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Abstract. It is shown that a continuous positive linear functional on a commutative nuclear
*-algebra has an integral decomposition into characters if and only if the functional is strongly positive,
i.e. positive on all positive polynomials. When applied to the symmetric tensor algebra over a nuclear
test function space this gives a necessary and sufficient condition for the Schwinger functions of Eucli-
dean quantum field theory to be the moments of a continuous cylinder measure on the dual space.
Another application is to the problem of decomposing a Wightman functional into states having the
cluster property.

1. Introduction

Whereas the extremal states of an abelian *-algebra of bounded operators on
Hubert space are at the same time the characters of the algebra, this is no longer
true for algebras of unbounded operators1. In a previous article [2] an integral
decomposition theory associated with the weak commutant of families of un-
bounded operators was used to obtain an extremal decomposition of states on
nuclear *-algebras. The present paper is concerned with decompositions into
characters in the commutative case. It is shown that such a decomposition is
possible if and only if the state, satisfies a positivity condition which is well known
from the classical moment problem over finite dimensional spaces [3,4]. This
result can be applied to Euclidean quantum field theory where the sequence of
Schwinger distributions defines by assumption a positive linear functional on the
symmetric tensor algebra over some nuclear space of test functions. The condition
tells also when a Wightman functional is an integral over states having the cluster
property. That this is not always the case was shown in [2].

The infinite dimensional moment problem has been treated by several authors
under conditions which at the same time guarantee the uniqueness of the solution,
cf. e.g. [5] and [1]. Our method is based on the extension theory in [2] which,
however, has to be modified slightly to fit our purpose. These changes are fairly
straightforward so we can in most cases refer to [2] for the proofs. This method,
which might appear somewhat indirect if one is only aiming at a solution of the
moment problem (i.e. our Theorem 4.3)2, has some advantages: It makes explicit
the intimate connection of the solution with the weak commutant of the operators

1 See e.g. [1], Theorem 5.5.
2 After this research was completed a more direct proof of Theorem 4.3 was found by G. C.

Hegerfeldt. A closely related result has also been obtained by M. Dubois-Violette (private commu-
nication).
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and the extension theory with subsidiary conditions developed in the next section
is also useful for other purposes. In Section 5 we treat briefly the non-cyclic case
where positivity has to be replaced by complete positivity in the sense of [6].

2. Positive Extensions

When not stated otherwise, the notations of this section are those of [2]. Let
(X, 2) be a ^-operator family and assume the identity operator 1 belongs to stf.
We shall be concerned with extensions (s/, Q)} of (<*/, 3ϊ) which preserve positivity
of some of the operators in j/.

2.1. Definition, (i) An operator A e ̂  is called positive (on 2) if <φ, v4φ>^0
for all φ e 2.

(ii) Let ^C^/ be some subset of positive operators on 3). An extension (s/, S)
is called ^-positive if A is positive on Q) for all AE&. We denote the set {A\Ae^}
also by &.

2.2. Remarks, (i) If ^C^ is a family of positive operators, then this holds
also for the cone generated by the operators B*AB9 Be^ and A e ̂ , whenever
the product is defined.

(ii) Since an extension is assumed to preserve the algebraic structure of j/,
every extension is positive with respect to the squares A* A when these are defined.
More generally, a ^-positive extension is also positive w.r.t. the cone defined
above.

(iii) The closure (s/, 2) of an operator family (cf. [2], 2.4) defines a ^-positive
extension for any family ^GJ/ of positive operators.

2.3. Definition. Let & be as above, and assume that 1 e &. A bounded operator
x e (j/, 2)'w will be called strongly positive (w.r.t. ̂ ) and we write x^>0, or some-
times x^O, if xA is positive on 2 for all A e &. Instead of x — y$>0 we shall also
write y<ζx.

In the following we shall assume that some fixed 3P with 1 e & is given and
instead of "^-strongly positive" etc. we shall simply write "strongly positive" etc.

2.4. Remark, (i) Because 1 e^, every x^O is positive in the usual sense. The
converse holds if x commutes strongly with the closures A of A e ̂ , because then
we have xACx1/2Άx1/2 for x^O. In general, however, the two concepts are
different.

(ii) Every x^>0 is also strongly positive w.r.t. the cone defined in 2.2(i).

2.5. Notation. <#ϊ : = {xe (j/, 0χjO < x <ζ 1} ,

If we want to stress the dependence on j/, ,̂ and 3) we write #J"(j/, ̂ , 2) etc.

2.6. Lemma, (i) The sets ̂  and (^1 are convex and weakly compact, (ii) Let
(&#, 3i) be a ^-positive extension and define the mapping ρ as in [2], i.e. ρ(x) = P x P
where P is the projector jΊf(@)-+Jtίf(@) and x is a bounded operator on 3fP(β\
Then we have that x^>0 implies ρ(x)^>0 so ρ maps <#ϊ(j/, &, @] into #ί"(«β/, ̂ , 2\

Proof. The statements follow immediately from the definition and the weak
compactness of the order interval Orgxrg 1.
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2.7. Definition, (i) An induced extension (J, M, 9) of (j/, 2) (cf. [2], Definition
2.10) will be called regular positive (with respect to 3P\ if

(a) It is positive, i.e. (j/, $) is a positive extension of (j/, )̂.
(b) Q is one-to-one when restricted to <gΐ(j/VΛ,&9&)3.
(ii) We define a relation among ^-positive, resp. regular ^-positive induced

extensions as follows:

if there is a subalgebra J/C.Λ" such that (jtfV^, Jf, 9) is a positive, resp. regular
positive induced extension of (s/V Jί, S>] with respect to

2.8. Lemma, (i) Let (s4~ \M~ ',9~) be the closure of the induced extension
(s/,Jί,S>\ i.e. Jί~ ==weak closure M, 2>~ = lin. span <M~Q) ana s/ ~ = extension
of j/ to 3) ~ . Then (sέ~ ,JΪ~,Q)~)is regular positive iff(&ί> JΪ, 2) is regular positive.

(ii) Let (s/, Jt, 3)} be a positive induced extension. Then the positive part of the
unit ball Jίl belongs to <β\(J\l Jt,Φ, 9\

(iii) The relation < is an order relation (i.e. transitive and reflexive) among
regular positive extensions.

(iv) For every linearity ordered set of regular positive extensions there exists
a regular positive extension which dominates all the extensions of the set.

Proof, (i) Since ̂ l(J~ \/J~, &~ , J")C^(j/V^, J) the statement follows
from the fact that an operator is positive iff its closure is positive.

(ii) Follows from (i) and Remark 2.4(i).
(iii) And (iv) are proved in the same way as Lemma 2.11. in [2].

2.9. Lemma. (1) Let (j/, Jί, 3)) be a positive induced extension such that the
restriction ρ f Jl is one-to-one. Define Jί : = Q(Jί\ J f f : = o(Jt ί" ) and φ\, ......
by the equation

These objects have the following properties:
(i) Jί is the linear hull of ^^.

(ii) Jf I is a convex subset of ^ι(^/, 2)} with
(a) l e J f J .
(b) X E tfl implies 1 - x e tfl .

(iii) The product φ on Jί is
(a) bilinear,
(b) associative,
(c) commutative,
(d) respects the involution,
(e) has 1 as a unit element,

and for allm^Jί, k e JΓj", Ae& and φ e^ we have

(ί) Σij<Vi>Φ(mf>k>

' denotes the algebra generated by stf and Jί, or, if stf is not an algebra, simply the set
theoretical union of j/ and M.
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(2) Conversely, suppose Jt, 3£\, ana φ are as in (i)-(m) Then there exists a
positive induced extension (stf, M, 2) such that ρ \ M is infective, and

(a) Jί =
(b)
(c)

This extension is uniquely determined by (a) and (b) up to unitary equivalence4.
For two such extensions (j/1,^1,^1) and (sί2, Jί2, 3ι2) associated with (Jf1,
(Jf ϊ")1,^1) resp. (Jt2,(3fl)2,φ2} we have

if and only if Jt^tJί2 and φ1 = φ

Proof. The verification of (1) is straightforward. Conversely, if we define
Jf = [jλ^o^^i tnen tne triple (̂ , Jf , φ) satisfies all the hypotheses of Lemma 2.12
in [2]. The ^-positivity of the extension follows immediately from (iii) (f).

2.10. Lemma. // x e <& J" , x φ λ\ with 0 < λ < 1, then

- x), α2x + j82(l - x)) : =

satisfy all hypotheses of Lemma 2.6. The algebra M is generated by the identity
and a projector e with ρ(e) = x.

Proof. If /lx + μ(l-x)eJΓ1

+, then also l-(λx+μ(l-x)) = (l-λ)x + (l-μ)x
(1 - x) e Jf J" . Since x E <#ϊ we have for all A e 9 and /I, μ ̂ 0:

(1 - x),

The other properties are also easily verified.

2.11. Lemma. Let x be as in the previous lemma. Define

and ΉI-X, ^i-x in the same way. Then the extension defined by x is regular positive
if and only if

Proof. The proof is a transcription of the proof of Lemma 2.15 in [2], replacing
^ by <t

2.12. Lemma. Let x be as in Lemma 2.10. The extension defined by x is regular
positive if and only if x is an extremal point of ^(j/, ̂ , 2ϊ).

4 As in [2], unitary equivalence of two extensions (s/\ JΪ1, &\ i= 1, 2 means there is a unitary
operator 3F (^1)-»Jf (^2) which reduces to the identity on 3tf($ϊ) and intertwines between j/1 and j/2

resp. JΪ1 and ̂ 2.
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Proof. The statement follows from Lemma 2.11. in exactly the same way as
Lemma 2.15 in [2] implies Lemma 2.14 in [2].

The next result is the counterpart to Theorem 2.16 and Lemma 3.1. in [2]:

2.13. Theorem, (i) Every regular positive extension is dominated by a maximal
regular positive extension.

(ii) A regular positive extension (j/, M, Q)} is maximal if and only if

(iii) If (j/, Jf, 2) is a regular positive extension and if ffl(β} is separable, then
is also separable.

Proof, (i) follows from Lemmas 2.8 and 2.9 and Zorns lemma in the same way
as in the proof of Theorem 2.16 in [2].

(ii) lϊJiγ is a proper subset of <^, there exists by the Krein-MiΓman theorem
an extremal point xe^ϊ with X φJ^^. By Lemma 2.12 this x defines a regular
positive extension, which contradicts the maximality of (j/, Jϊ, 2).

(iii) The proof is the same as in Lemma 3.1 in [2].

3. Standard Extensions for Commutative Algebras. The Cyclic Case

Let 21 be a commutative *-algebra with a unit element /. The concepts of an
extension and ^-positivity, which up to now were used for operator families
carry over to representations of 91 in an obvious manner. We also recall a definition
of Powers [1]: A representation 77 of 9ί on domain Q) is called standard if Π(A)
is essentially self- adjoint on 2 for all symmetric A E 9Ϊ and the spectral projectors
for different operators commute.

Let 1^C9I be some linear space of Hermitean generators for 91, i.e. every
element of 91 is a polynomial P(A^ ...An) with Ai e ̂ . If 77 is a standard representa-
tion of 91, then the spectrum of Π(P(Al, ...An)) belongs to the range of the poly-
nomial P(x1? ...xn) over R", in particular, if P(x1? . . .X M ) is a positive polynomial,
then Π(P(Al, ...,AJ) is a positive operator for all A^^Ά. To account for more
general situations we introduce a notation.

3.1. Notation. If 2£ is any subset of the algebraic dual ^* we define

^0 for all C O E ^ .

3.2. Theorem. Let Π be a cyclic * -representation of 91 with cyclic vector Ω and
domain 2 = 77(9I)ί2 and let 3? and 3P(2£} be as above. The following conditions are
equivalent.

(i) The functional T(A)=(Ω, Π(A)Ωy is positive on &(j%\
(ii) The representation Π is 3P(3£\ positive and if (77, Jt> 2) is a maximal

regular 3P(3f)- positive extension then
(a) JtΩ is dense in ffl(β\ so M is maximal abelian.
(b) 77 is standard.
(c) The joint spectrum of Π(Aί), ...,Π(A^9 Atei^ belongs to the closure of
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Proof. That (ϋ)=>(i) follows from spectral theory. The proof of the other
direction uses similar ideas as the proof of Theorem 7.3 in [1]. We consider the
algebra $0 = 77(9ί) V M which is generated by ̂  + M^ where Jt^ is the Hermitean
part of Jl. For simplicity of notation we denote the elements of Y ' + JΪh by
A1,A2...etc. rather than Π(A1)9 mί etc. If S is any finite diemsional subspace of
y + J(h we let J3/S denote the algebra generated by this space and define @s =
s/sΩ9 J^s = closure of Q)s in tf (@)and 0>s = Π(ff>(3())n*fs. If S is spanned by
Al9...9Akei^ and Ak+l9 ...,AneJίh we let 2£s denote the set in the dual S'
defined by the restriction of 2£ to the linear span of {Al9 ...Ak} and the spectrum
of the bounded operators Ak+ί9 ... An. Let ,S0 be some fixed subspace and P0 =
P(Al9 ...A^ some fixed Hermitean element in <S/SQ. If S is a finite dimensional
subspace containing 50 we consider the set Cs of bounded operators C on
satisfying

(«)

(γ)
(£s is weakly closed and S1CS2 implies C£S2C(£Sl. We contend that (£s is not

empty for any S. In fact, by the solution to the finite dimensional moment problem
[3, 4], the operators on j/s can be extended to multiplication operators on an
L2-space jfis over the closure of «2TS. If (P2, + 1) is the extension of (P§ + 1) then the
inverse (Po + 1)"1 exists as multiplication with the reciprocal function. If Es is
the projector J^s^^fs we define an operator Cs on

on

on
s [0

This operator satisfies (α)-(y), so (£SΦ0. Since all (£5 are closed subsets of the
weakly compact unit ball we have therefore Πsocs^s + ̂  If Ce Πs0cs^s> then
C e^l (77(91) VJ(,Φ(&\3>\ so by the maximality of the extension we have
CeJt and therefore C(Pg + l) = (Po + 1)C = / on St. Passing to the closure we
have that (Po + 1) is the inverse of the bounded self-adjoint operator C, so
(Pg + ί)Ω=C~1Ω^E MΩ. Vectors of the Form (P2 + 1)Ω span the whole of J, so
JΪΩ = $ and M is therefore maximal abelian. Every 77(^4) commutes strongly
with Jϊ, so the closure Π(A) is affiliated with the abelian algebra JΪ = JΪ' and
therefore self-adjoint if A = A*. The spectral projectors belong also to M so Π is
standard. Finally if (xl9 ...,xj is not in the closure of {ω(Ai)9 ...9ω(An)\ωe^}
then there is a polynomial P(Al9 ...,An)<= 0>(^) with P(yl9 ...,yn)<0 for all
(y^" yn} in some neighbourhood of (x l5 ...xπ). If this neighbourhood has a
nonvoid intersection with the joint spectrum, then <φ, Π(P(Al9 ...9An))cpy for
some φ in contradiction to ^(JQ-positivity of Π.

4. The Moment Problem

In this section we consider the decomposition of a linear functional on 21 into
characters, i.e. functionals T with T(A* B)=T(A) T(B). (It is convenient to
exclude the case T = 0, so this equation implies T(/)=l.) The decomposition
theory associated with the maximal abelian algebra Jt of the previous section
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is particularly nice if 21 carries a nuclear topology. We shall therefore in this
section assume that 21 is a commutative, nuclear * -algebra with unit element /,
and that 1Γ is a subspace of Hermitean elements in 21 such that the *-algebra
2I(̂ ) generated by Y^u{/} is dense in 21. i/~ is a real nuclear space with topological
dual ̂ . If %t1^' we define &(&) as in 3.1.

4.1. Theorem. Let 21, 2£ and £?(££) be as above. The following conditions are
equivalent for a linear functional T on 21 :

(i) T is positive on £P(β£} and the semίnorm A^>T(A*A)1/2 is continuous5.
(ii) T has a weak integral decomposition

where (A, dμλ) is a standard measure space [8] with §Λdμ<ao (A can be taken as
the unit interval [0, 1]) such that for almost all λ the following holds true:

(a) Tλ is a character and the restriction Tλ\i^ belongs to the weak closure ofS.
(b) [A e 0>(&)\T(A) = Q} C{Ae 0>(&)\Tλ(A) = Q}.
(c) There is a continuous seminorm p on 21 and a function %? e L2(A, dμ) such that

\Tλ(A)\^<V(λ)p(A) for all AεW.

Proof. The proof of (ϋ)=>(i) is straightforward. For the other direction, let Π
be the cyclic representation defined by T and let (17, <M, ®) be a maximal 2P(3£\
positive extension6. The decomposition is obtained in the same way as in [2],
them 3.3: The maximal abelian v. Neumann algebra Jί on the separable Hubert
space Jf(^) is unitarily equivalent to the multiplication algebra L^(Λ,dμ) on
L2(Λ, dμ), where dμ is a measure on the spectrum A of Jϊ. We have thus an integral
decomposition of

where J^(λ) = <Cϊor all λ. By the nuclear spectral theorem [9, 10] the "projections"
Q)-*2tf(K) are given by continuous linear operators Eλ. Since Ω is cyclic for Jt
we have £AΩΦO for almost all A. For these λ we define

and zero otherwise. By integrating with arbitrary positive functions in L^(A, dμ)
one shows in the same way as in the proof of Theorem 11 ch. VIII in [9] or thm. 3.3
in [2]7 that Tλ is positive on 0>(3?) and (b) holds for almost all λ. Tλ is a character
because Jf(/l) = <C, and the estimate (c) is part of the nuclear spectral theorem.
Finally, if Tλ is not in the weak closure of Jf, then for some Aί9 . . . An e Ύ 'we have
that (Tλ(A^\ ...Tλ(An})εW is separated from {(ω(Al\...,ω(ArS)\ωe2?} by a

5 The latter condition holds for all continuous, positive functionals, e.g. if 2ί is barrelled, cf. [7]
thm. 4.1 or [2] thm. 3.7.

The results of the previous section apply strictly speaking to the subalgebra 9I(^)c$l which,
however, is dense by assumption, so all statements carry over to 21 by continuity of the representation.

7 The assumption of [2] that 2ί is separable is in fact superίlous. This is so because the mappings
Eλ are all continuous w.r.t. a common seminorm (cf. (c)) and the corresponding normed space is
separable by nuclearity of $ί, cf. [11] prop. 3.1.6.
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neighbourhood. There exists then a polynomial P(xl5 ...xn) with P(Aί,...An)E
9(S] and P(Tλ(Aίl...,Tλ(An))=Tλ(P(Aίy...,An))<0. Hence, Tλ\reS iff Tλ

is positive on 3P(3£\ and as stated above, this is the case for almost all λ.
We now want to discuss the case when 21 is the symmetric tensor algebra

S(9S) over a nuclear space. There is in general more than one natural way of
defining a topology on the tensor product (even for nuclear spaces), but our choice
probably covers most of the interesting cases. Let i^ be a real nuclear space which
is a strict inductive limit of some countable family of its subspaces:

We define the completed n-th tensorial power of Ίf as the inductive limit of the
completed π -tensorial powers [11] of the i^v:

The (completed) C-tensor algebra over i^ is the direct sum

equipped with the locally convex direct sum topology. The symmetric C-tensor
algebra S(̂ ) is derived from i^ in a standard way. Since i^ is real there is a natural
involution on S(f )> so S(f ) is a commutative, nuclear *-algebra with unit.

4.2. Lemma, (i) // T is continuous and positive on S(i^\ then the seminorm
A±-*T(A*A)1/2 is continuous.

(ii) Let &Ci^f. The continuous characters on S(i^) which are positive on
are in a one-to-one correspondence to the weak closure & via the formula

T(P(Ai9 ...,An)) =

Proof, (i) By definition of the π-topology, the seminorm is continuous on any
and be ddinition of the inductive limit therefore on whole S(i^).

(ii) If ω e 2£, then the formula defines a ^(JQ-positive character on S(i^).
T is even continuous in the π-topology on i^®...®i^ which is in general
coarser than the topology defined above. Conversely, if T is ^(^)-positive one
shows that T \i^ e ̂  as at the end of the proof of Theorem 4.1.

4.3. Theorem. Let T be a linear functional on S(τT) and &cV. The following
conditions on T are equivalent.

(i) T is continuous and positive on 2P(2£} with T(I)— 1.
(ii) T(P(Al,...,An)) = lΛP(ωλ(Al\...,ωλ(An}}dμλ where (A,dμλ) is a standard

measure space with \Λ dμλ = 1 and
(a) ωλ e S for almost all λ.
(b) The mapping λι->ωλ(A) is measurable for every Aei^, and there is a positive

function C e L2(Λ, dμ) such that for every positive integrer n

with a continuous seminorm pn on
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(iii) T(P(A19 ...,An)) =

where dv is a measure on the σ-algebra generated by the weakly closed sets in i^'
and having the following continuity property :

For every polynomially bounded continuous function f on IR" the integral

exists and is jointly continuous in Al9 ...,Anei^.

Proof. That (iii) resp. (ii) imply (i) is obvious8. For (i)=>(ii) we apply Theorem 4.1
and Lemma 4.2. (i) to S(i^\ In order to get the estimate (ii) (b) for ωλ we note that
by Theorem 4.1. (ii) (c) we have

with ^6L2, ^(A)gO and p a continuous seminorm on yθn. When restricted to
i^f ", we can take p of the form #n®π... ®πgn, so

on f^v. By definition of the inductive limit this implies
(ii) (b) on whole ̂ .
The measure on i^' is defined as the image of the measure on A under the

map F:λ\->ωλ, i.e. we define a σ-algebra ]|Γyv on i^' as

where ΣΛ *s tne cr algebra on Λ, and

v(M): = MF~HM))

for M e Σv A function / on 1^' is then v-integrable if and only if

is μ-integrable on Λ in which case

JM f(ω}dvω = ί F - ' (M)

The σ-algebra ^^/ contains all weakly closed sets: If τ is weakly closed, then
ωλ 6 τ iff the character Tλ defined by α^ is positive on ^(τ), according to Lemma
4.2. (i). All TΛ are continuous w.r.t. a fixed seminorm p on S(̂ ) and in this semi-
norm, S(τΓ) and therefore also ^(τ) is separable. For every Pe^(τ) the set
{λ\Tλ(p)^0} is /^-measurable and {λ\ωλer} is measurable as a countable inter-
section of such sets. But {λ\ωλ e τ} is the pre-image of τ under the map F, so τ is
v-measurable.

It remains only to check the continuity property of dv. By (ii) (b) it holds for
all polynomials so we have only to consider bounded continuous functions /.
Now, since

8 We note that the continuity property in (iii) or (ii) (b) imply continuity of T in the π-topology
on i^~(χ)...{
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is continuous in Al9...Aw there exists for every ε l 5 ε 2 >0 a neighbourhood of
zero %Ci^ such that the set MEί = {ω\^\ω(Af — Ai)\2>εί} has measure <ε2 if
A® — AiE<% for z = l , ...n. Since / is continuous, it is uniformly continuous on
every disc {(xl9 ...xn)|£|xι — Xι|2^r} for r<oo. Given ε>0 we first choose °Uγ

such that v(M1)-sup\f\ < - and then ̂ 2 C^i such that for A?- At e ̂ 2

Under these conditions

which completes the proof of the theorem.
In the next section the set &Ci^f will be the dual of a convex cone in 1^.

As a final remark in this section we give for this case a description of 3P(3£} which
is somewhat more direct than the original definition 3.1. in that no explicit reference
is made to the dual space Ίf'.

4.4. Lemma. Let Q be a subset ofV and define Qf+ = {ωei^f\ω(A)^Q for all
A e Q}. Let J(f(Q) denote the closed convex cone in i^ generated by Q.

Then

all (x l 9 . . .x j such that y^+ ... +ynAne
implies

In particular,

..,ΛP ίeiΓ,P(χ1,...,χJ^O for all (xl9 ...

Proof. The latter statement is a particular case of the former with β = {0},
because we can always choose Aίy..., An linearily independent.

Suppose P(A1,...,An)e0*(Q' + )9Aiei'" linearily independent, and let S be
the linear span of the A?s. Assume (x l 5 ...,xw)elR'1 satisfies the stated condition.
We define a linear functional ω on S by o}(^i=^yiA^ = ̂ l

i=lxiyi which is then
positive on J>f(Q)nS. By the bipolar theorem, the restrictions of the functionals
in Q'+ to S is weakly dense in the dual cone of Jf (β)nS. Since P is continuous
on IR", this implies P(x1? ...,xπ) = P(ω(A1), ...,ω(An))^Q.

The other inclusion is clear because if ωe<2'+, then ω is also positive on
Jf(Q), so ylAv + ...ynAnE^(Q] implies

5. The Non-Cyclic Case

In this section we want to indicate how the preceeding arguments have to be
modified if the representation does not have a cyclic vector. The generalized
version of Theorem 3.2 will be proved with the aid of an extension theorem of
Powers [6] which has to be used instead of the Hahn-Banach theorem in the
cyclic case. We refer also to [6] for a more thorough discussion of the notions
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of positive matrices of operators and completely positive maps which occur in
the sequel.

Let (j/, Si) be a ^-operator family and let M(j/) denote the set of matrices Atj

with A^tst and all but finitely many ̂  = 0.
5.1. Definition, (i) A matrix (,40 }CM(j/) is called positive on 3) if

ijψj^O for all Ψi e 2.
(ii) If ̂ M C M(J/) is some subset of positive matrices on 2 we call an extension

( j , J) ^-positive if {Ay} is positive on & for all ̂ 0 e^M.
5.2. Definition. Suppose ^M contains the matrix {δ^δ^I} where / is the identity

operator. We say that x e (X, 2)'^ is completely strongly positive with respect
to 3PM if {xAtj} is positive for all {Ai}} e 3PM. We write then also x > 0 or x > 0.

^Vί

In analogy with notation 2.5 we define ^"[(sέ, &M, 2) as the set of all operators
in the weak commutant such that x and 1 — x are completely strongly positive
w.r.t. 3PM. An extension is then called regular if ρ is injective when restricted to

The results of Section 2 are easily adapted to thus new situation and by exactly
the same methods as before one proves :

5.3. Theorem, (i) Every regular &M-positive extension is majorized by a maximal
regular &M-positive extension.

(ii) A regular &M-positίve extension («$/, Jt, 2) is maximal if and only if

(iii) // ( j , , Q>] is a regular positive extension of (X, 2) and 2tf (2} is separable,
then ffl (2) is also separable.

As in Section 3 the concepts defined above for operator families carry over to
representations of a *-algebra $ϊ in an obvious fashion. From now on we suppose
that 91 is commutative and that ^~, ̂ * and ̂  are as in Section 3.

5.4. Notation.

&M(Z) = [P^Ai, . . .An}\Ai e ̂  Λ/ωμj. . .ω(An}} pos. definite for all ω e ̂ } .

5.5. Theorem. Let Π be a ̂ M(^)- positive representation 0/21 and let (77, Jt, 2)
be a maximal regular & M(Z)-positive extension. Then

(a) Jt is maximal abelian.
(b) Π is standard.
(c) The joint spectrum of Π(Aί)...Π(An),Aie'f" belongs to the closure of

{(<o(Al)...(a(A^ωeSK}.
Conversely, every standard extension with (c) is ^M(^)-positίve.

Proof. We introduce two commutative *-algebras:

JTO: = {/:τr*-^C|/(ω) = F(ωμ1), ..., ω(An)\ A, e r

F polynomially bounded and continuous on IRn}

and

1)9 ..., ω(An}\ A^i^ Pa polynomial on IR"} ,
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which is a subalgebra of 9Jί. We let ̂  resp. $ denote the algebraic tensor products
9JΪ QJΪ resp. 9JI QM. The representation 77 of 91 defines in ^an obvious way a
representation of 9JI on £§ and since 77(91) commutes with Jt we have in fact a
representation of $ on ^ which we again call 77, by abuse of notation. This
representation of ̂  is completely positive with respect to βM : = {{Pί<7 } Θl} C M(&\
where the {p^} are such that (p^co)} is pos. definite for all ωe «2Γ, and we may even
extend QM to an algebraically admissible cone in the sense of [6] by multiplying
the matrices in QM from both sides with a matrix in M(̂ ) and its adjoint and
taking convex combinations. In analogous way we define QM= {{f^} Θl} CM(0S)
where {/0 (ω)}. pos. definite for all ωe^, and extend QM to an algebraically
adminible cone. By Powers' extension theorem [6] (it is easy to verify that the
hypotheses of this theorem are fulfilled) we many extend 77 to a βM-positive map
φ of $ into bilinear forms on 3). As in [6] we use the notation (<p\φ(f)\ψy for these
bilinear forms. Suppose / e 9JΪ C $ and 0 ̂  / ^ 1. By positivity of φ we have for all
A, Be 3$,

and also, for {B^} e QM and φt e 3)

Therefore, we have a well defined operator

if we put

<77(,4)φ, bΠ(B)Ψy =

Let P(A1,...An),Aie'f" be a Hermitean element of 91. The function p(ω) =
P(ω)(A1), ...ω(An}) takes then only real values, so /±(ω) = (p(ω) + i)~1 is a bounded
function in 9ΪΪ. /+ can be written as a linear combination of functions gt with 0 ̂  g^ 1,
so /+ defines an operator in M. If follows that 77(P( 1̂), ...,An))±iI has on 3$
an inverse in M so Π(P(Aΐ , . . ., 4n)) is essentially self- adjoint. M commutes strongly
with 77(91) and therefore with all bounded functions of the self-adjoint operators.
If N is any commutative v. Neumann algebra commuting with all bounded
functions of every operator in 77(91) V M, then

^ΐ C^ί (#(91) VJ9&,®)

so Jϊ is maximal abelian by maximality of the extension. That conversely every
standard extension with (c) is ^M-positive follows from spectral theory.

5.6. Remark. Since theorem 5.6 is a generalization of theorem 3.2 we have
just given an alternate proof of the latter theorem.

If 91 is a nuclear *-algebra and 77 a continuous representation we obtain an
integral decomposition by combining Theorem 5.5 with the nuclear spectral
theorem:

5.7. Theorem. Let 91 be a commutative, nuclear * -algebra, i^ and 2£ Ci^' as in
thm. 4.1 and &M(β} as above. Suppose (77, M, <$) is a maximal regular ^M(
tive extension of some strongly continuous & M(3?)-positive representation (77,
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of 91 on a separable Hίlbert space 2tf(Qί\ Then there is a standard measure space
(A, dμ) such that M is unίtarily equivalent to the algebra of all bounded multiplication
operators on L2(A, dμ) and the Π(A)'s are equivalent to multiplication operators
with measurable functions λt->Πλ(A) which satisfy the following conditions:

(a) There are disjoint measurable sets Λh i= 1, 2, 3, . . . with A = \JiAt such that

\Πλ(A)\^^(λ)Pi(A) for λεAt

where cϊ e L2(A, dμ) and pt is a continuous seminorm on 91.
(b) The completion of 2 in the graph-topology is equivalent to

{φεL2\(λ^Πλ(A)φ(λ))εL2 for all

and this domain is a core for all Π(A\ A~A* G 51.
(c) Restricted to y the linear functional A\-+Πλ(A) belongs to the closure of ̂

for almost all λ.

Proof. Since the proof is analogous to that of theorem 3.3 in [2] and theorem 4.1
we give only a sketch: By the usual spectral theorem we obtain the decomposition
of the maximal abelian algebra Jί and of every single operator 77(̂ 4). Since
$C(β) is separable by theorem 5.3 there is a countable set {ΩJ of vectors in 2>
such that the linear span of (Jj Π^Ω,- is dense in 3f(3>\ By multiplying with
suitable characteristic functions (corresponding to projectors in Jί) we can arrange
that the sets At = {/l^(/l)4=0} are disjoint. Their union must be equal to A, up to
a null set, since otherwise we could find a nonzero vector orthogonal to all 77(9I)Ωj.
If we apply the nuclear spectral theorem to the maps A-^Π(A)Ωi-^Πλ(A)Ωi(λ)
we get (a). (In order that Πλ(A) = Ωi(λ)~l(Π(A)Ωi)(λ) is in L2 we might have to
change the measure on At by multiplying it with |Ωj(/l)|2). Statement (b) follows from
the fact that every Π(A\ A = A* is essentially self adjoint on 3) and (c) follows as in
theorem 4.1.

6. Applications to Quantum Field Theory

In this section we discuss two applications of theorems 4.1 and 4.3. The first
concerns Euclidean quantum field theory [2]. In this theory it is assumed that the
Schwinger functions are the vacuum expectation values of a commutative field
defined on Euclidean space-time. These functions define therefore a positive
functional on the symmetric tensor algebra over the space of test functions for
the Euclidean field operators. The usual test function spaces ^ and 2 satisfy
all requirements for the application of theorem 4.3, which gives a necessary and
sufficient condition for the Schwinger functions to be moments of a continuous
cylinder measure on if' or @'.

The second application is to Wightman theory. In [2] it was shown that there
exist extremal Wightman states which do not correspond to field theories with
a unique vacuum. We want to investigate under what conditions this can happen.
As a starting point for the subsequent discussion we recall some results from [13]:

Let j/ denote the algebra of field operators of a tempered Wightman field de-
fined on some domain 2 in a Hubert space $C. Let P0 be the projector on the
vectors invariant under the translation group (and therefore also the Lorentz
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group) and define j^Q = PQ^f. We assume there is a cyclic set ̂ 0C^o °f inva~
riant vectors, i.e. such that 3) = linear span j/^Γ0 is dense in jtf*. Let 2 be the
completion of 2 in the graph topology induced by si and define 90 = ̂ nJf0

and 9 = lin. span j/90.With these notations the following theorem holds:

6.1. Theorem. (i)P09cθ0

(ii) The operators A0 = P0AP0 with At si generate a commutative algebra
j/ 0onθ 0 .

Proof. See [13], Theorems 1 and 2.
The operators A e si define a representation of the test function algebra £f over

Schwarz space [14], and the mapping £ f B j [ ^ A ( f ) e si is assumed to be strongly
continuous, i.e. f->A(f)φ is a continuous map ^->Jf for all φe@. Since it
might not be obvious that the map JΊ-*PQA(f)P0φ is continuous for φ e 9 (i.e.
P0φ e^njf 0), we make use of the following lemma:

6.2. Lemma. Suppose Π is a strongly continuous * -representation of a barrelled
* -algebra 91 on a dense domain @π in a Hilbert space J^π. If Π is any extension of
Π to a * -representation of 91 on domain &fiC34fn = J4fn, then Π is also strongly
continuous.

Proof. Since 91 is barrelled, we have only to show that the absolutely convex,
absorbing set

{A\\\Π(A)φ\\^l}

is closed in 91 for every φ e £%. Now, since 3)u is dense in Jf# we have

\\Π(A)φ\\= sup \(

If Aa-+A is a converging net in 91 with ||77(,4α)φ|| ̂  1 for all AΛ, then also

for all ψ e £&π, \\ψ\\ ̂  1, so

|<V, Π(A)φy\ = \<Π(A*)φ9 φy\ = lίm \<Π(A*)ψ9 φ>\ ̂

Taking the supremum over ψ yields ||/7(^4)<p|| ̂  1.

6.3. Corollary, If 91 is α barrelled * -algebra, then the closure Π of a continuous
* -representation Π is also continuous.

Proof. This follows from 6.2 because the closure of a * -representation is also
a * -representation, cf. [1] Lemma 2.6.

Because of this last result and Theorem 6.1 we may consider the algebra j/0

as a continuous representation of the symmetric tensor algebra over ίf. We define
the topology of j/0 as the corresponding quotient topology.

The decomposition theories of si and J3/0 are related by the following theorem,
which is similar to theorem 3 in [13].

6.4. Theorem, (i) Every b e (j/, 9)'w commutes with the representation of the
Poincare group and therefore with P0.

(ii) Let ϋ^^(stf, 9) denote the order interval O^fc^l in the weak commutant
(si, 9)n and let £?0 denote the convex cone generated by elements of the form
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P0/l(/* x/)P0 in ̂ o The restriction map

defines a homeomorphism (i.e. a topological bijection) i^^(j/, $)->^ (j3/0,^0, 50)
both sets are furnished with the weak operator topology.

Proof. For (i) we refer to [14] Theorem 4.
(ii) Suppose b e 14^ \ . Since b commutes with P0 and weakly with A, b commutes

also weakly with j/0 If 40 = P04(/*x/)P0, then <φ,M0φ>-</l(/)φ,M(/)φ>
for φ e $0, so bA0 ^0 and (1 - b)A0 ^0 on 50. Moreover, b is uniquely determined
by its restriction to Jjfθ9 for ^0C^fo is cyclic for #/ and therefore separating for
the weak commutant. The map 6κ>ft0 is weakly continuous and ϋ^l is weakly
compact, so it remains only to show that every b0 e ^J" is the restriction of some
bei^l. Now, the right hand side of

is a well defined bilinear form in the vectors A(J)φ ana A(g)ψ, φ,ψ€$0. Indeed,
it vanishes if A(g)ψ = Q and also if A(jf)φ = Q, because b0 commutes with J3/0 so
the right hand side is also equal to <P0;4(#*+/)φ, b0ψy. Both bQ and (1 — b0)
are strongly positive with respect to ̂ 0. Therefore, the bilinear form is bounded
by 0 and 1 so it is given by a bounded operator b with O^fo^l. By definition,
this operator commutes weakly with j/, so it leaves Jjf0 invariant. Finally,
bQ = bl^ follows from the equality <φ, bip) = (φ, b0ψ) for φ,ψe90 because 50

is dense in Jf 0 according to theorem 6.1. (i).

6.5. Remark. Theorem 6.4 stays true if θ is replaced by 2 and $0 by ̂ 0 : = lin.
span ^0^o> because ^CSC^, so ir"ϊ(*/,9)=if"ϊ(s/92) and ^(^0,&0) =

It is not difficult to infer from Theorem 6.4 that the regular induced extensions
(X, Jϊ, 2ι} of (sέ, Θ) are in a one-to-one correspondence with regular ^0-positive
induced extensions (j/0, M^ @Q) of (j3/0, ®0) in the following sense: The Hubert
space ^(&o) is canonically embedded in ^(β) as the space of invariant vectors9

and the following diagram commutes:

e l I βo

where the horizontal arrows stand for the restriction of the operator on
resp. jtfψϊ) to ̂ (^o) resP ^(^o)and Q resP ^o are the mappings (j/, J)^(j
resp. (j/o, ®0)^(j/0, ®0)^ defined as in lemma 2.6. (i). The restriction maps are
ultraweakiy continuous isomorphisms and since the extensions are regular, also
the vertical arrows stand for bijective mappings which are homeomorphisms for
the weak topology when restricted to the unit balls Jίv resp. pf0)ι We do not

9 i.e. invariant under the extended representation Φ of the Poincare group on 3tf(β) which is
defined in the following way: If g-*U(g) is the representation on 3^(β\ then $(g)mφ: — mU(g)φ for
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write down a formal proof of these statements, since they are not essential for
theorem 6.6.
Since we want to apply the results of section 4 we now assume there is at least
one cyclic vector ΩeJ^0 and define <$ = s/Ω and @0 = £/0Ω.LQϊ W denote the
Wightman state defined by Ω and W0 the corresponding state on j/0.

6.6. Theorem. The following statements are equivalent :
(i) W has a weak integral decomposition

with A,dμ as in theorem 4.1, and Wλ a Wightman state with cluster property for
almost all λ.

(ii) WQ has a weak integral decomposition

A, dμ as above and Woλ a ^0-positive character for almost all λ.
(iii) W0 is positive on &(&'<? \ defined as in Lemma 4.4.

Proof. The equivalence of (ii) and (iii) follows from Theorem 4.1. The equiva-
lence of (i) and (ii) should be fairly clear from the consideration above, but can
also be shown directly as follows: Given a decomposition of W0 into ^-positive
character we define

W ^ i s a positive linear functional and $Wλ(f)dμλ=W0(A0(f))=W(f). Every
decomposition of W into states is a decomposition into Wightman states, so we have
only to check the cluster property. For any /,_# we have

Wλ(J)Wλ(g)= W0λ(AQ(f})Woλ(A0(g)) = W0λ(A0(f)A0(g))

because Woλ is a character on s/0. Let λ-^m(λ) be any bounded measurable
function on A corresponding to an operator m e (j/, &)'w.lϊae 1R4 is any translation,
we have

Ω, mA(g(a))Ωy

Since weak lim A(g{a})Ω = A0(g)Ω and m commutes with P0, this vanishes
a— >oo

for all m. By the estimate (ii) (c) in Theorem 4.1 and since

\Wλ(J x^{a))|^ Wλ(f* x/)1/2 Wλ(g* xβY'2 ,

we may interchange limes and integral and obtain

lim Wλ(f x jf{a}) = Wλ(f)WJg) a.e.
α— »oo

To get a null set independent of/ andg we appeal to separability (or nuclearity)
of £".

The other direction (i)=>(ii) is obvious since a decomposition of W into clu-
stering states implies a diagonalization of P0 .
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