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Abstract. We study automorphisms of the CAR algebra which map the family of gauge-invariant,
quasi-free states of the CAR algebra onto itself and show (Theorem 3.1) that they are one-particle
automorphisms.

1. Introduction

The problem discussed in this paper arose from questions regarding equi-
librium states of thermodynamical systems. Equilibrium states have been
extensively discussed in the framework of C*-algebras of observables (see, for
example [6, 15]). Such states are labeled by a very small number of parameters.
For example, in the case of a gas of identical particles, the equilibrium states are
labeled by the temperature, the chemical potential, and the average velocity of the
particles - quantities which relate directly with the conserved quantities - energy,
particle number, and total momentum. Since conserved quantities are in one-one
correspondence with one-parameter groups of transformations which leave the
Hamiltonian invariant, we can describe the situation in a way which remains
meaningful for infinite systems. Equilibrium states of thermodynamical systems
are labeled by a very small number of parameters which relate directly with one-
parameter, automorphism groups of the observable algebra that commute with the
time-evolution automorphisms. The fact that there are so few parameters involved,
which is related to the fact that there are only a small number of one-parameter
groups of automorphisms that commute with the time-evolution, is an aspect of the
ergodic nature of most large physical systems. A proof based on the dynamics
of the system is still lacking, even though Sinai has obtained very interesting
results in this direction for a classical system of N hard spheres.

Systems of particles without interaction do not behave ergodically in the above
sense. This does not mean, however, that systems of noninteracting particles are
uninteresting from the point of view of ergodicity. In [7, 8], the asymptotic time
behavior of the free Fermi gas is discussed. It is found in [7] that, for increasing
time, primary states of the CAR algebra are asymptotic to gauge-invariant,
quasi-free states, provided these states satisfy a certain clustering property. In
particular, primary, stationary (i.e. time-invariant) states with that clustering
property are quasi-free. Quasi-free states [1-5, 9-14, 16, 17] are particularly
simple states in the sense that they lack all except two-point correlations. Some
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basic facts about gauge-invariant, quasi-free states are given in Section 2. These
states are in one-one correspondence with positive operators in the unit ball,
the so-called one-particle operators, acting on the one-particle Hubert space Jf.
Stationary, quasi-free states of the free fermions are not labeled by a finite number
of parameters, as in the interacting case, but by one-particle operators that com-
mute with the Hamiltonian

H( = -(h2/2m) (d2/dx2 + 32/dy2 + d2/dz2) = -(h2βm)Δ).

In particular, all operators of the form, f(hd/idx, hd/idy,hd/iδz) with / positive
and having essential supremum 1, define translationally-invariant, stationary
states of the free fermion system. In this case, f(Pi,p2>P3) is the momentum
distribution of the particles.

The free fermion system is of particular interest to us because, as noted before,
the set of all primary states that satisfy a certain clustering property is known.
It is a subset of the gauge-invariant, quasi-free states. This result is an important
tool in determining the automorphisms that commute with the free-time evolution.
Since a clustering property that is somewhat stronger than that which holds for
all primary states may well be a condition one must impose upon a physically
meaningful state, we shall restrict our considerations to those automorphisms of
the CAR algebra whose transposes preserve this property. Let α be such an
automorphism that, in addition, commutes with the free-time evolution. Its
transpose maps the set of stationary, quasi-free states, that satisfy the clustering
property, onto itself. What can one conclude about α?

Before attempting to solve this problem, one is faced with a more primitive
question. What can be said about an automorphism α of the CAR algebra whose
transpose maps the set of quasi-free states (or a certain subset of it) onto itself?
Our main result (Theorem 3.1) states that, when the transpose leaves the set of
gauge-invariant, quasi-free states stable, then, either the Fock state is mapped
onto itself and there is a unitary operator U on Jf, such that a(a(f)) = a(Uf),
or the Fock state is mapped onto the anti-Fock state and there is a conjugate-
unitary operator W on Jf, such that α(α(/)) = a(W'/)*, where a(f) is the annihila-
tion operator on Fock space.

A related result is stated in Theorem 4.1. A unitary operator on one-particle
space defines, in an obvious manner, a unitary operator on π-particle space.
Theorem 4.1 characterizes such unitary operators on n-particle space as those
which map anti-symmetrized products of one-particle wave functions (product
vectors) onto product vectors.

Section 2 is devoted to notation and a number of preliminary results, which
are used throughout the paper. The main theorem is proven in Section 3; and
Section 4 contains some related results.

2. Some Preliminaries

An infinite system of identical Fermi particles can be represented, insofar as
their algebraic interrelations are concerned, by a C*-algebra, 91, the so-called CAR
algebra. The abstract algebra 21 may be characterized as the norm closure (comple-
tion) of an algebra generated by a countably-infinite family of pair wise-commuting,
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self-adjoint algebras each isomorphic to the algebra of 2 x 2 complex matrices
and each containing the unit, /, of 91. Each ^-representation of 91 gives rise to a
representation of the canonical anticommutation relations (CAR), and conversely.

For our purposes, it is more useful to describe 91 in its Fock representation.
With J4? a complex Hubert space and j ^ n the rc-fold tensor product, so that, for
xί9...,xn9yl9...9yn in J T , (x^--®χn\y1®- (g)yn> = <χί\y1)- '<χn\yn>, let

S~ be the projection operator on j ^ n which assigns—rXz(σ)xσ ( 1 )®•• ®x σ ( π )
Yl . σ

to xx ® ® xn, where σ is a permutation of {1,..., n} and χ(σ) is + 1 if σ is even,
— 1 if σ is odd. The range of S~ is the space 3tf$a) of antisymmetric tensors. We write
XjΛ Λ ^ for (n\)1/2S~(x1®--<3)xt) (the "antisymmetrized, n-particle state
with wave functions x l 9 ...,x^). We have:

Thus, assuming x 1 Λ Λx n and yx A ••• /\yn are not 0, they are orthogonal if

and only if there are scalars c 1 ? ..., cn, not all 0, such that

0= Σ <cixi\yj)=( Σ cixi\yj
i = l \ ί = 1

that is, if and only if the space, [x 1 ? ...,.xj, generated by x 1 ? ...,xn, contains a
non-zero vector (ΣcfXf) orthogonal to [ j ; l 5 . . . , y j . If, in addition, the intersection,
[xi,..., xw] n ! > ! , . . . , yJ , of the spaces [x1,..., x J and [^,..., y J has dimension
n — 1 (in this case, we say that the spaces are "perpendicular"), the projections with
ranges [x l 5 . . . ,xj and [y l 5 . . .,yj commute. It follows that {eiί Λ ••• Λeίn} is an
orthonormal basis for J^n

(a) if {ej is an orthonormal basis for Jf. Moreover,
x1 A ••• Λxn = 0 if and only if x 1 ? . . .,xπ are linearly dependent (if and only if
[x l 5 . . . ,xj has dimension less than n). Thus ze [x l 9 . . . ,x j , if zΛ xx Λ ••• Λxtt = 0
and xx Λ Λ xn Φ 0. From this, if xί A Λ xn = y1 A Λ yn + 0, then [xx,..., x j
= [)Ί» . 9 y J On the other hand, if [x 1 ? . . . ,xj = [y1 ? . . . ,yj, then, expressing
each ̂  as a linear combination of x x, ..., xn, we see that xx Λ Λ xn a.nάy1 A Λ yn

are scalar multiples of one another. We say that xx Λ Λ xn is a product vector -
the exterior (or, wedge) product of x l 5 . . . , xπ.

OO

The antisymmetric Fock space, Jf£°, is Σ © ̂ ( α ) BY definition Jf^α) consists
n = 0

of complex scalar multiples of a single (unit) vector Φ o, the Fock vacuum; and
Jfi(fl) is 3f. If J f were finite dimensional, Jf^fl) would be the (finite-dimensional)
"exterior" algebra over #?. The mapping, Λ, from the n-fold Cartesian product
Jf x ••• x tf to Jfjfl) which assigns x 1 Λ ΛxH to (xu ...,xn) is an alternating,
^-linear mapping. If a is such a mapping of Jf7 x x Jf7 into a space Jf, there is a
mapping a oϊ^a) into JΓ such that ά = ά° A. In particular if Γ is a linear mapping
of J f into JΓ then (xx,..., xn) -• Tx x Λ Λ Txn is an alternating rc-linear mapping
of J^x x J f into J^ ( f l ); so that there is a linear mapping f of J f | ° into JΓj?} such
t h a t f (xx A--- Axn)= Txί Λ Λ TxM. If Tis a unitary transformation of J f onto Jf,
metric considerations apply and f is a unitary transformation of Jfjrfl) onto JΓjrfl).
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If | | 7 J ^ 1 , JT = J f © ^ , / = / θ / , P{x,y) = (x,0), and Q(u, v) = (w,0\ with
x, 3; in Jf and u, v in X , then there is a unitary transformation U oϊjft onto JΓ such
that QUP(x9y) = (Tx,0) for all x,y in J-f. Then t/ is a unitary transformation of
# π

( α | onto £n

{a) and β is a projection of £n

{a) onto JfM

(α). Since f is the restriction
of QU to J^(fl), we see that | |T| | rg 1. If T is a positive operator with pure point
spectrum, computing norms with a basis of eigenvectors for T, we find that
II fl J^(f l) | | =λί- λn, where λ1,..., λn are the n largest eigenvalues of Γ (multiplicity
included). An approximation argument provides the corresponding result for a
general positive operator; and polar decomposition provides a norm formula
for a general bounded operator. A simple check yields (T)* = f*.

Since (f1 , . . . ,/„)->/ Λ / x Λ Λ /„ is an alternating, π-linear mapping,
there is a linear mapping, an(f)*9 of ̂ a ) into J ^ with value / Λ fγ A ••• Λ /„
at Λ Λ ••• Λ /„. The family {an(f)*} defines a mapping α(/)* on ̂ \ With {ef}
an orthonormal basis for 3tfΊa(eγ)* maps {eiχ A - Aein:ίφ {/1,...,iw},n = 0, 1,2,...}
onto an orthonormal basis for the orthogonal complement, j^^Qjf; and
α ^ ) * annihilates this complement. Thus a(ex)* is a partial isometry with initial
space Jf and final space JίT^QJίT. It follows that / = α(e1)*α(e1) + α(e1)α(e1)*
(={fl(e1),α(e1)*} + ). More generally α(/)α(/)* + α(/)*α(/) = < / | / > J . Polariza-
tion of this yields: {a(f),a(g)*}+=(f\gyi. We note that our inner product,
</|g>, is linear in g and conjugate linear in /. We have {a(f)*,a(g)*}+ =0, as
well. A conjugate-linear mapping f-+a(f) of Jf onto operators a{f) on a Hubert
space satisfying the relations (canonical anticommutation relations)

{a(f),a{g)*}+=<f\g>I, {a(f)9 a(g)}+ =0

is said to be a representation of the CAR. The particular representation we have
exhibited on ̂ fj?} is called the Fock representation.

We can exhibit the annihilator a(f) as explicitly as we described the creator
a(f)* by expanding the determinant expression for </ Λ y2 A Λ yn \ xγ A Λ xn}
in terms of its first row:

<fAy2A'-Άyn\x1A-'-Axny

so that n

α ( / ) ( x 1 Λ - . Λ x I I ) = Σ ( - i y +

j j J

j=i

With E a projection on Jf, we denote by 2lo(iϊ) and 2ί(£) the *-algebra and
C*-algebra, respectively, on jTJτα) generated by {a(f) : £ / = /}. We write 9I0 and 91
in place of 9I0(/) and 91(7). The C*-algebra 9ί is the CAR algebra and its action on
J fjrfl) is called its Fock representation. The state φ0 of 91 for which φo(A) = <Φ01 AΦ0>
is called the Focfc (vacuum) state of 21. Note that each α(/) is in its left kernel
Jf (</>o(α(/)*α(/)) = 0); so that each product of annihilators and creators (mono-
mial) in which an annihilator appears to the right is in jf*. Now each monomial
is a sum of monomials in which all creators are to the left of all annihilators (we say
that such a monomial is Wick-ordered - and anti-Wick-ordered if all creators are to
the right of all annihilators); so that φ0 annihilates all Wick-ordered monomials
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in 2I0 other than /. These monomials span the null space of φ0 on 2ΪO. If ρ is a
state of 21 and ρ ̂  2φ0, then a(f) is in the left kernel of ρ. Thus ρ and φ0 have the
same null space in 2ί0 and agree at /. Hence ρ = φ0', and φ0 is a pure state of 21.
Exactly the same considerations apply to the restriction of φ0 to 2I(£), for each
projection E on Jf. Thus the restriction of φ0 to 2I(£) is pure.

The Hubert space Jf, obtained from Jf by assigning an element / to each /
in Jf, defining (cf + g) to be cf +g and (f\g) to be <#|/>, produces #jrα),
anti-Fock space, and φ 0 is the anti-Fock vacuum. The mapping /-»α(/)* ( = α(/))
is a representation of the CAR (over Jf), the anti-Fock representation; and the
mapping α(/) -• a(f) extends to a ^-isomorphism, A-^A, of the CAR algebra 21
over Jf onto the CAR algebra 2ί over Jf . The state φι of 21 defined by
A-^(Φ0\AΦ0} is the anti-Fock state of 21. Each α(/)* is in the left kernel of φj;
so that, replacing a(f) by α(/)* and using anti-Wick-ordered monomials instead
of Wick-ordered monomials in the argument above, we have that the restriction
of φj to each 2I(E) is pure.

Since φ0 is pure and Φo is cyclic for 2ί, the weak-operator closure, 21 ~, of 2ί,
is ^(Jfjrfl)), the algebra of all bounded operators on Jfj?}. Similarly 2I(£)~£0

= ^([2Ϊ(£)ΦO]), where Eo is the projection (in 2l(£)') with range [2I(£)Φ0]. If [7£

is (Γ^2E), then UEΦ0 = Φ0, a{g)UE=UEa(g), for each # in (J-£)(«^), and
a(f)UE = — UEa(f\ for each / in E(J4?). If Ao is an even monomial in 2lo(J — £)
(that is, Ao is the product of an even total number of annihilators and creators)
and Aί is an odd monomial in 2I0(7 — £), then Ao and A1UE lie in 2I(£)'. Since
2I0(£) and 2lo(/ - E) generate 2t0 and Φo is cyclic for 2l0

Thus Eo has central carrier / in 2I(£)~; and the mapping ί̂  of 2I(£)"£0 onto
2ί(£)~ which assigns 4̂ to AE0 is a ^-isomorphism.

Now, a(f)Φo=0 and, when £ / = 0, α(/) (2I0(E)Φ0) = (0). Thus a(f)E0=0
and JBoα(/)* = 0, when Ef = 0; so that E0AE0 = λE0 when A is in 2ί o (/-£).
It follows that B->E0BE0 is a (completely-) positive, linear mapping of ^(J^α ))
onto 2I(£)~£0. The composition of this mapping with ιE is a completely-positive,
linear mapping, ψE, of ^pfjrfl)) onto 2I(£)~. By construction of ip£,

More generally:

Proposition 2.1. // Γ is α Zm^αr transformation of one Hilbert space, Jf, into

another, 3f, and \\T\\ ^ 1, ίte/t ίte mapping

a(xnr..M(xira(y1)..M(ym)-+a(Txn)*...a(Txί)*a(Ty1)...a(Tym)

extends (uniquely) to a completely-positive, linear mapping ψτ of the CAR algebra,
21^, over Jf into the CAR algebra, 21^, o^r Jf.

Proo/. lϊ £ = J?®J4?,^jf = jr®jr, P{h,hf) = (h,0) for Λ,Λ' in JT, β(k,/cr)
= (fe, 0) for k, k! in JΓ, and f(h, h') = (Th, 0), then there is a unitary transformation
U ofjfi onto Jf" such that Q UP = f. The mapping a(f)->a(U f) extends, uniquely,
to a ^-isomorphism of 2ίj& onto 21^. The composition of the restriction of this
isomorphism to 2Iĵ (P) and ψQ is ψτ.
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We note that the characterization of ψτ as the result of distributing T throughout
a Wick-ordered monomial is independent of the ordering only if Tis an isometry;
for Ψτ(a(f)a(f)*) = ψτ(I - α(/)*α(/)) = / - a(Tf)*a(Tf) Φa(Tf)a(Tff, when
| |/ | | = 1, unless <T/|Γ/> = 1.

If A € ̂ p f ) and 0 _ A ^ /, we call φ, ° ψΛi the gauge-invariant, quasi-free state
of 91 with one-particle operator A. We write φA for this state and note that there
is no conflict between this notation and the designation of the Fock and anti-Fock
states of by φ0 and φ, (i.e. these states are quasi-free with one-particle operators 0
and /, respectively). Note that

φA{a{fn)*-a{fίra{g1)...a{gn))

= detKΛ*/i I A*gj» =

= det«ίjfί IA/;» = <<?! Λ -Λgn\Afi Λ - Λ Afn> .

Proposition 2.2. If E is a finite-dimensional projection on Jf with {eγ,..., en} an
orthonormal basis for E(JΊP), then φE{T) = (e1 A Λ en | T{e1 Λ Λ en)}.

Proof Let {βj} be an orthonormal basis for Jf, and T be a Wick-ordered
monomial in annihilators and creators corresponding to basis elements. Then
(eίA~ Aen\T(e1A '/\eJ> is 0 unless T has the form a{eiσim)*...a(eiσ{i)*

. a(eiy..a(eij, with {ix...., im} an m-element subset of {1,..., n}, in which case its
value and that oϊφE(T) is χ(σ). If Γdoes not have this form ψE(T) = 0, so φE(T) = 0.
Thus our equality holds.

If follows that φE is pure when E is a finite-dimensional projection on Jf7.
More generally, if E is any orthogonal projection on jtf* and ρ is a state of 91 such
that ρ^2φE then the restrictions of ρ to 9I(£) and 21(7 — E) coincide with those
of φI and φ0, respectively. Using the fact that monomials A and A' in Vίo(E) and
$lo(I — E\ respectively, commute or anti-commute and that Wick-ordered
monomials are in the left or right kernels of φ0 while anti-Wick ordered monomials
are in the left or right kernels of φj, (other than cl, c Φ 0), we conclude that ρ(AAf)
= ρ(A)ρ(A'). The same is true for A in 2Ϊ(£) and A in 21(7 — E). Thus ρ = φE and
φE is pure.

If 0^A0SI with Ao( + Al) in gt(2tf\ using the Spectral Theorem, there is a
one-dimensional projection Eγ on J f and a positive number t such that 0 :g y4x g 7
and 0 ̂  v42 ̂  7, where 4̂X = Ao + tEί and ,42

 = ^o ~~ ^ i Computing with an
orthonormal basis {e3) for j f such that E x ex = βx, we have that φAo = \{φAχ + φA2).
To see this, note that

φΛM
eU* ''a(eiι)*a(ejι)...a(ejr))

= (ejί A ••• Λ ejn\Akeh A ••• Λ Akein) ,

where fc = 0, 1, 2; and that >loe7. = >l1eiy = y42eJ , when j φ 1. Thus φA is pure if and
only if A is a projection.

From the foregoing, if £ is a finite-dimensional projection, φE is a pure, gauge-
invariant, quasi-free state equivalent to the Fock state. Conversely, if E is a projec-
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tion on one-particle space 2tf and φE is equivalent to the Fock state, then £ is a
finite-dimensional projection. This follows as a special case of [12; Theorem 2.8].
A direct proof is not difficult. If φE = ωx\% for some unit vector x of JfJα), then
1 = φE(a(e^*a(ejj) = ωx(a(e])*a(e])\ where {βj} is an orthonormal basis for
Thus a(ej)*x = 0, for each/ If

X = Σ C i ί . . i n ; j l . . . j m

e i l Λ '•• Λ β i n Λ e h Λ ••• A e'jrn '

where {e)} is an orthonormal basis for (/ — E) (#P), then

0 = Λ (^ . )*χ= ΣCi^^j^^ejA eh Λ Λ ^ Λ ^ Λ Λ e}m

so that j e {/1? ...,/„} unless C;1...ΐn;j1...7m = 0. If E(J4?) is infinite-dimensional, we
can choose j not in [iί,..., /„} and x = 0, contradicting the assumption that x is a
unit vector. Thus E is a finite-dimensional projection.

3. Automorphisms Preserving Gauge-Invariant, Quasi-Free States

Our main result is contained in the following theorem.

Theorem 3.1. 7/91 /s the CAR algebra in its Fock representation on the complex
Hilbert space Jfjrfl) of antisymmetric tensors over J^ and a is an automorphism of 91
whose transpose ά carries the set of gauge-invariant, quasi-free states onto itself
then, either the Fock state is mapped onto itself by ά and there is a unitary operator U
on jf7 such that a(a(f)) = a(Uf), or the Fock state is mapped onto the anti-Fock
state by ά and there is a conjugate-linear, unitary operator W on J f such that
<*(a(f)) = a(Wf)*.

The proof of Theorem 3.1 will be effected with the aid of the following results
(3.2-3.13). During its course, we will note, in the case where ά(φo) = φo, that U
implements α (see Section 2).

Lemma 3.2. The image of φ0 under ά is either φ0 or φj.

Proof Since &(φ0) is pure and, by assumption, a quasi-free, gauge-invariant
state of 91; oc(φo) = φEo, for some projection Eo on Jf (see Section 2). If π is the
representation of 91 on J^π determined by φFo, then the mapping
ΛΦo-^π(a~1(Λ))xEo, where xEo is a unit vector in J^π such that φEo{Λ)

= (χEo\
π(A)xEoy f° r a ^ A in 9ί, extends to a unitary transformation U of ifjrfl)

onto Jtπ. lϊE0 is neither 0 nor /, there is a unit vector/in E0(Jή?) and a unit vector g
orthogonal to E0(3Ί?). We shall arrive at a contradiction from this assumption,
so that Eo is either 0 or 7 and &(φ0) is either the Fock or anti-Fock state.

If E1 is the projection on J f with {x: <x |/> = 0 , Eox = x} as range then

ΦEO(Λ) = φEί(a(f)Mfn for φEMf)Φ)Φ)*a(f)*) = °> w h e n E,h = h or when
h = f; and 0£l(α(/)α(fc)*α(fc)α(/)*) = ψ£l(α(/)α(/)*α(fc)*α(fc)) = O, when Eok = 0.
Thus φEl is equivalent to φEo; and there is a vector xEi in Jfπ such that φEl(Λ)
= (xEι\π(A)xEί}. Similarly, if E2 is the projection on 3tf with range generated
by Eγ{$?) and g, then φE2(Λ) = φEί(a(g)Aa(g)*), for all 4̂ in 91; and there is a vector
xE2 in Jfπ such that φE2{A) = {x
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Since π is irreducible, xEl = c2π(a(g)*)xEί, and, similarly, xEo = c0π(a(f)*)xEl,
where c 0 and c2 are scalars of modulus 1. Now,

2'HXEO + *E2) = π(α(2-*(c 0 / + c2g))*)xEι( = xF) I

so that φF(Λ) = (xF\π(A)xFy, for all A in 21, where F is the projection on J f with
range generated by E^Jί?) and cof + c2g. If t/Xx = xF and Ux2 = xEl then, since
UΦo = xEo, Φ 0 + x2 = 2±x1. Noting that UAU'1 =π(oc~i(A)\ for each X in 9ί,
we have <x 2 |Λx 2> = <xEl\ UAU'xxE2y = <xE2\π(Λ'1(Λ))xE2> = ΦE2^'1(A)\ Sim-
ilarly (x1\Axi) = φF(oc-1(A)) and (Φ0\AΦ0} = φEo((χ-1(A)). Thus ω J 2 l and
ωX2191 are pure, gauge-invariant, quasi-free states which transform under ά into
φF and φEl. Since φF and φ £ 2 are equivalent to φEo, ωXί |9I and ωX 2 |9I are equiva-
lent to φ 0 . From Proposition 2.2, x1 and x2 are product vectors in JfJfl). But
Φo + *2 = 2*x l 5 and each product vector lies in an n-particle space. Thus xί and
x2 are multiples of Φ o and φEi = φ0, contrary to the choice of E2 different from 0.

In case &(φ0) = φj9 6tf(φ0) = φ0, where α' = a ° σ and σ(a(f)) = a(Wof)* with Wo

a conjugate-unitary operator on Jf7 (obtained, for example, by transforming each
linear combination of elements in an orthonormal basis for Jf7 into the linear
combination resulting from replacing each coefficient by its complex-conjugate).
Since σ determines an automorphism of 91 which interchanges the Fock and anti-
Fock states and which maps the set of gauge-invariant, quasi-free states onto
itself; ά' maps the set of gauge-invariant, quasi-free states onto itself. If we prove
that there is a unitary operator Uo on #f such that <x>'(a(f)) = a(U0 f), then
*(a(Wof)*) = a{Uof), and α(α(/)) = α(l70W?/)*, with W the conjugate-unitary
operator Uo W$ on Jf.

We assume, henceforth, that a(φQ) = φ0 and use the notation of Theorem 3.1
throughout the remainder of this section. With this assumption, U, constructed
in Lemma 3.2, is a unitary operator on Jίf^ which carries product vectors onto
product vectors. Although the components of the argument proving that are to be
found in the proof of Lemma 3.2, we make the statement and proof explicit in
Lemma 3.3. Note that the automorphism σ, above, is a special case of the larger
class of Bogoliubov transformations. In Section 2, we introduced the notation f
to denote a certain transformation on 34?^ arising from T defined on Jf. In
Lemma 3.3 and the results following, we construct a unitary operator U on ^J~°.
We will eventually locate a unitary operator ί/on Jf for which U is the transfor-
mation on Jfjrα) arising from it - justifying this notation.

Lemma 3.3. There is a unitary operator U on J^jrfl) which implements a and maps
product vectors onto product vectors.

Proof. Since ά(φo) = φo, the mapping AΦ0-^a(A)Φ0 extends to a unitary
operator V on jfj?> such that UAU* = aι(A). We show that U(x1 Λ ••• Axn) is a
product vector, for all x l 5 ..., xn in Jf. Since xί A Λ xn is a scalar multiple of the
wedge-product of an orthonormal set of vectors (a basis for [x l 5 . . . ,x j , when
xx Λ ••• Λ xΠ=f=O), we may assume that {xί9..., xn} is an orthonormal set. If Eo is
the projection with range [x l 5 . . . , x j , φEo = ωXl Λ ...ΛXn, from Proposition 2.2. As
α is implemented by a unitary operator on Jf^α), oc(φEo) is a vector state of 9ί. By
assumption, όc(φEo) is a gauge-invariant quasi-free state of 91 (equivalent to φ0,
from the preceding remark). Thus oί(φEo) = ωyί A...Ay |9l where yι A -• Aym

= ϋ*(xiA >-Axn).
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A linear transformation (such as U9 above) which is defined on a subspace of
J)fjrfl) and maps product vectors onto product vectors will be said to be a product
linear transformation (or product unitary, etc.).

Lemma 3.4. The intersection of an infinite, commuting family of m-dimensional
projections each pair of which has m-ί dimensional intersection is m-ί dimensional

Proof Since each projection is m-dimensional, each is the sum of m one-
dimensional projections. Since the family is commutative, we can find an orthogo-
nal set of one-dimensional projections such that each projection of our commuting
family is the sum of m of them. In this way, our problem reduces to showing that if
S = \J Sa where {Sa} is an infinite family of sets each of which has m elements

a

and such that each pair has intersection with m-1 elements, then f] Sa has m-ί
a

elements (in other words, each Sc contains SanSb, when a φ b). Suppose Sc does not
contain SanSb. Then SanSc and SbnSc are distinct m-1 element sets; so that their
union has at least m elements. As this union is contained in Sc it coincides with Sc

and ScQSauSb. By the same token, with c + d, Sd does not contain both Sa n Sc and
'SbnSc; so that Sd is contained in either SaκjSc or SbvSc. But this contradicts the
assumption that {Sa}, and, hence, u 5 f l are infinite.

Proposition 3.5. // V is an isometric, linear mapping of an infinite-dimensional
subspace ^ of ^ onto a set of product vectors in J^a\ then f] [ F x ] has dimen-
sion m-1. ([Fx] is the subspace of H determined by Fx.)

Proof'. With {βj} an orthonormal basis for Jf, Veί=xί A - Axm9

Vei= y\ Λ Λ ym9 and V(e1 + e2) = z1 A Λ zm9 we have

Some Zj, say z 1 ? is not in [ x 1 ? . . . , x m ] . Thus z1 Axί A - AxmAyj = 0; and
b>i> •• >) ;m]£l>i>Xi> . oX m ] . s i n c e Veγ and Ve2 are not 0, [ x l 5 . . . , x j and
Lyi9 J yml a r e ^-dimensional subspaces oϊ[zί,xί9..., x w ] , a space of dimension
m + 1. Thus [ x l 5 . . . , ^ m ] n C ) ; i 5 •• ?J;m] has dimension at least m— 1; and

Ve1=xAv1 A ••• Avm_l9 Ve2 = yAv1 A- Aυm_ί9

with {x, v 1,..., vm _ x} and {y9 υ 1,..., vm _ x} orthonormal sets. In addition,
0 = < F β 1 | F β 2 > = <x|>;>det«ί;I | i; j» = <x|^>. Hence, E1 and £ 2 commute,
where Ej is the orthogonal projection on J f with range [Fej]. Thus {£,} is an
infinite, commuting family of projections on J f such that EjEk(J^) has dimension
m— 1 when j + fc. From Lemma 3.4, P) Ejffl) has dimension m— 1.

Lemma 3.6. // V is a product isometry of J^ ( f l ) into ^fj?}, with JΓ α subspace
of &?, ί/ieπ F /zαs rαn̂ f̂  m som^ J^ α ) . If n^m and Jf is infinite dimensional then
[_V(xι A Λ xj] π [F(y 1 Λ Λ yj] has dimension at least m — n.

Proof. If {ej} is an orthonormal basis for Jf and {il9...9it}9 {/U JΛ} are
disjoint sets of indices,



190 N. M. Hugenholtz and R. V. Kadison

Replacing V(eh A ••• Λ eit A ekt + 1 Λ ••• Λ e j b y V{ehAei2 A -ΆeitAekt+1A . AeJ
in the preceding computation, it follows that both (product) vectors lie in the same
space ^ a ) as V{{eiχ + e j Λe J 2Λ Λ e ί t Λ ^ t + i Λ Λ e J does. Applying this
result to successive replacements of i2, i3, ...,it by j2j3, -..,jt9 one concludes that
V(eh A ••• Λ ejt A ekt + 1 A ••• Λ ekj lies in ^ \ Thus F maps Jfn

{a) into J^ f l ), since
{etί A ••• Λ e t j is an orthonormal basis for ^ a ) .

Since [x2, . . . ,xj has dimension n— 1, its orthogonal complement and
D Ί J •••'};n] a r e n o t disjoint. Let zA be a unit vector in their intersection. Then
[_V(z1 Λx 2 Λ AxJ]n[V(xί A ••• ΛxJ] has dimension at least m— 1, from
Proposition 3.5; for x->F(xΛx 2 Λ ΛxJ is an isometric linear mapping of
^ θ [ * 2 > •••>*«] onto a set of product vectors in J ί ^ ^ L e t z2 be a unit vector in
D>i> "->yΔ orthogonal to [ z 1 } x 3 , . . . ,x j . Then

[ F ( z 1 Λ x 2 Λ Λ x / ί ) ] n [ F ( z 1 Λ z 2 Λ x 3 Λ Λx,1)]

has dimension at least m — 1 so that its intersection with

[F(z 1 Ax2 A -ΛxMnlVfa A ••• ΛxJ]

has dimension at least m — 2 (both are subspaces of the m-dimensional space
[V(z1 A x2 A Λ xπ)]). Thus [ F ^ Λ z 2 Λ x 3 Λ Λ x j ] n [ F ( x x Λ Λ xn)] has
dimension at least m — 2. If we have found mutually orthogonal unit vectors
z i , . . . , z * - i in [)Ί,...,}>„] such that [V{zγ A ••• Azk_ί A xkA ••• Λ x J ] and
[ F ( x : Λ ••• Λ x j ] have an intersection of dimension at least m — k+ί, choose a
unit vector zk in [ J Ί , . . . , y j orthogonal to [ z 1 ? . . . , z k _ l 5 x f c + 1 , . . . , x j . Then
\_V(zγ A Λ z k _ ! Λ x k Λ Λ xj] and [ F ( z x Λ Λ z t Λ x k + 1 Λ Λ xπ)] have
intersection of dimension at least m — 1. Thus [ F ( z x Λ Λ zk A xk+ x Λ Λ x,,)]
and [ F ( x ! Λ ••• Λx π )] have intersection of dimension at least m—k. Finally,
z1 A-- Azn = cy1 A -•' Ayn and lV{xί A Λ xj] n [V(yi A Λ yj] has dimen-
sion at least m — n.

Lemma 3.7. For eαc/z n, 17 maps J^n

{a) onto Jt?n

{a\

Proof. F r o m Lemma 3.6, 17 maps J^ ( α ) into some JfJ[α). Since 17* satisfies the
same hypotheses as U, ί7* maps ^ α ) into JfJa) (again, from Lemma 3.6). Thus U
maps J^M

(fl) onto ^ a \ For some orthonormal sets {x1? ...,xn} and {yί9 ...,yn} in
JίT, Uix^A' - Axn) = eiA--- Aem and t ) ^ Λ ••• Λj;n) = ^ w + 1 Λ ••• Λ e 2 m , where
{e1, ...,e2m} is an orthonormal set in Jίf. lϊn^m, from Lemma 3.6,

has dimension at least m — n. Thus m^n. Applying this conclusion to U*, n^m;
so that m = n.

We denote the dimension of a (finite-dimensional) subspace E of J f by

Proposition 3.8. // V is a product isometry ofjf}a) into J^ f l ), where n^m and
is an infinite-dimensional subspace of 34?, and

d(\V{eh A • Λ βtj] n IV(eh A Λ e J ] ) = m - n

for some eiί9 ...,et , ejl9..., ^7 9 w/iere {^} is α?i orthonormal basis for Jf,

1 Without loss of generality we assume that {xί, . . . , x j and {yu ...,yn} are or thonormal sets.
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Proof. W e w r i t e Ek for [V(ekι A ••• Λ e J ] , Ekt for

lV(ekι A » . Λ e ^ Λ et A e , r + l Λ ••• Λ e j ] ,

a n d F r f o r E t n E j r I f z l i e s i n P) E f c, t h e n , w i t h x 1,..., x,,in J f , z A F ( x x Λ ••• Λ x π ) = 0 ,
k

since z Λ V(ekι Λ Λ <?kJ = 0 for all kί9 ..., &„. Hence z G \_V{X1 Λ Λ x j ] . It will
suffice to show that dίf] Eλ=m — n (equivalently, that EιnEjQEk for each k).

)\ )
Proposition 3.5 establishes our result when n=ί. Suppose we have proved it for
values less than n.

Sincex 1 Λ ••• Λ x r _ ! Λ x r + 1 Λ ••• Axn-^V(xι Λ ••• Ax, .^ Λ eirAxr+1 Λ ••• Λ x J
is an isometric, linear mapping of ( ^ θ [ ^ i r ] ) i f l - i i n t o ^ α ) ? d(Fir)^m~n+1,
from Lemma 3.6. If d(Fir)>m — n+ 1, then, since d(EjΓ\Ejίr) = m— 1 (from
Proposition 3.5 - as argued in Lemma 3.6); d(EiC\E^ >m — n, contrary to assump-
tion. Thus d(Fir) = m — n+ 1. Our inductive hypothesis applies, and dί f] Eki\
= m-n+ί. Since f] EkirQEJir; U,...,/cπ /

But / Π \ £ R r nEjQEtnEj. Thus

In particular, we have established (under the induction hypothesis) that if
d(EinEj) = m — n t h e n EinEjQEk p r o v i d e d o n e of t h e kί9...9kn is in
{iί9..., in9jl9 ...,7«}« ( I n o u r argument kr = ir).

Having proved that d(Fir) = rn — n+ 1 and EiΓ\EjQFir, it follows that Fir is
generated by EinEj and a unit vector fr orthogonal to it. Moreover {/l5..., /„}
are linearly independent. To see this, note that f] Ejt is m — 1 dimensional, from

t

Proposition 3.5, so that Ejt is generated by f] Ejt and a unit vector gt orthogonal to
P) EJt. In addition, f

Thus no £ j t is contained in the union of the others (for gt is orthogonal to that
union). Now fr is not in f] Ejt; for, otherwise fr is in Ej9 hence, in EiΓ\Ep contrary

t

to the choice of/,.. Thus fr and f] Ejt generate Ejir; so that a linear relation among
t

{/n •••' fn) would entail that some E t is contained in the union of the others. By
the same token, if Ft has dimension m — n + 1 or greater and t is not in {i1,..., in}, Ft

contains a unit vector f0 orthogonal to EtnEj and linearly independent of
{/i> •••?/«}• Recalling that Eir^EjQFt (as established before), and FtQEι (by
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definition of Ft); we see that d(£f) would exceed m. Thus d(Ft) = m — n when
tφ {il9 ...,/„}; so that EinEjQFkrQEk. (We now have that

eiί A '"SeiJ\n\V(eh A ••• Λ ^ Λ ^ r Λ e j V + l Λ •••

when fcr ^ {i l 5..., in}; and, from the first part of this proof,

since
k r £ { z 1 ? . . . , ι f V j 1 , . . . , j r - 1 ? kr> Jr

Lemma 3.9. 77ze equality,

1 Λ ... A x J l n - n C ϋ ί z ! A ••• A zπ)])

is valid for finite and infinite intersections.

Proof. We establish the assertion of the lemma, first, for the intersection
[x l 9 . . . , x j n [ z 1 ? . . . ,z j of two n-dimensional subspaces of J f. If {vί, ...,vk} is an
orthonormal basis for this intersection, changing notation, we can write
x1A"Άxn_kAvίA'"Avk and zί A ••• Λzn_fe A υί A ••• A vk in place of
xίΛ - Λxn and zx A ••• Λzπ. In Lemma 3.7 we noted that U maps J^,(α) into
Jfn

(α); so that yx A ••• Ayn_k^U(yί A ••• Λ 3̂ Π_Λ A v1 A ••• A v^ is a product
isometry of (J^θ[vu ...9vj){"lk into JfM

(α). From Lemma 3.6,

[ ί7(x 1 A. AxJ]n[ί7(z 1 A.. .Az / J )]

has dimension at least k. Applying this to U~1, we see that

l A .-. A xn)-]nlϋ(Zl A -Λzj]) = k = d(lxl9 . . . ,x jn[z l 5 ...,zj).

Let w l 5..., wr be an orthonormal basis for [ x 1 } . . . , x j n π [ z l 5 . . . ? ^ J ; and
let M19 ..., wπ_r, wi,..., w^_r be an orthonormal set of vectors in J^θ[wl9..., wj .
Then, from the preceding,

Moreover}; ! A ••• /\yn-r^U(y1 A ••• Ayn_r A wί A ••• A wr) is a product isometry
of ( J f θ E W i , . . . , w r])i f ll r into Jfn

(α). F r o m Proposition 3.8,

Thus d([U(x1 A " Λ x n ) ] n n[C/(z 1 A ••• Λ z J ] ) ^ r . Applying this to ί/"1,
we have

r = d([Xi A A xJ n n [zx A A z j)

from which our lemma follows.

Corollary 3.10. With e0 a unit vector in Jf,

d( Π [ί>(x1Λ Λ x 1 I _ 1 Λ e o m
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Lemma 3.11. For each unit vector e0 in Jήf, Ue0 lies in

ft [U(x,Λ ΛviΛe 0 )].
Xl,...,Xn- i

Proof. From Corollary 3.10, there is a unit vector f1 which generates

Now d/ Π [ t / * ^ ! Λ ••• Λ j ; π _ ! Λ fj]\ = 1, from Corollary 3.10 and

ί=d( Π [C/*ί/(x1Λ ΛxII_1Λeo)]

so that each [U*(y1 Λ ••• Λ yn_ί A fj\ contains e0. Thus

U*(yx Λ »• Λ ^ . j Λ /!) = / ! Λ - Λ y ^ Λ ^ .

Suppose / x is not a scalar multiple of Ueo(=eί). Then < / i | β 2 > φ 0 , where
e2 is a unit vector in [e l 5 / J orthogonal to e^ Let {^}J=1?2,... be an orthonormal
basis for J f and let A be #α(eo)*α(έ?o)ί7*. Then

A{f, A ej2 Λ Λ e j = Ua{e0)* a(e0) (e0 A e'h A Λ <n)

Finite sums, Σc i l J p i j l i i ι i ί f l (g i ^. f l (g j J* f l (g . , , f l (g J ί ) (=B), form a norm-
dense subset of 21. Let ε be K/Ί |e2>|/5, a n ^ choose 5 such that \\A — B\\ <ε. Then

(examining the coefficient of e2),

where c 0 is the coefficient of/ in the sum representation of B and all ex, e,- appearing
in this sum are among el9..., em_1 (so that 4̂ and all terms of B other than col
map em to 0 or a multiple of a basis element other than em)9 and

s2>\\(A-B)e2\\2^\c0 + c2;2\
2

(examining the coefficient of e2).

T h u s | c o | < ε , \c2;ι\<ε a n d \c2;2\<2ε.

The only terms in the sum for B that yield multiples of e2 A em+2 A Λ em+n

when B acts on

fi^em+2A---Aem+n
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are col, c2.Λa*(e2)a(e1\ and C2.2a*{e2)a(e2). Thus

SO that

^ K/i k2>l - kol K/i k2>l - |c2;il K/i IOI - k 2 ; 2 | K/i

a contradiction. Thus / x = c'e1 for some scalar c'.

Lemma 3.12. There is a sequence {cn} of complex scalars of modulus 1 such that
U{xι A ••• Axn) = cn(Uxι A ••• Λ Uxn), where U is the restriction of U to one-
particle space.

Proof Let {βj} be an orthonormal basis for jf. Then

for ally and n. Thus t/(^7l Λ Λ e^) and ί / ^ Λ Λ [7^ π differ by a phase factor.
Say Λ

(7^^ Λ Λ ̂ .J = c l/e^ Λ Λ ί/βjn

and ^
I7(^fl Λ ^ Λ Λ ̂  J = c' l/e^ Λ 17^.2 Λ Λ Uejn.

Writing / for {eh+eiχ)l}/2 and / ' for {ceh+c'eh)l]/2, U(f A eJ2 A ••• Λ ejn)
= Uf'AUeJ2A Ά Uejn. Since U(f A eh A Λ ̂ n ) = c" Uf A Ueh A--AUejn

and Uf — c"Uf is orthogonal to UeJ2, ...,Uejn; we have Uf =Uc"f. Thus
ce^ + c /β ί l = c"eh + c"eiχ\ and c = c// = c/. Changing basis elements successively,
we conclude that U(ejί A ••• Λ ejn) = cUejι A ••• Λ £/e,n, for all j 1 ? ...,./„. Writing
cn for c, we have ( J ^ Λ ••• Axn) = cn(Uxί A ••• Λ UX). Of course c x = 1; and

L e m m a 3 . 1 3 . F o r all x ί 9 . . . , x n in J f and n = 09ί,2, . . . , U ( x 1 A -- A x n )
= U x ι A " Ά U x n .

Proof. From Lemma 3.12, there is a sequence {cn} of scalars of modulus 1 such
that U(xί Λ Λxw) = cn(Ux1 A Λ l/x^). If {^} is an orthonormal basis for Jf,
so is {Uβj}. Write/,- for C/^ . Since Ua(ej)U*(fjA fJ2A ••• Λ/,- ) = cnϋ(eJ2Λ'~ Aβj)
= cn-icn(fj^'" A / J and Ua(ej)U*(fh A ... Λ / J = 0 if7^ Ui, - . J«}ί we have
that C/α(^)£7* | ̂  = cn_ x c^ί/j) | JfnH

Writing ĉ  for cn_xcn (so that ci = 1), we show that ĉ  = c^,_t = = 1.
Let Σc i l,.. ip ; i l... i2α(/ i l)*...a{f ip)*a{fh)...a(f jq) ( = β ) be chosen such that
| |^4~5| | <ε, where A=Ua(e1)U*. Suppose il9 ...,ip'Jl9 ...,jq are less than m.
Then, examining the coefficient of fm+2 Λ ••• Λ / m + n ?

This inequality holds for n = l , 2 , . . . , so that |c^ —c^ J_1 |<2ε for all positive ε.
Thus l = cΊ = c'2 = , a n d c π = cB_ 1 = = c 0 = 1.



Automorphisms and Quasi-Free States of the CAR Algebra 195

Proof of Theorem 3.1. We know that U implements α (Lemma 3.3) and is the
product unitary operator on JfJα) corresponding to U on jf, when &(φ0) = φ0

(Lemma 3.13). The case in which &(φo) = φI is reduced to this case following the
proof of Lemma 3.2. To conclude the proof, we note that ot(a(f)) = a(Uf), or,
equivalently, that α(α(/)*) = α(C//)*. For this, observe that

= C>fl(/)*

for all f l 9 . . . , /„ in Jf. Thus α(α(/)*) = α(C//)*.

4. Product Unitary Operators on w-Particle Space

In the preceding section, after showing (Lemma 3.3) that U is a product
unitary operator on Fock space, we make no further use of the hypothesis that U
induces an automorphism of 91 until Lemma 3.11. With this hypothesis, it is
proved (Lemma 3.13) that U is induced by a unitary operator on one-particle
space. The fact that this same result is valid for a product unitary operator defined
only on rc-particle space is proved in the theorem that follows.

Theorem 4.1. If U is a product unitary operator on n-particle space ^ a \ there
is a unitary operator U on one-particle space J f such that U(x1Λ- Λxn)
= [/x1Λ ΛL7χπ.

We prove this theorem with the aid of the following lemmas (notation as in
Theorem 4.1). Again, the argument will justify the use of the notation U.

Lemma 4.2. If {ej} is an orthonormal basis for Jf, there is a unit vector fj in
Π \fi{xι A ••• Axn_ί Λtfj)] such that {fj} is an orthonormal basis for 2tf.

Xl,...,Xn-l

Proof To show that <( fj \ / fe) = 0, when j Φ k, we may assume that j and k are
in {1,..., n + 1}. Let Ej be the π-dimensional space,

[U{eί Λ ••• Λ e h l Aej+1 Λ ••• Λ en+1)]9j= 1, . . . , n + 1,

and E be the space E1 V £ 2 From Lemma 3.9, EίnE2, E^nEp and E2c\Ej are
n — 1 dimensional; and E1nE2nEj is n — 2 dimensional, when j Φ 1,2. Thus E is
n+ 1 dimensional; and Eί9 E2 contain unit vectors vί9 v2, respectively, that lie in
Ej but not in E1nE2nEj. It follows that EιnE2nEj and υγ generate an n— 1
dimensional subspace of E1nEj (which is, therefore, EίnEj). As v2 is in E2 but not
in E1ΓΛE2nEj, υ2 is not in EίnEj; so that EίnE2nEj,v1 and v2 generate an
rc-dimensional subspace of Ej9 which is therefore, Ej. Thus Ej is a subspace of E.
Let fj be a unit vector in E (unique up to a phase factor) orthogonal to Ej. From
Section 2 and Lemma 3.9, Ej and Ek are perpendicular, when jφk; and both are
subspaces of E. Hence fj is in Ek and fk is in Ej9 when j φ k. Since /} is orthogonal
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to Ej'9 </j| A> = 0, whenj + k. Thus {/1?..., fn+ί} is an orthonormal basis for £,
and Ej=ifί9..., fj_u fj+1,..., fn+i~]. Hence /,- generates f] Ek. From Corol-

- fcφ /

lary 3.10, f] [ί7(xi Λ ••• Axn_1 A e,.)] is a one-dimensional space

[contained in f] Eλ so that /,- generates it.
V fcφj /

Lemma 4.3. If U is a product unitary operator on Jf^ and {βj} is an orthonormal
basis for Jf, there is an orthonormal basis {fj} for J f such that U{eii Λ ••• Aeir)
= fiιA - AfίJoralliu...Jn.

Proof From Lemma 4.2, we can find an orthonormal basis {fj} such

that/; e Π [^(* i Λ Λ * n - i Λ ^ )] for a 1 1 J. Thus t / ^ Λ Λ β j

i n i n C i i . . . J = 1 L e t C j b e c l . . . j - l j + l . . . « + l » a n d l e t Cj b e

(n + 1 \ 1 In
Π 4 .With/, as cjfj,

k=ί )

U{eίA"Άej_1Aej+1A'--Aen+1)

= Cj{c1...Cj_1cj+1...cn+1)fιA.'-Afj_ιAfj+1A - Afn+ι

= / iΛ Λ/ J ._ 1 Λ/ j + 1 Λ.. .Λ/ l l + 1 .

Suppose, now, that we have chosen f ί 9 . . . , fm,m>n, so that /7 is a multiple
of / ; and U(eiί Λ Λ g/n) = / f l Λ Λ fn when 1 ̂  zx < /2 < < in S w Suppose
ϋ(eίA-. Aen_1Aem+1j=c'f1A ' Afn

n_ίAf^ + 1 and U(e2A-AeHAem+1)
= c" f2 A Λ fn A fή+!. From Lemma 4.2, there is a vector / such that

# ( * ! Λ Λ V J Λ ( β m + 1 + e Λ + 1 ) ) = Λ Λ ••• Λ / „ _ ! Λ /
and

Since

ί/(^1Λ Λ ^ _ 1 Λ ( e m + 1 + ^ + 1 ) ) = /1Λ Λ/ n _ 1 Λ(c / /; + 1 +/ M + 1 )
and

C/(β2Λ Λe I IΛ(ew + 1+e I I + 1)) = /2Λ Λ/ I IΛ(c /7w+i+/Λ+i);

f=έfm+i + fn+i and cf = c"&+1+fn+1. Thus ( c c ' - c " ) / ^ ! + ( c - l ) / Λ + 1 = 0 ;
and c= 1, d = c".

Applying this conclusion to step-by-step replacements, we have that
U(ehA-~ AeinAem+ι) = cfiϊA ' AfinAfή+ι for one phase factor c and all
i1,...,in less than m + 1 . Defining fm+1 to be c / ^ + 1 , our induction yields the
basis {/,}.

Proof of Theorem 4Λ. With {̂ } and {/,} as in Lemma 4.3, let U be the unitary
operator on Jf for which V βj = fj9 j = 1,2,.... Then t/(e t l Λ Λ ein)
= Ueil A ••• Λ C7ein; so that [/( q Λ ••• Λx r t)= t/xj Λ ••• Λ C/χn for all xl9 ...,xn

in J f .
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