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Abstract. The grand-canonical partition function of an assembly of free spinless
electrons in a magnetic field enclosed in a box (Dirichlet boundary conditions) is shown to
be an entire function of the fugacity z and the magnetic field H, as a consequence of the
trace-norm convergence of the perturbation series for the statistical semigroup. This allows
to derive analyticity properties of the pressure as a function of z and H, and to express the
coefficients of its power series expansion around z = H = 0 by means of the unperturbed
semigroup. Hence, the magnetic susceptibility at zero field and fixed density is expressed
in terms of Green functions of the heat equation. Its asymptotic expansion for A -> oo

(Fisher) along parallelepipedic domains is obtained up to 0 . The volume term of
\V(Λ)I

this expansion is the Landau diamagnetism.

t. Introduction

This paper is concerned with the diamagnetic susceptibility at
thermal equilibrium and zero magnetic field of an assembly of free
spinless electrons in a box. The problem originates at L. D. Landau [1]
in 1930, who gave a treatment in the framework of quantum statistical
mechanics, in which, however, the influence of the walls of the container
has been considered approximately by a semiclassical argument. His
result is different from that obtained in classical statistical mechanics [2],
and this gave rise to a debate on the influence of the walls (which is in
fact responsible for the null magnetic moment classically obtained).
This debate is still alive, because of the many contradictory results
obtained. Such a situation is due either to employing approximation
procedures hard to control, or to replacing the original problem with a
soluble one whose connection with the former is difficult to judge. We
shall therefore consider once again the original quantum statistical
problem with the proper mathematical rigor.

We shall use grand-canonical quantum statistical mechanics, in
which the whole information about the system is contained in the parti-
tion function:

Λ(β,z,ω)= Σz^vQxpl-βH.Jω)-] (1.1)
n=0
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where ω = — H is the cyclotronic frequency in the magnetic field H,

Hn Λ(ω) is the selfadjoint n-particle Hamiltonian for electrons enclosed
in a bounded domain A C1R3 in the presence of the magnetic field and the
trace is to be taken according with Fermi statistics. That is, for independent
electrons:

ΞΛ(β9z,ω)=

where E^ω) are the one-particle eigenenergies.
The thermodynamic equation of state can be obtained from (l.Γ) if

an asymptotic expansion of the following kind can be proved:

PΛ(β, z, ω) = j ^ log ΞΛ(β, z, w)

where V(Λ) is the volume A and S(Λ) the area of dΛ1. This amounts
to proving the existence of the following two limits:

lim - ^ logSΛ(j8, z, ω) = βP^°\β, z, ω), (1.3)

lim — ί — [logS^dS, z, ω) - V(Λ)βI*0\β, z, ω)] = βPw(β, z, ω), (1.4)

when Λ-+ oo in a suitable manner [3]. In (1.2), P ( 0 ) is the infinite volume
pressure, while the second term gives the surfaces correction to the ther-
modynamic equation of state.

Although the fugacity z is the natural external parameter in the grand-
canonical statistical mechanics (characterizing the "particle reservoir"),
however, in most physical problems, the density is the external parameter
generally used. To obtain the equation of state involving the density,
one has to invert the density-fugacity relation:

ρ = βz-^-PΛ(β,z,ω) (1.5)

obtaining:
ρ,ω) (1.6)

and make the asymptotic expansion:

0, Q, ω) ΞΞ PA(β, gΛ(β9 ρ, ω), ω)

( ^ ) (1.7)

1 Actually, the anisotropy introduced by the external magnetic field should be reflected
in the structure of the second term in (1.2) and this is in fact the case, as can be seen from
the results in Sections 5 and 6. However, for shortness, we shall maintain this simplified
S/V notation throughout this section.
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The magnetic susceptibility at constant density and zero magnetic
field is given by :

* Λ Λ Ή - δωr pΛ(β, ρ, ω) - — log gΛ{β9 ρ, ω)
β <o=0

It will appear convenient to study first:

c dω2

(1.8)

(1.8')

which will be named magnetic susceptibility at zero field and fixed
fugacity. The relation between the two turns out to be simply:

IΐχΛ(β, ρ) is to be a thermodynamic quantity, then again an asymptotic
expansion:

is to be proved. This proof (in the case when A are parallelepipedic
domains), is the content of this paper, whith the result that χ ( 0 ) is the
Landau value2:

_ ' j (7\ a \\\
1 {

where z is obtained through the inversion [4] of:

1
Q = (1.11')(Iπβf r ^ J

Here/ σ(z) are the well-known Fermi functions, defined for \z\< 1 by:

Λ(*)= Σ (~!Γ ' "?. (i i2)

The question naturally arises, whether one can obtain the Expansion
(1.10) by inserting the Expansion (1.7) and the corresponding expansion
for gΛ into Eq. (1.8) and taking term by term derivatives. Summarizing,
for the first ("volume") terms, we have the diagram3:

pΛ(β,β,ω)

gΛ(β, Q, ω)

P{0)(β,Q,ω)

, Q, ω)

dω2

d2

Ίhύ2
(1.13)

XΛ(β,Q)-
2 Actually Landau's value is twice greater due to his considering the spin degeneracy.
3 The dotted line means "not yet firmly established". Indeed, no proof has been given

thus far of the existence of the Expansion (1.7) for ω + 0. We shall consider this problem
in a subsequent paper [32].
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At this point, we shall briefly survey the argumentation lines already
used in connection with this subject.

The original derivation of Landau follows essentially the upper route
in (1.13). As a matter of fact, Landau calculates the spectrum of the one-
particle Hamiltonian for the whole space ("bulk electrons"), gives a
prescription of counting states and restricts conveniently the summation
over quantum numbers in the expression of the pressure to account for
the finite size. His argument is that an overwhelming fraction of the
electrons do not feel the surface (in a semiclassical picture, they move
along helical "trajectories" which do not touch the walls). The contribu-
tion of the "surface electrons" to the pressure is therefore small.

A method which avoids considering energy levels individually was
subsequently deviced by Sondheimer and Wilson [5], who used a Green
function technique for calculating traces. However, their approximation
of replacing the Green function appropriate to the specific boundary
conditions by the Green function for the whole space can be easily seen
to be identical to that of Landau.

One step farther on this way is contained in a recent paper by Ohtaka
and Moriya [6]. They write down the perturbation series for the Green
function in a half-space for magnetic field parallel to the surface, starting
from the Green function in a half-space at zero magnetic field and then
essentially follow the argument in [5]. They can write down in this way
a surface correction for the susceptibility. However, neither a proof of
convergence of the perturbation theory, nor a justification of the half-
space approximation are given.

One thing has been realized very soon after Landau's paper [7].
Namely, when following the lower route in (1.13), that is when calculating
the susceptibility from:

V(Λ)\c) t dω2 1+^-™

where z = gΛ(β,ρ,0\ and when making in this formula the same ap-
proximations as Landau did, one obtains a much stronger diamagnetism.
This is so, because "surface electrons", though "few", behave very
strongly paramagnetically. Teller and van Vleck [7] argued that this
compensation finally gives the Landau value. Many attempts have thence
been done to substantiate these arguments by explicitely considering the
boundary conditions [8-15]. The results have been however disappoint-
edly contradictory and the reason for such a variety remained obscure.
Some of these results show pathological behaviour of the susceptibility
either as a function of the magnetic field (χΛ ~ ω~* at ω = 0) [10, 11] III,
[12], or in the thermodynamic limit [11] IV, [13]. The origin of the first
pathology seems to be the semiclassical approximation for the energy
levels [15], and does not appear if these are exactly calculated in pertur-
bation theory up to ω2 [11] IV. The origin of the second pathology seems
to be the approximate summation in (1.14), in which cancellations of
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large terms may appear [14]. We maintain that one can decide on this
question only by starting with an actually finite system (no half-space
slab approximation [6, 14]) and taking the thermodynamic limit.

A way to escape the difficulty has been to replace the hard walls by a
harmonic well potential, which gives an exactly soluble problem [16-19].
Our opinion is that the results obtained in this way are of little relevance
for the original problem.

The main idea of the proof we shall present here of Eq. (1.10) is to use
the integral kernel of the operator exp \_ — βHlfA(ωy\ (Dirichlet boundary
conditions) for expressing PΛ(β,z,ω) (at least for sufficiently small \z\,
\ω\). Two advantages result:

First, by the perturbation theory for semigroups [20-22], and the
theory of infinite determinants [23], one obtains analyticity properties
oϊPΛ with respect to z and ω, which rule out the first pathology mentioned
above and allow one to reach the physically interesting values of z by
analytic continuation (Section 2).

Second, as was made clear in recent work by Nenciu [24], by this
device the influence of the boundary conditions is taken into account
globally (in the sense that the exact summation of the correct energy
levels is automatically performed by integrating the Green function) and,
moreover, in a way which allows to make estimations proving the asymp-
totic expansions like (1.9). (Section 5).

It turns out that the contributions of the first and second orders of
the perturbation theory to X^ have separately bad asymptotic behaviours,
which however exactly compensate each other. The identity for the Green
function relevant for this cancellation is proved in Section 4.

In Section 3 and 6 the fugacity-density relation is considered and the
consequences for the fixed-density susceptibility stated.

2. The Finite-Volume Magnetic Susceptibility at Zero Field
and Fixed Fugacity

In this section the perturbation series for the statistical semigroup
will be shown to converge in trace-norm. Analyticity properties of the
pressure as a function of z and ω follow, which give sense to XΛ(β, z)
defined by Eq. (1.8;) as an analytic function of z in <C\(— oo, — 1]. The
power series expansion of this function around z = 0 is written down.

As already stated, we are considering free spinless electrons in a
parallelepipedic box, A = Λ(aί,a2, α3), α 1 ? α2, α3 >0, where:

A{aua2,a3)={(x1,x2,x3)eΈl3\\xi\^ah i= 1,2,3}. (2.1)

The magnetic field H is taken along the x3-axis. The Landau gauge
A = (— x2H,0,0) and units such that m = h=ί will be used throughout.

The one-particle Hamiltonian H(ω) is defined as an operator in
L2(A)by:

H(ω) = H0 + ωHx + ω2H2 2»{H{ω)) = 9{HQ) (2.2)
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where Ho is — — A supplemented with Dirichlet boundary conditions

(vanishing of the wave functions on dΛ9 i.e. infinite well potential)4, Hx is

the differential operator — ix2 -z— with ^(H^) = @(H0), while H2 is
1 όxι

the multiplication by — x2

2. We shall allow arbitrary complex values

of ω in (2.2).

Proposition 1. (i) —H(ω) is, for all ω e C , the infinitesimal generator
of a (C0)-semigroup of trace-class oparetors, {Sω(t)}t>0. For every £>0,
Sω(t) is a trace-norm entire function of ω, which is given by the trace-norm
convergent series:

where:

= S0(t)

Sω(t)= Σ ( -
m = 0

= i S0(t - τ) + ω 2H 2] (2.4)

with trace-norm Bδchner integral in (2.4).
(ii) For ωelR, H(ω) is selfadjoint and positive, therefore O^Sω(t)^ 1.
Proof. Let us first remark that S0(ί) is a selfadjoint (Co) semigroup of

finite trace operators (Gibbs semigroup). Indeed, Ho is selfadjoint and has
the following complete orthonormal set of eigenvectors:

fe1,fe2,fe3 = 1,2,

Therefore S0(ί) = exp [— ί i ί 0 ] has the eigenvalues exp — — Σ
L 2 i = 1

and thus is manifestly of finite trace. In fact, S0(t\ ( ί>0) is an integral
operator in L2(Λ) with positive C00 kernel [28]:

where

Ga

0(t;x,x')
00

= Σ e χp

3)= Π

tίkπ

! Σ
meΈ

2 \2a

exp

-a 2 sm —— (x
2a

(4mα + x — x')2

2t

sin
2α

— exp

(2.6)

a) (2.7a)

- x - x
It

(2.7b)
4 Let Us remark that among the usual boundary conditions employed in statistical

dΨ
mechanics (i.e periodic, Dirichlet and =σΨ) [25-27], the Dirichlet conditions are

dn
the only which assure the gauge invariance of the Hamiltonian (by a straightforward
adaptation of the usual proof for infinite space).
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is the one-dimensional Green function of the heat equation with Dirichlet
boundary conditions on [— α, a].

Now, in view of the Corollary in [22], Part (i) of the proposition will
be proved simply by checking that ωH1-\- ω2H2 is Ho -bounded [29] and
sup IKωHi + ω2H2)So(t)\\ is integrable at t = 0 for all compact sets K c C .
ωeK

But clearly Hί is symmetric and H2 is bounded and selfadjoint, therefore
(ωH1 + ω2H2)R(λ; Ho) is bounded for all λ in the resolvent set of Ho, via
the closed graph theorem. To estimate \\HιS0(t)\\, one can make use of

(2.5) and the remark that <——^ki,k2,k3fki,k2,fc3=i,2f... is still an orthogonal
00

set. Then, for an arbitrary Ψ = ]Γ ¥kuk2M
eki,k2M

 e ^2 '-

'ktπ

i=ί

Therefore Hiί^oίOII ύa2{ety* which is integrable at ί = 0.
For ω e 1R, Sω(ί) is selfadjoint, because every term in (2.3) is, therefore

H(ω) is selfadjoint. Its positivity follows by an integration by parts from
the fact that on @(H0\ H(ω) can be written as:

(2.8)

where - z g r a d - —A applies 2{HQ) into L2(Λ)®L2(Λ)®L2(Λ). This

completes the proof.
We shall next consider the grand-partition function defined by (l.Γ)

The infinite product converges absolutely for all ω e 1R and z in view of
Sω(β\ β>®> being trace-class operators. Because the analyticity properties
of the energy levels £ t (ω) are hard to obtain in a general setting [29] and
seem not to be known in the special case considered here, the infinite
product representation cannot be used in obtaining analyticity properties
for complex ω. However, these properties can be obtained using the
theory of infinite determinants and Proposition 1.

If Tis a trace-class operator and — 1 is in the resolvent set of T, then
log(l + T) is a trace-class operator [23]. For arbitrary trace-class Tthe
determinant of 1 + T is defined by:

ίexp [tr log (1 + Γ)] for - 1 in the resolvent set of T
det(ί + Γ ) = ]ίΛ

[0 otherwise. (2.9)
For Tselfadjoint, it can be easily seen that:

det(l + T ) = Π (l + ίf) (2.10)
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where t{ are the eigenvalues of T. This remark and the selfadjointness of

Sω(β) for ω e IR show that:

S Λ f t ^ ω ) = d e t [ l + z S ω 0 ) ] , ωeϊR, β>0. (2.11)

Our argument rests heavily on the following:

Theorem l.[23]. a) For every trace-class operator T:

b) /
Γ oo / j y i - 1

det(l + T) = exp X tr Tn

L n = l n

c) // T(ζ) is an analytic function ofζ in a domain U with values in the Banach
spaceoftrace-class operators, then det(l -I- T(ζ)) is an analytic function in U.

One immediately concludes that ΞΛ(β, z, ω) is an entire function of
two complex variables z, ω. Indeed, analyticity in one variable the other
being held fixed follows from Proposition 1 (i) and Theorem 1 c). This
implies joint analyticity via Hartog's theorem [30]. Moreover, in view of
Proposition 1 (ii), — 1 is in the resolvent set of zSω(β) for all ω e 1R and
z e C\(— oo, — 1], therefore ΞΛ(β, z, ω) has no zeroes there. By a standard
continuity argument, it follows that for every compact K C C\(— oo, — 1]
there is a neighbourhood V of the real axis, such that ΞΛ(β, z, ω) φ 0 for
(z,ω)eKx V. This in turn implies the analyticity of logΞΛ(β,z,ω) on
KxV, leading to:

Proposition 2. Let β>0. Then:
(i) For every compact set K CC\( — oo, — 1] there exists a neighbour-

hood V of the real axis such that PΛ(β,z,ω) is analytic on KxV. In a
neighbourhood of z = ω=Ό:

(ii) The magnetization at fixed fugacity and zero field

vanishes identically for z e C \ ( — oo, — 1].

(in)XAφ,z)=(-

and is an analytic function of z in this domain. For |z| < 1:

exists for all ze(C\(— oo, — 1]

where:
Γ '

d τ ί ί - τ J H i S o W ^ S o ί ί - τ ) . (2.14)
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Proof. Equation (2.12) follows from Theorem lb). To Prove (ii),
one has to show only that tr Sω(t) = trS_ω(t) for ω elR, in view of (2.12)
and the analyticity stated in (i). To this aim, denote / the involution of
L2(Λ) given by complex conjugation. Then:

t rSJ ί) = tr [/ 2 S ω (ί)] = tr [ / S ω ( ί ) / ] = trS_ω(ί) (2.15)

where the last equality follows from cfH1(/ = —H1 which is clear from
definition. The existence and analyticity of the second derivative
d2PΛ

follow from (i). The second derivative at ω = 0 and small \z
o

is therefore given by the coefficient of ω2 in the series expansion of (2.12)
around ω = 0. Taking account of Eqs. (2.3),(2.4), this gives:

-\dτS0(t-τ)H2S0(τ)

τx \ dτ2So(t-τ1)H1So(τ1-τ2)H1So(τ2) (2.16)

Then, Eq. (2.14) is obtained using the invariance of the trace under cyclic
permutations, the semigroup property and an elementary change of the
integration variables. The convergence properties necessary for commut-
ing the trace with the integral are assured by Proposition 1.

3. The Finite-Volume Magnetic Susceptibility at Zero Field
and Fixed Density

The aim of this section is to prove the Relation (1.9).
The results of the foregoing section allow to state the following

properties of the function:

QA(β,z9ω) = βz-j^PAφ,z,ω). (3.1)

a) For every fixed β>0 and ω e 1R, ρΛ is an analytic function of z in
< C \ ( - o o , - l ] .

b) For fixed β>0 and ωelR:

dρΛ
{β,z,ω)>09 ZG[0,OO) (3.2)

dz
and

ρil(j8,[0,oo),ω) = [0,oo). (3.3)

c) For fixed β>0 and z e C \ ( - oo, — 1], ρΛ(β,z,ω) is an even
differentiable function of the real variable ω.

Properties a) and c) are obvious from Proposition 2. Inequality (3.2)
follows from:

1 ze~βEi<ω)

) Σ (34)
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where every term is manifestly increasing. Equation (3.3) follows remark-
ing that every term in (3.4) has the limit ί/V(Λ) when z-*oo which
implies that ρΛ cannot be bounded.

Properties a) and b) of ρΛ assure that the inverse function gΛ(β, ρ, ω)
(β > 0, ω e 1R, ρ ̂  0) is well defined, differentiable in ρ at fixed ω, with
derivative bounded on every compact in [0, oo). Then c) assures that

d
—— gΛ exists and:
oω

— gΛ(β, ρ, ω) = - — gΛ(β, ρ, ω) — ρΛ(β9 z, ω)

Moreover, because ρΛ is an even function of ω:

d

(3.5)
= gΛ(β,Q,co,)

dω
•gΛ{β,ρ9ω) = 0. (3.6)

Let us now consider the constant-ρ-susceptibility, Eq. (1.8). From the
definitions of pΛ, ρΛ and gΛ one obtains:

(3.7)-£-Lθ5,ρ, ω)- 4 " l o i 0Λ(β,6, ω)l = -£- PΛ(β, z, ω)

When taking the second derivative and putting ω = 0, it follows from (3.6):

Proposition 3.

δω2

ω = 0
z = 9Λ(β,Q,0)

4. An Identity for the One-dimensional Green Function

In this section the Expressions (2.13) and (2.14) of XΛ(β,z) will be
simplified and brought to a form especially convenient for taking the
thermodynamic limit. Here for the first time the special shape (2.1) of A
will play an important role.

In terms of the integral kernel (2.6) of S0(ί), Eq. (2.14) reads as:

y ί dx1G
a

o

ί{t;x1,x1) f dx2.χ
2

2G
a

o

2(t;x2,x2) J dx3G
aJ(t;x3,x3)

^ - a\ -a2 -aj,

\dτ(t-τ ]) dx1dx1^-Ga

o

1(τ;xl9x1)''-^-Gfl

o

ί(t^τ;x1x1) (4.1)

]] dx2dx2 x2x2G
a

0

2(τ;x2,x2)Ga

0

2{t-τ;x2,x2) j dx3G
a

0

3(t;
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Writing x2x2 = jίχ

2 + χ22 ~(X2 ~^i)2\ o n e c a n u s e n e r e the (one-
dimensional) semigroup property to perform one more integration in
the terms containing x\, x2

2, thus obtaining:

^- - Λ ,

= - j dx3G
a

o

3(t;x3,x3)\ j dx2-x2

2G
a

oi(t;x2,x2)

\dτ(t-τ) \\ dx1dx'1-^
0 - α i OX1

dx2dx2(x2-x2)
2Ga

o

2(τ;x2,x2)Ga

o

2(t-τ;x2,x2) (4.2)

Due to the fact that Ga

0(t; x, x) becomes practically constant as a function
of x, while GQ(£;X, x') is bounded by a rapidly decreasing function of
|x — x;|, when α-> oo, the second term in curly brakets in Eq. (4.2) will
give a good behaviour [0(F(Λ))] when A -> oo, while the first must behave
like α|, unless the expression in square brakets vanishes identically.
This pathological behaviour is in fact removed by proving the following
identity for the Green function:

Proposition 4.

\dτ{t-τ)\\
0 -a

t
(4.3)

= - y ί dxGa

0(t;x,x).

Proof. Though a more far-reaching proof using gauge invariance can
be given, we shall show here (4.3) by explicitely evaluating the l.h.s. This
is done by using the formula (2.7a) for the Green function. When inserting
this jn (4.3) and performing the integrals over x, x\ one obtains for the
l.h.s.:

4\2

π 2a Σ
fcl,fc2,= 1

k2k2

I dτ(t — τ) exp
2 \ 2a 2α

i t
ίr2\3

(4.4)
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The sum over kx can be performed using the identities [31] (1.421,1,3)

π πx J? 1 ,.

1 π πx £ 1
t X =

 tΣ

from which, by derivations with respect to x, one obtains the sums
appearing in (4.4) for k2 even and odd, respectively. Namely:

With (4.7) one obtains for the l.h.s. of (4.3): - 4" Σ * ~ T ^ which

clearly equals the r. h. s.
We close this section by writing the simplified expression for

= — j dx3G
aJ(t;x3,x3)$dT(t-T)

α i d d
• [[ dx dx Gai(z' x x ) Gaί(t T'X' x} (4 8)

dx2{x2 - x2)
2 Ga

0

2(τ x2, x2) Ga

0

2(t -τ;x'2,x2).

«1

ίί
-fli

«2

5. The Thermodynamic Limit and Surface Correction for the
Susceptibility at Fixed Fugacity

In this section, we shall give a representation of XΛ(β, z) manifestly
analytic in the cut plane and study on this representation the limit
a u a2, ^3 —> oo.

The idea is to use the expression for the Green functions GQ obtained
by the method of images, Eq. (2.7b). When inserting this expression into
(4.8) and (2.13), one obtains XΛ as a multiple infinite sum over images of
expressions like (2.13), where however every Green function in (4.8) is
replaced by exponentials like those appearing in (2.7b). We shall show
that every term in this sum is analytic in the cut plane. Moreover, we
shall obtain bounds on these terms which assure the uniform convergence
of the series.
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The typical term has the following form5:
/ A\ n-ί n β

\dτ{β-τ) JJ
0 - ώ i

[τ(]S-τ)]2

[
' e x P ~ In

<x3(x2,x2)
2

v α 2 ( x i , X i ) 2

β-τ
2 , α 5 (x 3 ,x 3 ) 2

a3

dx2dx2 J

(5.1)

τ β-τ β
where α\ s are expressions appearing in the brakets at the exponent in
(2.7b), i.e. (4mαf + xt — xj ) or (4mαf + 2αf — xf — x ), z — 1,2, 3.

We shall first consider the terms for which the exponent in (5.1) never
vanishes on the integration domain, that is:

| uΛxiiXi)2

 | QCsfe^a)2

β-τ

ΐnr all v (y v v "\ r7 Γv Y » γ ' \ c /I onr i Π -< T -*•" /? K 9^

We shall use:
Γ2

2π _
(5.3)

where the second equality follows by m integrations by parts and Pm(u, n)
is some polynomial of degree m in variables u and n. We shall write this
polynomial separating different powers of n, as:

Pm(u, n) = Σ p i fM(κ)n" 0 g Sf ^ m . (5.4)

Inserting (5.3) into (5.1) and interchanging the sum over n with all inte-
grals (which is allowed at small |z|), we obtain:

-τ) Jf dx,dxx \\ dx2dx2

f3 , «l(Xl,

•[r(r,r',j8,T)]-m f

We have made the change of variable τ -> nτ in (4.8) written for ί = nβ.
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where the Fermi functions/σ(z) are known to be analytical in the complex
plane cut along (—00, — 1]. Moreover, for every compact set K of
C \ ( - o o , - 1 ] :

)|z|, zeK (5.6)

for a suitable constant M(K, σ) > 0. This inequality is used to show that
the integrals in (5.5) are absolutely convergent, which implies the analyt-
icity of I(z) in the cut plane. Indeed, for ze K:

|J(z)|^|z|/Γ*(2πΓ3 Jdτ(j8-τ)[τ(j8-τ)]-* J} dx.dx, ]) dx2dx2 ] dx3
- α i - α 2

' \ι — J-

- 0 3

- 4 - 1Γ(r9r\β,τ) 4 ]

|α 3(x 2,x 2)α 4(x 2,x 2)
(5.7)

α4(x2,x2)
2}f

τ β-τ τ β-τ

Γ 00 U2

• Γ(r,r',β,τf- m ^ M(K, s;) J |p i i m ( M ) | * 2 c
I i - oo

on which it is appearant that all integrals are convergent, in view of

|α 3 (x 2 ,x 2 )α 4 (x 2 ,x 2 ) |

and of the elementary inequality, following from (5.2):

(5.ί

a 2 (x 1 ,x 1 ) 2 α 3 (x 2 ,x 2 ) 2 α 4(x 2,x 2)

β-τ τ jβ-

g/l9"m, Vί ,r'e/1.

•Γ(r,r',β,τ)4

(5.9)

As we are interested in the behaviour of I(z) for α;-> oo, we shall also
derive a bound for the integrals which are left, e.g.:

| ι Γ{r,r',β,τ) - 2

(5.10)

I \-2

where we used the inequality (5.2), the Schwarz inequality, changed to
the integration variables z and OL(=OL1(X1. X\) or α 2(x 1 ; xλ)) and extended



Landau Diamagnetism 23

the integral over α. Collecting the estimates, we obtain finally that, for

\ I ( z ) \ ^ C p { K , β ) ' a 1 a 2 a 3 \ z \ Ά - > 9 z e K (5.11)

with Cp(K,β)>0 independent of at{i= 1,2,3) and A, where p can be
still chosen at our will.

One can easily see that all but a finite number of terms in the sums
over images in (4.8) obey inequality (5.2). Indeed, if any one of the five
αf's appearing in (5.1) is of the form (4ma + x — x') with m + O, or

4m2a2

(4ma + 2a — x — x') with m + 0, — 1, then A2 Ξg — . Moreover, if e.g.
P

α 1(x 1, xΊ) = 2aί — x1 — x\ and α2(x' l5 *i) = — 2a1—x\ — x1 ? then

A2 > β~1 min S~xa\

All these terms sum up to an analytic function of z in the cut plane
because the sum converges absolutely and uniformly on compacts, by
virtue of (5.11) with p chosen sufficiently large.

Because A"1 behaves as O ^ 1 ) with z= 1,2 or 3 when aί,a2,a3^co,
one concludes from (5.11) that for every term I(z) satisfying (5.2),
V(Ay1I(z) and S{A)~1I(z) tend to zero uniformly on compacts if
α l 5 α 2 j α 3 -»αo in such a manner that, for at least one p, all ratios
ai~

paj{Uj= 1, 2, 3) tend to zero. This condition is in particular satisfied
if A ->oo in the sense of Fisher [3].

In this way, we are left to consider only those terms (5.1) in which the
α/s are chosen at will among the following posibilities:

a) For a1 and α 2 :
Γ. α1(x1,x'1) = α2(x1,x'1) = x 1 -x ' 1 .
2°. α1(x1,x'1) = x 1 -x ' 1 ;α 2 (x 1 ,x ' 1 )= ±2aι-x1-xί

(or the same with α l 5 α2 interchanged).
3°. α1(x1,x'1) = α 2(xi,xΊ)= ±2a1-x1-x1.

b) For α3 and α 4 :
1°. α3(x2,x2) = α4(x2,x2) = x 2 - x 2 .
2°. α 3 ( x 2 ? ^ 2 ) = x i ~ x i '•> &ΛX2? X2)= i 2^2 — X2 — χ2

(or the same with α3, α4 interchanged).

3°. α3(x2, x'2) = 0ίΛx2> X2) =±2a2-x2-
 χ2-

c) For α 5 :
Γ. α5(x3,x3) = x 3 - x 3 .
2°. α 5 ( x 3 , x 3 ) = ± 2 α 3 - x 3 - x 3 .

In calculating the contributions of these terms, we shall freely extend
the integration domains in the space variables, taking care to add only
quantities, JR, which obey inequality (5.2). By the same reasoning as above,
all the contributions added in this way to XΛ(β, z) sum up to an analytic

function of z which affects only theo term in the asymptotic

expansion of XΛ(β, z).
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The following types of integrals appear:
In Cases a) 1° and b) Γ :

(x-xfβ
lnτ(β-τ)

ίί

β \ '[ β

In case a) 2°, the integral vanishes by a parity argument (interchange

In Case b) 2°:

l̂ X X ) \Δ(X X X J
JJ dxdx'(x — x')2 exp

dxdx'(x — x')2 exp
a-x^O
a-x'^O

2n(β-τ)

{x-x'f (2a-x-x'f

2nτ 2n(β-τ)

Y"" V β-τ oo _ _ £ _

J / dφcos2φ f dρρ3^ 2 + R

τ 2 / 1
arctanl/- + — ]/τ(β - τ) + R

β-τ β \
where we changed to polar coordinates

x — x' 2a — x — x'

]/nτ

In Case a) 3°:

JJ dxdx'(2a — x — x')2 exp

V n(β - τ)

(2a-x-xfβ

=ρsmφ.

2nτ(β-τ)

= 2 R.

In Case b) 3°, with the same extension of the integration domain:

(2a-x-x')2β] 2
JJ dxdx'{x — x')2 exp

2nτ(β-τ) β
+ R.
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In Case c) 1°, the integrand is constant and in Case c) 2°:

dxQxp
(2a-2x)

2nβ

When introducing these formulae in (5.1), one can perform easily the
elementary integrations over τ and, then, the summation over n gives
Fermi functions of different indices. Collecting all terms, one finally
obtains the desired asymptotic expansion:

Proposition 5. When Λ = Λ(aί,a2, α3)—• oo in the sense of Fisher:

12

3 / f e l l SΛΛ) 1 '(z)\olS{Λ))l /fell
+ V(Λ) 2 8 π / o ( j + V(Λ)

where SJΛ) = 8(aί + a2)a3 and S1(Λ) = 8a1a2.

6. The Thermodynamic Limit and Surface Correction for the
Susceptibility at Fixed Density

We shall show in this section that the result of the section before
implies the existence of the asymptotic expansion of χΛ(β, ρ).

To this aim we need the asymptotic expansions of the functions
ρΛ(β,z,0) and gΛ(β,ρ,O) defined in Section 3.

Proposition 6. When A = Λ(al9 α2, <z3)—>• oo in the sense of Fisher:

ρΛ(β,z,0) = (2πβ)-i/i(z)-^βπβ)-yAz) + o{^^j (6.1)

uniformly for z in compacts of the cut plane, and:

(Ά) (6.2)
V(Λ) 4

where gm(β,ρ)=/7ί((2πβfρ).

Proof. For \z\ < 1:

>=*«»</>.«> \ y(Λ)l

J
-aι

-1)»-V J dXlGVW;xuXl)

• ] dx2G
a

0*(nβ;x2,x2) / dXiGf(nβ;x3,x3)
-a2 -fl3

and arguments similar to, but much simpler than those used in Section 5
prove (6.1).

Let now ρQ > 0 be given, and denote z0 = g{0)(β, ρ0) and zx = gΛ(β, ρ 0 ? 0)



26 N. Angelescu et al.

Because——/ f(z0) > 0 and in view of the uniform convergence of

ρΛ(β, z, 0) to (2πjS)~i/|.(z), one concludes that z1-^z0 for A-* oo (Fisher).
One has:

*i = *o - IQΛW, *O, 0) - (2πj8Γ V ( ) ]

for a suitable z' between z 0 and z t . Now, for Λ-+ oo (Fisher):

which together with (6.1) proves (6.2).

Proposition 7. For Λ = yl(α l5α2,α3)-*oo in the sense of Fisher, and
every β > 0, ρ > 0:

β, Q) = xm(β, Q) + - ^ xiί'«?, β) + ^ χίίV, β) + o ( H | ) (6.3)

where:

'

Proof. This is immediate from Propositions 3, 2 (iii), 5, and 6.
For the sake of comparison with previous results, we shall write down

the leading terms of the asymptotic expansions of χ(0), χj|1} and χ(l\ for

(i) Low temperature limit (/?-• oo):

4 - I - Ή +<>r*
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(ii) High temperature limit (jff —• 0):
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