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Abstract Using the singular surface theory, an expression for the jump in vorticity across a shock
wave of arbitrary shape propagating in a uniform, perfect fluid occupying the space-time of special
relativity, has been derived. It has been shown that the jump in vorticity across a shock of given
strength and curvature depends only on the velocity of the medium ahead of the shock.

1. Introduction

The study of shock wave propagation in relativistic hydrodynamics is of
interest in supernova explosions. The relativistic hydrodynamical equations for
one-dimensional motion have been studied by Taub [1], and Johnson and Mckee
[2] among others. It will be of interest to study the vorticity generated by a shock
in relativistic hydrodynamics.

The jump in vorticity across a shock wave in classical gasdynamics has been
studied by Truesdell [3], Lighthill [4], and Hayes [5], among others. Truesdell
first obtained a general expression for the vorticity behind a curved two-dimension-
al steady shock in a uniform flow. Lighthill has generalized TruesdelΓs result in
showing that the result was valid, when expressed in terms of the axes of principal
curvature, for a steady shock wave of general shape in a uniform flow. In view of
TruesdelΓs result, namely, "The magnitude of the vorticity generated by a shock
of given strength and curvature depends only on the magnitude of the tangential
component of velocity and is independent of the form of the equation of state",
Hayes derived an expression for the jump in vorticity across a gasdynamic dis-
continuity without recourse to any thermodynamical law.

The aim of this work is to derive, using the singular surface theory, an expres-
sion for the jump in vorticity across a shock wave propagating in a uniform,
perfect fluid occupying the space-time of special relativity. We have to note that in
relativity, mass and energy are equivalent. Consequently, the energy equation
enters into the discussion automatically. However, the expression for the jump in
vorticity does not explicitly depend upon the caloric equation of state which
characterises the thermodynamical nature of the fluid. It depends upon the strength,
defined as the ratio of jump in mass density to the density in front of the shock,
the curvature of the shock, and on the velocity in front of the shock (see Section 5).
The components of the jump in vorticity have been written in the test frame of
the shock.
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2. Equations of Motion

Consider a co-ordinate system xΛ with x° = t as time and xι as spatial co-
ordinates in the flat space-time of special relativity with the fundamental metric
tensor hAB as hoo = c2, htj= —δψ hAB = 0(Λ + B), where c is the velocity of light in
vacuum. Latin capital indices range over 0,1, 2, 3 and the lower case Latin indices
assume the values 1, 2, 3 only. Usual summation convention has been followed.

The equations of motion of a perfect fluid in special relativity, described by
the stress-energy tensor [6]

TAB=ρμUAUB-^hAB (2.1)

can be written as

B=^p,Bh
ΛB, (2.2)

0, (2.3)

where ρ is the proper mass density, p is the pressure, UΛ is the unit, four-dimension-
al, fluid-velocity vector,

?K) (2 4)

and

e = (*p,ρ) (2.5)

is the proper specific internal energy of the fluid. Equation (2.5) is referred to as
the caloric equation of state of the fluid. In the above equations comma followed
by a Latin index denotes partial differentiation.

3. Shock Conditions and Compatibility Conditions

A shock wave is considered as a propagating, time-like, singular hypersurface Σ
across which at least some of the field variables describing the fluid motion are
discontinuous. It is represented parametrically by the equations

xA = xΛ(u«) (3.1)

where if (Greek indices assume the values 0,1, 2) are the co-ordinates on Σ.
Let aaβ and baβ, be respectively, the components of the first, and second funda-
mental tensors of Σ. Let NA be the space-like unit normal vector to Σ. Now let
us note the following formulae [7].

aaβ = hABx\xB

φ NAN
A = - 1, NAx\ = 0,

x\β = KβN
A, N\ = b^x% (3.2)

\ , x % = hAB + NANB, xA>oι - hABx
B

m (notation),
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where comma followed by a Greek index denotes coveriant derivative with respect
to aaβ; since xA are scalar functions of ua, we have xA,a = dxΛ/dua.

The shock conditions that must be satisfied across Σ are [6],

O, (3.3)

09 (3.4)

where [F~\=F2 — Fι\ the subscript 1(2) on F denotes the value of F ahead of
(behind) the surface Σ.

Further, we have the compatibility conditions, derived by using Hadamard's
Lemma, which must be satisfied across Σ by the partial derivatives of the field
variables [8]. For the first partial derivatives, these are

[ F , J = ^ + Λ ? Λ M , (3.5)

where [F] = v, [F9A]NA=—λ denote the jumps in the field variable F and its
normal derivative.

4. Strength of the Shock and Jumps in VA and μ

Consider the vector VA and τ defined by

VΛ = μUA; τ = ρ/μ. (4.1)

From (4.1) and (3.4) we get,

M = τ2V
BNB = τ1V

BNB = ρ2U
BNB = ρίU

BNB. (4.2)

By using (4.1), (4.2) and (2.1) the equation (3.3) can be written as

\ (4.3)
c

Let us denote the jumps across Σ in the pressure p, the velocity vector VA, the
normal derivatives of these and the normal component of VA by

B]NB=XA lVA]N = λAN=λIVA,B]NB=-XA,

By multiplying Eq. (4.3) by NΛ and also by XAA and summing over A, we obtain

-Mc2λ + η = 0, (4.5)

4,« = 0 . (4.6)

Since Eq. (4.6) means that the tangential component of VΛ is continuous across the
shock, we have

λA = λNA. (4.7)
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By using (4.1) rewrite the Eq. (2.2) in terms of VA and τ. Then take jumps in the
resulting equation by using the Eq. (3.5) and the fact that the medium ahead of the
shock is uniform and is in constant state, to obtain.

( Vβ2) = ηNΛ + a«βη,ax?β. (4.8)

By multiplying (4.8) by xA>y and summing over A, we obtain

c2{Mλy + λτ2V%bay) = η,y. (4.9)

By differentiating Eq. (4.5) tangentially, we get

c2{Mλ,y + λτxV\bay) = η,y. (4.10)

Elimination of η,y from (4.9) and (4.10) gives

M{λγ-λ,γ) + λbaγ{ρ2U«2-QlU\) = ϊ). (4.11)

Let us now define the strength of the shock, denoted by δ, by the equation

[β] = Qiδ. (4.12)

The jumps in VΛ and μ can now be expressed in terms of δ as follows.
By using the last of Eqs. (4.4), rewrite (4.2) as

τ2(-λ+VB

1NB) = M.

Therefore,

Qi Qil £ ( l + S )

It follows from (4.5) and (4.13) that

(4.14)
\Qi Qil

It can also be shown that (4.3) leads to the equation

(4.15)
Q2 β l / "

Eliminate η from (4.14) and (4.15) to obtain

where

By using the Eqs. (4.6), (4.13), and (4.16) in (4.11), we obtain

The Eq. (4.17) is the basic result needed to obtain an expression for the jump in
vorticity across the shock.
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5. Jump in Vorticity

Consider the vorticity vector WΛ defined by [9]

WA=±EΛBCDωCDUB (5.1)

where

TJABCD — _ a A

•^ fc 5 ^ABCD UCΆBCD

} = sΛBCD being permutation symbols with the usual meaning.
We now take jumps in (5.1) using (3.5), (4.1), and (4.4) and the fact that the

state ahead of the shock is constant, to obtain

^ β (5.2)

It follows immediately from (5.2) that

IWΛ]NΛ = Q, (5.3)

in view of the skew-symmetry of EΛBCD. That is, the normal component of the
vorticity is continuous across the shock.

In order to obtain the jump in the tangential component of the vorticity
vector, multiply (5.2) by xAty and sum over A, resolving the vector λA into compo-
nents tangent and normal to the shock. In the resulting equation, use (4.16), the
contravariant form of (4.17) and (4.1) to obtain the jump in the tangential compo-
nent of vorticity vector across the shock as

cxDtab°βUe . (5.4)

It is clear from the Eqs. (5.3) and (5.4) that the jump in vorticity across a shock
of given strength δ, and of given curvature (i.e. ba

β) depends only on the velocity
of the medium ahead. Note that in equation (5.4) although the velocity
vector UB1 appears in addition to U{, only its tangential component
contributes, whereas the term involving its normal component vanishes in view
of the skew-symmetry of EΛBCD.

Let us now discuss equation (5.4) in the rest frame of the shock surface Σ.
If G is the normal co-ordinate velocity of Σ(t\ considered as a moving surface in
the xι space, and nι the unit normal to Σ(t) in this space, then we have [7]

nil yMl-GVΓ1. (5.5)

Consider an orthonormal tetrad of vectors N'A, 7J°f (ά = 0,1, 2) at a point P
on the shock Σ. Then the transformation to this frame from a frame in which the
shock has three-dimensional normal speed G is given by

(5.6)



44 A. V. Gopalakrishna

so that any vector QΛ transforms according to

QA = hABLc

BQc. (5.7)

In particular, we have

N'Λ = (0, n% T'^J-, θ\ Tώ={0, ίJ!,), T'ά = (0, t\2)). (5.8)

By using (5.6) and (5.8) it can be shown that, at the point P, the components bOa

vanish. Further, let us assume that bί2 = b21=O at the point P. By setting [Ωy] =
c [ Wy]> a n d using (5.6) — (5.8), the space components of (5.4) in the rest frame of the
shock can be obtained as

[fluJ = Yy2 ( ^ )

2 ( ^ 1 ) b \ , (5.9)

where Y = P2(P1-P2)
2/(Pl(l + δ)2), υn = υinh vι being the ordinary velocity vector

of the fluid, and the brackets around subscripts indicate the surface components.
The time component [Ω(0)]> which is not independent of [Ω ( 1 )] and [Ω{2)] can be
obtained either directly from (5.4) or by using the fact [WχF i 4] = 0, and the
Eqs. (4.6) and (4.7).

By letting c-^oo in (5.9), we obtain the classical case

lΩa)] = δ2/(l + δ)vi2)dl [ f l ( 2 ) ]= -δ2/(l+δ)vωd\ . (5.10)

Comparing (5.9) with (5.10), apart from the factor Y whose limiting value is
δ2/(l + (5), the contraction factors γ, γ appear in the relativistic expressions, as one
would expect.
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