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On the 6-Boundary of the Closed Friedman-Model

B. Bosshard
Institut fur theoretische Physik, Universitat Bern, CH-3012 Bern, Switzerland

Abstract. Some points of the past Big Bang in the closed fourdimensional
Friedman-model are found to be identical with points of the future collapse
according to the bundle-boundary definition.

1. Introduction

Consider the closed Friedman-model (M, g) with metric

ds2 = R2(ψ) {dip2 - dσ2 - sin2 σ(d92 + sin2 Sdφ2)}

with R(ψ)= 1 — cost/;,

with singularities at ψ = 0 and ψ = 2π. We shall investigate the structure of the
£>-boundary for this space-time by working with, rather than the ten-dimensional
orthonormal bundle O(M) (see [1, 2]), a certain three-dimensional subbundle. The
construction is as follows. Consider the timelike and totally geodesic two-
dimensional submanifolds NcM with induced metric γ, given by

5 = const and φ = const.

Moreover, there exists an orthonormal dyad field

which is parallel along and orthogonal to N. Therefore we can construct a three-
dimensional submanifold NcO(M\ consisting of every orthonormal tetrad Yt,
ι = 0,...3 with

YAeT(N) A = 0,1

at every point of N. N is isomorphic to O(N). Furthermore the induced metric
in N is equal to the bundle metric γ in O(N), because any curve in N, which is
horizontal with respect to y is horizontal with respect to g as well. The metric
y can be easily computed. This reduction method can be applied also to other
space-times, e.g. the Schwarzschild and Reissner-Nordstrom space-times. If we
now find curves, which connect two points in the fibres of the two singularities
with arbitrarily small length in O(N)' \ the Cauchy completion of O(N)' 1 [1],

1 The prime denotes the connected component, i.e. here the manifolds consisting of every positively
oriented orthonormal dyad resp. tetrad in every point of N res. M.
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we have the two projected points identified. The construction of these curves is
based on the two following facts:

1) For the two-dimensional submanifolds N with induced metric γ any fibre
of the orthonormal bundle at ψ = 0 and ψ = 2π is degenerated to a point, i.e. all
positively oriented orthonormal dyads at a point of such a singularity are iden-
tified. This surprising and interesting fact is crucial for the identification.

2) The bundle length of a horizontal lift of a curve CeN is the "Euclidean
length", measured with the aid of the components θf(C) of the tangent vector C
with respect to the choosen parallely propagated dyad [1]:

L depends on the dyad chosen and is called generalised affine length of C. It
follows clearly, that the generalised affine length of a null geodesic can be made
arbitrarily small by chosing appropriately the dyad.

Now, our curve connects an orthonormal dyad XAp at a point p of the first
with an orthonormal dyad XAq at a point q of the second singularity. We first
boost the dyad XAp, so that its vectors approach a null direction. Then we
parallely propagate this dyad along the null geodesic defined by this null direc-
tion and obtain some dyad at q. We then boost it to get the dyad XAq. The bundle
length of this curve can be made as small as we want. Hence, the points p and q
are identified.

2. The SubmanifoldsNcM

The timelike two-dimensional submanifolds Nc(M,g), defined by θ = const and
φ = const have an induced metric

ds2 = R2(xp)(dψ2-dσ2)

with 0 ^ σ < 2 π , ψή=2nπ for ne N, N = R 1 x S 1 .
The orthonormal dyad field Wa, α = 2, 3

W2 = {R sinσ)"L δ/39, W3 = (R sin ,9 sinσ)" 1 d/dφ

is parallel along and orthogonal to N. The existence of such vectorfields implies
that N is totally geodesic. We get the following maps and bundles:

O(N) * >O(M)

N ^ • M

i1 is the embedding of N in M. N is the submanifold of O(M) consisting of every
orthonormal tetrad Yb i = 0,..., 3 with

YA = iuXA 4 = 0,1

Ya=Wa α = 2,3
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at every point of lΊiV, where XA is an arbitrary orthonormal dyad at the cor-
responding point in N.

i2 is the embedding of N in O(M\
π l 5 π 2 are the bundle projections.

i maps an orthonormal dyad XA at the point peN (i.e. peO(N)) to the tetrad Yt

at the point ίtp with (1), ϊθ(N) = N.

Lemma 1. If p(s) is a horizontal curve in O(N), then x(s) = hp(s) is also horizontal
in 0{M).

Lemma 2. π2°h = i1°π1.

3. The Metric in O{N)T

One can easily calculate the metric γ in O(N)'. If χ is a canonical parameter of the
one-parameter subgroup L of the Lorentzgroup A which acts as structure group
in O(N)' and if the section χ = 0 is chosen to consist of the dyads (R~1d/dψ,
R~1d/d9) one gets

dή = ^ R2(ψ) (dip -dσf+e-^- R\dψ - dσf + ( Ά dσ + dχ

Proposition. y = /z*̂  or /or I/, Fe T(O(N)f)

Proof. The standard horizontal and vertical vector fields

CA,
 2E°1 e T(O{N)f) A - 0,1 resp.

Bi9*έ[eT(O(M)') i,fc = 0,...,3

are orthonormal with respect to 7 resp. g. But the horizontal subspace H~(N)C
T(0{N)') at the point peO{N)' is maped into the horizontal subspace Hhp(M)C
T(0(M)') by h% (Lemma 1). Furthermore by Lemma 2

π2*oKCAp=h*oπuCAp=iuXApz=YAi,p = π2itBAhp

Therefore

BA = KCΛ ,4 = 0 , 1 .

For the vertical vector fields let £? be the element of the Liealgebra of the
Lorentzgroup A, which generates the one parameter structure group L(χ) of the
bundle O(N)'. If RL{χ) resp. R'L{χ) denote the action of L(χ) at the points peO(N)1

resp. χe O(M)

But RL{χ) transforms the dyad XA in the same way as the two vectors YA = iXi!XΛ

of the tetrad Yt are transformed by R'Liχy Therefore from the definition of h we have

4^0 _ L 2^0

which completes the proof.
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Corollary. Let pί9 p2e0(N)'. Then dj(p 1?p2)^dd(hp 1? hp2) if dy is the distance
function in O(N)' as given by y and d~g, similarly for O(M)'.

In the following chapter we consider the sequences {pin}'. {(ψn, σ0, 0)} and

{pAnY i(2π-ψn, σo-2χnR(xpn)/R(ψn) +2π-2ψn, 0)}

with limφw = 0. {pln} and {p4π} (we anticipate here a result of Chapter 4) are
tt—• 00

Cauchy sequences without limit in O(N)r and determine therefore points pi and
p 4 of the boundary 0(N)'.

4. The Identification Curves

We construct a curve λn, consisting of three horizontal parts:

Part 1 connects the points pln:{ψn,σ0,0) and p2n'.{ψn,σQ-χnR{ψn)IR(ψn\χn)
and is represented by the two functions

Ψ = Ψn= const,

with σ0 = const, χn = — α In R(ψn) α > 1.
The length of this part is

dχ]/ch2χ < h

Now, if R(ψ) = R(2π-\p)~ψβ for φ-^0 then

and for arbitrary β > 0 there exists α with l<(x<(β+ϊ)/β. Therefore

limL l M = 0 for ψn-^0.
n—> QC

With this part one can show the interesting fact, that the fibre of 0(N)' through
the boundary point p^OiN)' is degenerated, i.e. that any two points in this fibre
are identical. We shall give only the idea for the proof:

Consider the sequences {pln} and {vn}\ {(ψn, σo + δn, 0)}. Both of them deter-
mine the same boundary point pvTo see that we construct a curve which con-
nects pln and υn and consists of three parts Cln, C2n, C3n.

Cin connects pln with qln:(δy

n, σ0, 0) and is given by dσ = dχ = 0.
C2n connects qίn with q'ίn:(δl, σo + δn, 0) and is given by dψ = dχ = 0.
C3n connects q\n with vn and is given by dσ = dχ = 0. Let 0<y< \.

The length of this curve fulfills lim L(Cn) = 0 if δn-+0. Now we construct a sequence

{un}:{ψn>
σo + X'R(ψn)/&(ψn)>Q} Wn) ^s a Cauchy sequence which determines the

boundary point pι. The curve Kn, given by the two functions

ψ = ψn= const,

σ(χ) = σo + χ'R(ψn)/R(ψn) - χR(ψn)/R(ψn)

connects un with Ra(χ)'pίn:(ψn,σ0,χ'). But we have shown that for arbitrary
χ', lim L(Kn) = Q, which completes the proof.
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Part 2 is a horizontal lift of a null geodesic and connects p2n with the point

p3n: (2π - ψn, σ0 - χnR{φn)/R{ψn) + 2π - 2ψn, χn)

and is represented by the two functions

σ{ψ) = σ0- χnR(ψn)/R(ψn) + Ψ~ψn

χ(ψ) = χn-\n(R(ψn)/R(ψ))

The length of this part is

-χn 2π-ψn

ί <3]/2πR(ψnr

since j R2(ψ)dψ<3π.

Part 3 connects the points p3n and

p4n: {2π-ψn9 σ0 - 2χnR(ψn)/R{ψn) + 2π - 2φn9 0)

and is represented by the two functions

ψ = 2π — ψn = const,

σ(χ) = σ0- 2χnR(ψn)/R(ψn) + 2π - 2 ^ , + χR(ψn)/R(ψn)

The length of this part is also LUr Hence the length of the total curve fulfills

l i m L = 0 .
«->oo

Therefore, for ε>0 there exist N with

L{λn)<ε/2 and R{ψn)ψn<ε/2 for n>N.

This means:

1. The sequences {pίn}, {p4n} have null distance, i.e. for ε>0 there exist N with

^m) + \R(ψn)ψn ~

therefore

2. The sequence {pln} is a Cauchy sequence without limit in O(N)'. Therefore,
and by 1. the sequence {p4n} is also a Cauchy sequence, also without limit in
O(JV)'. Hence

{hpίn} and {/ip4H}

are Cauchy sequences in O(M)'.
But the coordinates of the projections pln9 pAn converge to
^ coord. /r\ \

Pin •(0,σ 0 ),

p4n

 c o o r d ' > (2π, σ 0 + 2π) wich is equivalent to (2π, σ 0 ) .
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Hence, {pln} and {p4n}, also {iιPίn} and {iΊp4n} approach the two "different"
singularities at ψ = 0 resp. ψ = 2π. But they are identified according to Schmidt's
definition (b-boundary) of a singularity.
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