) is to
proceed by induction on partitions.

Furthermore, it is clear that the induction hypothesis may be phrased either
in terms of La(λ) or in terms of Ra(z). Both methods of proof are equivalent; we
shall use the second.

In order to avoid cumbersome estimates with complicated estimating functions
(see [11]) we shall use stronger assumptions on the potentials than adopted
previously. The assumptions are stronger only as regards smoothness in the
coordinate representation of the potential functions. The new restrictions on the
potentials are as follows:

ί | ι ; # ) Γ ( l + \k\)Θ°dk<C,mo<3, Θo>i(n-1)(1 - l/m0), (2.1m0).

To apply the induction method, we shall need some additional definitions and
propositions concerning compound systems. Let

Ra

b = RanRb,bCa. (2.2)

We cite a few relations for these spaces, analogous to those presented in
Section 1. For R^bCa, we have decompositions

whence it follows that

L2(Ra

b) = L2(Rd

b)<g>L2(R% bQdQa. (2.3)

Let V% uaCa, be the restriction of the operator Va to L2(Ra) We recall that

Uij={(l)...(i-l)(ί+i)...(j

We now define

and

j
UίjC b

These operators admit a decomposition following from (2.3):

d (2.4)
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where Ea

d is the identity operator in L2{Ra

d). Let Rb>a{z) be the resolvent of the
operator Ha

b. It follows from (2.4) that

this relation should be understood as follows:

K b > ) / = RM(z-τ(p2))/,α, feL2(Ra), (2.4')

where fpa denotes / e L2(Ra\ treated as a vector-valued function from Rl to L2(Rb).
For be<z/n, we set

Define
μa = min inf Ht.

be a

Let LbiO(z) be the restriction of the operator Lb(z) to L2(Ra), which is defined
by induction along the lines of (1.10):

(2.5)

1 1 V c,a\ )) I ZJ

cC bS \ ucb

Here, as in (1.10), the symbol Π denotes the product of the operator factors
indicated, in some arbitrary but fixed order. We set

It follows from (2.5) that

Ea + La(λ) = Fa(λ)(Ha - λEa), (2.6)

where
n - l

Fflμ)= ίl+iblliEa+Lb'a{λrlRo'a{λ)' {2Π)

be a

We now introduce the Banach spaces in which the operators La(λ) will be
considered:

Bm,Θ,t(Ra

b) = (ί + τ(pl)f2Lm(Ra

b), θ > 2(k(b) - k(a))(m-2)/2m,
and

bTj
bea

where the norms are defined in the usual way. We define a linear mapping on
Ba

m,θ,t b y

e k φ ) ,
be a

where ψb = l for bestfn. Denote



148 I. M. Sigal

If Ba

mQt is provided with the norm

.β l t = ̂ _f I

it becomes a Banach space. In this new situation, we use a strengthened version
of condition A:

Condition Am. The potentials Vtj have the property that the equation
φ+La(μ)φ = 0 has no nontrivial solutions in Ba

mQt for any aestf.
Let Pa denote the projection onto the eigen-subspace of the operator Ha

corresponding to the point μ of the discrete spectrum, where aestf(σd(Ha)3 μ);
if these last conditions do not hold, we put Pa = 0. It follows from standard theorems
of functional analysis that the operator Ra(λ), aesrf, admits a representation

(2.8)

where R^X) is a continuous operator from L2(Ra) to D(Ha\ analytic in λ for λ^μ.

Proposition 2.1. For λ^μ, the operator R-Kλ), ats$\dn, satisfies the relations:

(2.9a)

as λ'^λ,λ',λ£μ*. (2.10a)

Proof. We shall prove the relations by induction. Assuming them to be true
for all b,bCa, we shall prove them for the partition a. This will complete the
proof for partitions in jtfn-ι, since then it follows from bCa that bestfn and
Rb(λ) = λ~1.

To study the operator R^X), we shall use an equation that follows from (2.5),
(2.8):

) = Fa

1(λ), (2.11)

where

Fftλ) = Fa{λ) - {Ea + La{λ))Pa{λ)

= F\λ) - Fa(λ)(Ha - λEa)Pa(λ)

= Fa(λ)(Ea - Pa). (2.12)

Lemma 2.1. For λ^μ, the operator La(λ% aestf, k(a)<n, satisfies the relations

<C, (2.13)

^ B ? h ί θ ^ as λ'^λ. (2.14)

Proof. It follows readily from (2.5)7 with b = a that the operator La(λ) may be
expressed as a linear combination of monomials

k

Π lR

bi,aWKJ . (2-15)

In [11] formula (2.5) is transformed to a form from which these conditions are easily deduced.
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where bi9 αί5 j = l , . . . , fc, satisfy the conditions:
k

(2.16)

1 7+1

We begin our study of the operator La(λ) by establishing estimates for the
operators Rbta(λ), bCa.

Lemma 2.2. Let the operator B(λ) satisfy the estimates (2.9b) and (2.10£>). Then
the operator

B\λ)f = B(λ-τ(pl))f(pa

b)

will satisfy estimates (2.9α), (2.10α).

Proof. We have

ύ C\\

\\Bm,e,t(Ra) '

The proof of the second estimate is similar. This completes the proof of Lemma 2.2.
It follows from Lemma 2.2, the induction hypothesis and Equations (2.4r)

that the operators Rb a{λ)-{μ + τ(pl)-λ)~\Ph®Ea

h), bCa, satisfy estimates
(2.9a), (2.10a).

To derive estimates for the operator (τ(pb

r) + μ — λ)~1(Pb®Eb

r) we must first
estimate the eigenfunctions of the discrete spectrum of Hb, bCa. We observe from
(2.6) that the eigenfunctions of Ha, asstf, belonging to a point λ of the discrete
spectrum satisfy the equation

(2.17)

Lemma 2.3. If λ<μa, the operator La{λ) maps #O α(i)Bm A ί(R f l), m^2, 0 > f ( n -
fc(α))(l-2/m) (θ = 0, m = 2), continuously into Ro a{i)Bm, θ/t{Ra\ m'>m9 θ'>\(n-
k())(/

Proof. The assertion of the lemma follows from the representation of La(λ)
k

in terms of monomials (2.15) satisfying the condition \J uat = a and the following
1

easily verified relations:

( 2 1 8 )

^ ^ ^ (2.19)

where c2b, λ<μb, and rri, θ\ m, θ are the same as in the statement of the lemma.
This completes the proof.

Lemma 2.3 and the Equation (2.17) for the eigenfunctions of the discrete
spectrum imply
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Lemma 2.4. The eίgenfunctions of the discrete spectrum of the operator Ha

(if it exists) belong to the space ROfa(ΐ)Bmθiθo^Ra).

It follows from Lemma 2.4 that the operator (τ{pl) + μ-λ)~1{Pb®Ea

h) satisfies
estimates (2.9a), (2.10a).

For the application of Equations (2.15)—(2.16) to establish estimates for La(λ\
it remains only to study the operators Va

a and ROa(λ)Va

a. We first observe that

\\Vb

aψ
b\\Brn,θ>t{Rb)<Q uacb, best . (2.20)

Now let RTa(z) denote the resolvent of the operator Ta

b.

Lemma 2.5. // sΞ>0 and ua<jίb, the operator Va

aRτa(-s) satisfies the following
estimates in L2{Rb) x L2{Ra

b)
8:

l | K Z K r β ( - s ) φ / ^

l l ^ ( Λ τ g ( - s O - Λ τ g ( - ^ ^

where m>6,δ<(3/2)(l/3- 1/m).

Proof. To simplify the notation, we shall as_sume that aestfv bestf2. This
involves no loss of generality. Indeed, let (b,ά), bCα, be any pair. Consider the
pair (b,a')9 where a' = buua. The estimates for this pair follow directly from
estimates for the special case under consideration [for the whole system aestf\
one can take the union of two subsystems of the partition b containing the indices i
and;, (i/) = α, and the partition bestf2 may_be chosen as the combination of these
two subsystems]. Estimates for the pair (b, a) may be derived from estimates for
(b, a'\ using exactly the same arguments as in the proof of Lemma 2.2.

Let b={cuc2}, iecl9 jec2f Mc= £ mr We go over from the sequence pb to
rec

independent variables pb = (pk,pk£pb> k=¥Uj) Since aestfl9 we shall now omit the
index a in the notation for operators and variables. The function VaRTb( — s)φf
admits an integral representation:

Using the inequalities

k2/2MCl + (pCl + pC2 - k)2/2MC2 > Cq\ C> 0 ,

and

one readily finds the estimates

and

\Va(RTb(-s')-RTb(-s))f\<C\s>-s\^^^

We must thus estimate the integral

\v(p~k)f(k)\dk
J |fc|2(l+ί)

L2(Y)={f = φ-g,φeL2(X),geL2(Y)}.
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To do this, we use Holder's inequality and the inequality

We obtain

"2 -Jl/mi

dk

where l/m'1 + 2/m = l,2(l+δ)m' 1 < 3 . Hence:

where δ < (3/2)(l/3 — 2/m), m > 6. This completes the proof of Lemma 2.5.
We now consider the operator ROta(λ)V% Let φbeL2{Rh\ fbeL2(Rl), bCa,

be si. We have

Ko,αW^ Σ Rτt(μδmjφbfb
be a
beJ

= -R0,a(λ) Σ Ψ"h+ Σ Λτg(0)^V6+ Σ VaRn(μδmJφ"fb, (2.21)
bed

where

/ (2.22)

o , , ( o ^ , , ( ) ) ( o ^ ) ) ( ) ( 2 2 3 )

Applying the estimates for Rb,a{λ), bCa, Lemma 2.5 and Equations (2.20)-{2.23)
to formulas (2.15) and (2.16), we finally obtain the estimates required in Lemma 2.1.
This completes the proof of Lemma 2.1.

The operator Fa(λ) also admits a representation of type (2.15), (2.16). Applying
the same results as before, we obtain

Lemma 2.6. The operator F\λ\ aestf\jtfn, satisfies the estimates (2.9a), (2.10a)
for λ ^μ.

Lemma 2.7. For λ^μ, the operator La(λ\ az$t\siw is compact in B^θt,m>3,
θ>Un-k(a))(l-2/m).

Proof. We first observe that it will suffice to prove the lemma for λ<μ.lt will
then follow from (2.14) for the case λ = μ.

Employing the same reasoning as in the proof of Lemma 2.5, one proves that

VlRn{-s)\Bm.tθ.άRb)®BmtM^B« , * > 0 , P 24)

for wαgc, 0>3/2, where m'>m, 0/>|(w-fc(α))(l-2/m/). It follows from the re-
presentation of La{λ) in terms of monomials (2.15) with the conditions
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and from Equations (2.18)-(2.20), (2.24), that the operator La(λ\ λ<μ\ maps
θ>j(n — k(a))(l—2/m), continuously into Ba

m ,vθ'>^(n — k(a))(l—2/mf% and moreover m, θ may be chosen in such a way that
m<m', θ<θ' — 3(n — k(a))(l/m—l/m/). Under these assumptions, the space B^θ,t

is compactly embedded in Ba

mQt. Thus La(λ\ λ<μa, is a compact operator in
Ba

mQt for such values of m, θ. This proves Lemma 2.7.
Consider the equation

t{Ra), (2.25)

in the space Ba

mQv Lemmas 2.5 and 2.6 show that the Fredholm alternative applies
to this equation. The following proposition for the corresponding homogeneous
equation

f + La(λ)f = 0. (2.26)

is valid:

Lemma 2.8. Let the function fλ satisfy Equation (2.26) for some λ, λ<μa or
λ = μa, a: {b : bCa, besrfk{a) + ίns/} = 0. Then fλ is an eigenfunction of the operator
Ha with eigenvalue λ.

Proof. In view of the equation

Ha-μE"= Π ΓΓ
s = k(a) + l beά!s

be a

where W denotes the product in the order opposite to Π, it will suffice to prove
that fλeD(Ha). For a such that μa = μb for all bCa, kφ) = k(a) + 2, this follows from
the embedding Ba

mQt C D(Ha). For arbitrary a and λ < μα, it follows from Lemma 2.7
and the Equation (2.26) for fλ. This completes the proof of Lemma 2.8.

Lemma 2.8 shows that Equation (2.26) with λ^μ has solutions in Bmθt only
for λ = μ. For a such that μa = μ, this is impossible by virtue of Condition A. In
all other cases, the solution is an eigenfunction of the discrete spectrum of Ha

with eigenvalue μ.
It follows from Lemmas 2.1, 2.6, 2.7, and the relation

(Ea + La(λ')) ~ι - (Ea + L\λ)) ~1 = {Ea + La(λf)) ~1 (La(λf) - La(λ))(Ea + La(λ))'1

that if condition Am holds then Equation (2.25) has a unique solution for λ^va,
where va = μ-ε(ε being some small number) if μeσd(Ha\ and va = μ if μφσd(Ha).
This solution defines an operator satisfying estimates (2.9a), (2.10a). It is readily
seen that if λ φ σ(Ha) this operator is continuous from L2{Ra) to D(Ha). Hence, by
the uniqueness of the solution of Equation (2.11) for λ φ σ{Ha) in the class S£{L2{Ra\
D(H% it follows that the solution is precisely R^λ).

In order to establish estimates for Rl(λ) when μ — ε^λ^μ for a such that
μeσd(Ha), we must use the fact that μa>μ and R\(λ\ λ<μa, is continuous from
L2(Ra) to D(Ha\ and apply Lemma 2.3 to the equation obtained by iteration of
Equation (2.11). This completes the proof of Proposition 2.1.

If ae^1, Lemmas 2.1 and 2.7 yield the desired assertion for the operator L(λ),
subject to suitable assumptions on the potentials. We formulate this as a separate
proposition:



Schrόdinger Operators of Multiparticle Systems 153

Proposition 2.2. Let BmΘ = Ba

mβι, aestfv Suppose that the potentials vtj satisfy
inequality (2.1m0) and condition Am9 m>6. Then the operator L(λ), λ^μ, is bounded
and continuous in the uniform operator topology with respect to λ, and is compact in
Bm,θ,θo>θ>ϊ(n-l)(l-2/m).

We can now prove Lemma 1.3. Let Ha = Hd

a, Ta = T% derfl9 Ia= £ Vij9

/={/ β }eB m > β .Wehave

(H - μE)πf =Σ(Ha-μE + Ia)RTa{μδk{a)Jxpafa

= ΣVfa+Σ_ Σ VaRTa{μδmJψ"fa. (2.27)
aesί uα ̂  a

Applying Lemma 2.5 to the second term on the right of (2.27), we obtain the
estimate

and this implies the assertion of Lemma 1.3 when (2.1m0) and condition Am are
satisfied.

To establish estimates for F(λ\ λ^μ, we put aesίγ in Lemma 2.6. To estimate
F~\μ), we first observe that formula (2.11) implies readily that F~1{μ) — R~1(μ)
admits a representation as a linear combination of monomials

RZ\μ)Lfι(μ)...Lft(μ), (2.28)

where fl9 ...,ft satisfy the conditions:

W + l*

(2.29)
1

The fact that monomials of type (2.28) are bounded operators from Bmθ to Bmθ(R)
is proved in the same way as the boundedness of L(λ% λ^μ, in Bmθ, except that in
addition one uses conditions (2.29).
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Appendix

We prove here a lemma stated in [8] for a certain specific operator.
Recall that a singular point of a family of compact operators A(λ) in a Banach

space B is defined as a parameter value λ such that the operator A(λ) has the
eigenvalue — 1 (or any other number).

Lemma. Let A(λ) be a family of compact operators in a Banach space B, defined
in some closed region of the complex λ-plane and continuous there with respect to λ
in the uniform operator topology. Then the set of singular points of the family A(λ)
(in the region of interest) is closed.

Proof. Let {λn} be a sequence of singular points of the family A(λ) converging
to a point λ0 at which A(λ) is defined. We claim that λ0 is also a singular point
of the family A(λ). Let φn be an eigenfunction of the operator A(λn) belonging to
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the eigenvalue — 1, n= 1, 2,... Since the operator Λ(λ0) is compact, the sequence
{ψn = A(λ0)φn} contains a subsequence {\pn>} which is convergent in B. Let
ψ= lim ψn,. ψ is an eigenfunction of the operator A(λo\ belonging to the eigen-

«'->• oo

value — 1. Indeed, this follows from the estimates

\\A(λo)ψ + ψ\\ g \\A(λo)(ψn,-xp)\\ + llw-Vll

This completes the proof.
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Note Added in Proof. Fortunately Condition A which cannot be effectively controlled turns
out to be not so important. It can be proved (I. M. Sigal, unpublished) that for any potential V = Σ Va

satisfying (I, 2) there exists a number δ > 0 such that Condition A is satisfied for Hamiltonians




