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Abstract. An informal exposition of some recent results and conjectures.

A multidimensional Markov process (mdmp) is a dynamical system (K, m, T)
where:

K space of the sequences of symbols from a finite alphabet / = (α, fo,... z) indexed
by the elements η e Zd = lattice formed by the d-ples of integers. K is regarded
as K = TίηeZd I i.e. as a product space of copies of/; furthermore / is topologized
by the discrete topology and K by the product topology.

T is the translation group acting, in the natural way, on K: if σ e K, σ = {σξ}ξeZd

then Tησ = σ' = {σξ + η}ξeZd, if η e Zd.

m is a regular complete probability measure on K whose σ-field contains all the
open sets of K. Furthermore m has the "Markov property".

The Markov property can be easily expressed as a requirement on the con-
ditional distributions associated with finite sets A C Zd. Let σΛ = {σξ}ξeΛ

σ'= {σξ}ξeZd\Λ; then, with obvious notations, σΛvσ'eK and we can define
mΛ(σ_Λ/rf) as the conditional probability that a configuration σεK coincides
with σΛ inside A once it is known that, outside A, σ, and σ' coincide. The Markov
property is then the following [5, 17]:

mp for m-almost all σ_Λ u σ1 in K the functions mΛ(σΛ/σ') depend on σ' only through
the values σ'ξ with ξ e dA = {set of lattice points not in A but located at unit
distance from A}. Here A is an arbitrary finite subset of Zd. Furthermore,
mA(σΛ/σ') > 0 m-a.e. \/AcZd.

In the following we shall assume, for simplicity, that / is a two symbol alphabet

/={-!,+!}.
The following very interesting structure (and existence) theorem for mdmp

holds: [5,10,15,17].

Theorem. All ergodic mdmp in d-dimensίons can be obtained as follows:
i) choose d + i real numbers βl9 ...,βd,h;

ii) choose σ° e K;
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iii) introduce for each square ΛcZd, centered at the origin, the measures

[ Σ
[ξ,ηeΛu

exP
__ _ ξeΛ

~'-° normalization

if σ = σΛvσ', σΛ = {σξ}ξ€Λ, σ' = {σξ}ξeZd\Λ; here βξη = 0 unless ξ,η is a couple of
nearest neighbours lying on the i-th coordinate axis of Zd, in which case βξη = βt;
δ(^2o is the Dirac measure δ^^ = 0 if σξ Φ σξ° for some ξ e Zd\A and δ(f£0 = 1 if
σξ = σ«forξeZd\Λ.

iv) Consider the translation invariant, ergodic, weak limits of the measures PΛ>σo
when A -> oo. For all β1 ... βdh there are suitable choices of σ0 such that the measures
PΛtSQ have a limit as Λ-+ oo.

The measures PΛtSQ are called "finite Gibbs distributions with boundary
condition σ°".

A well known result is [5, 14, 15, 6].

Theorem. // d — 1 there is one and only one Markov process with parameters
(β,h) (see preceding theorem). Furthermore such a process is isomorphic to a
Bernoulli scheme.

A natural question is whether the above results concerning d = 1 extend to

We shall restrict ourselves to the case βι=β2 = '"==βd = β>Q and write
(β,h) instead of (β1,β2, ...,βd,h). The equality condition is a "simplicity" con-
dition; however the positivity condition is a real restriction and the qualitative
aspects of the discussion which follows would radically change if one of the /Γs
was negative.

The following theorem holds (see for instance, [9]).

Theorem. Ifd^2,3βc>0 such that for all β> βc the process (β, 0) is not unique.
The process (β, h) is always unique if h φ 0 and if h = 0 but β < βc.

The case β = βc, h = 0 is an open problem if d ̂  3. For d = 2 it is known that
0?c,0) is unique [19].

So we see that the situation in d-dimension is much more complicate.
Non uniqueness of the process (β, h) has a physical interpretation in statistical

mechanics where the processes (β,h) describe mathematical models for the
equilibrium properties of ferromagnets at temperature β~v and in a magnetic
field hβ~1. Non uniqueness corresponds to a phase transition: the ergodic mdmp
(β, ^describe the pure phases of the magnet.

Of great importance, in Physics, is the theory of the fluctuations in a pure
phase. Physicists think that in a "normal" situation the dispersion of a random
variable which can be expressed as a sum of many "elementary" random variables
should have a "normal gaussian distribution".

This statement can be made more precise in the context of the mdmp: consider
a finite square A C Zd and consider

MΛ(σ)= £ σξ σεK.
ξeA
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Then the variables

Ml*

where < > means expectation with respect to an ergodic mdmp (β, h) should have
an "essentially" gaussian distribution when A is large enough with the possible
exception of few (β, h). If d = 1 one has, in fact, the following theorem (see, for
instance, [14]):

Theorem. The (unique) measure (β, h) has the property that for a suitable
choice of A = A(β, h) the variable v introduced above has a probability distribution
PΛ(v) such that

b b e~^ΐ

^ j™ $pΛ(v}dv= J dy V α , f o e ( - o o , + 0 0 ) ,

- ~ ω2 + RΛ

β) I e"°v PΛ(v) dv = e Vωe(-oo, +00),
- 00

and RΛ^>Q uniformly for ω in a compact subset of (-co, + 00) and proportionally
Λ-+ oo

to \Λ\~*

V f c integers and, furthermore, Rf

Λ^>0 uniformly in k for
Λ-* oo

σ)>|<CMI* C>0.

It is easy to see that y) or /?)->α).

So we see that, if d= 1, the physicist's expectations are satisfied in the rather
strong sense y).

If d > 1 the situation is not so simple and the following result is available
[2,4,8].

(Central limit theorem for mdmp :)

Theorem. // h Φ 0 and β>Q then the obvious generalization to d > 1 of the
statement β) of the last theorem holds Vd. // h = 0 3 β'0 < β'ά such that if β < β'Q or
β> βo the ergodic processes (β, 0) have the property α) of the theorem above, If
d = 2 then β'0 can be taken equal to β'ό and β'0 = β'^ = βc.

The method of proof of this theorem used in [8] is "non standard" in the
sense that it uses methods rather different, in spirit, from the methods used in [14]
for the proof of the one-dimensional limit theorem. In Refs. [1,4] are obtained
results sometimes much stronger than the ones mentioned in the last theorem but
more restrictive on (β, h) : the methods are, in some sense, close to the ones of
Ref. [14].
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It is now intersting to look for the limit theorems of more general nature.
First we decide to regard a probability measure m on K as a probability

measure defined on (R = real line):

(regarded as a topological product of copies of the real line with the usual topology)
and carried by K regarded in the natural way as a subset of Kc.

Divide the lattice Zd into boxes with side /, / = 1, 2, ..., and label each of the
boxes by an element x e Zd, in a natural way. Then define the following random
variables ("block spins"):

ξex xeZd,

Fig. 1. Here/= 3, d = 2

where ξεx means that ξ is in the box with label x and <•> is the average with
respect to a probability measure m on Kc.

In the following we shall call the regular probability measures m on Kc "random
fields" if they are translation invariant and:

J \σξ\ dm < GO .

They will be called centered if §σξdm = 0.
If m is a random field on Kc then it is easy to see that the random variables

v = {vx}xeZd are also distributed as a random field which will be called m{.
The limit theorem problem discussed in the preceding sections can be now

formulated as follows.

Problem. Does the limit lim m{ exist (in some sense) if m is a mdmp ?
/—>• oo

In Refs. [7, 8] the following theorems are proved:

Theorem. The ergodic mdmp (/?, h) = m considered in the Central limit theorem
for mdmp are such that

exists in the "natural weak sense" (see below) if Q= 1 .
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The weak sense of convergence is the following: let μ^, μn be a sequence of
random fields and let / : KC-^R be a function such that

0(v,1,v :C2,...,vJ O < / C < G O , XieZd

with φ being a continuous function with compact support. We say that
limμ^μ^ if

\im

for all the functions / of the type above (cylindrical compact functions).

Theorem. In the same assumptions of the above theorem

mx(dv)=
xeZd

where A is the same as the A appearing in the Central limit theorem for mdmp.

The transformation JFζ(e) which maps a random field m on Kc into the centered
random field ml is called a "renormalization transformation" for the random
field m.

The above two theorems can be formulated in terms of H/ρ) as:

Theorem. Under the same assumptions of the above two theorems

lim /f ί

(1)m = m00 exists, (1)
/ — >• oo

m* Vί, (2)

m^ is a product of gaussian measures . (3)

In this formulation the above theorem should sound rather familiar to the
probabilists : actually the above theorem justifies the following definition suggested
in [12].

Definition. A "centered stable" random field is a centered random field which
is invariant under the renormalization transformations ff/ρ ) /= 1,2, ... for some
1 ̂  ρ < 2.

We remember here the usual definition of stable distribution [11] (adapted):
Definition. A centered probability measure P on R is "(centered) stable" if

there is a number 2 > ρ ̂  1 such that the probability distribution of the random

variable — - ̂ -^ - - is equal to P when xt ι= 1, 2, ..., n are independently

distributed with distribution P.
Clearly there is a one-to-one correspondence between the stable probability

distributions P in the last sense and the stable 1-dim. random fields m whose
probability measure is the product of identical factors equal to P.

The definition of a stable random field is a very interesting extension of the
notion of stable distribution. The theorems of the last section say that the block
spins of the pure phases are (at least if d = 2) distributed as a trivial stable random
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field, with ρ = 1. Obviously we calΓtrivially stable" the stable random fields which
are represented by a product of identical independent (stable) distributions.

As suggested in [12] the real interest of the notion of stable random field
arises in the study of the mdmp (βc, 0).

It can be rigorously seen, if d = 2, that the above theorem concerning the con-
vergence to a stable random field (with ρ = 1) of the block spin distributions is no
longer valid.

There are strong indications (but no rigorous proofs) that there exists ρ = ρ(d)
such that the mdmp (βc90) will have block spins which are asymptotically
distributed as a stable random field with parameter ρ. However it seems that such
a stable random field is "non trivial" in the sense that it is not described by a
product of independent stable distributions.

It appears, therefore, of great interest to develop a theory of the stable random
fields, i.e. to provide:

i) Examples of such fields. It is, actually, not difficult to exhibit a stable
measure in the form of a suitable gaussian measure on Kc which is not a product.
However the indications offered by the non rigorous investigations of the block
spin distributions for (βc, 0) lead to stable measures that are neither products nor
gaussians at least for some values of d.

A nice example of one-dimensional non Gaussian stable random field can be
obtained from the stationary sequence not satisfying the central limit theorem
reported in Ref. [20].

ii) A classification of the possible random fields in analogy with the classifica-
tion of the stable distributions [11].

iii) A description of the attraction domains of the stable random fields in
analogy with the beautiful theory of the domains of attraction of the stable
distributions [11].

Some indications on a possible direction of attack to these problems are
contained in the papers [7, 8]. Some particular results concerning a similar
problem can be found in [2]. The problems of classification and domain of
attraction seem of particular interest because recently the physicists have developed
a rich theory of the qualitative dependence of (β, h) on β and h in the neighborhood
of (βc, 0) [13,18] (for a more mathematical formulation of the theory see [2, 3]).

The hope is that the class of stable random fields is not too large and that this
fact could be exploited to give a theoretical basis to what is known in physics as the
"universal nature" of the critical phenomena [13].

Acknowledgements. One of us (G.G.) wishes to thank the Israel National Research Council for
the opportunity offered to present a preliminary version of this paper at the 1974 meeting on Ergodic
Theory at Kibbutz Lavi.

References

1. Alfina,A., Minlos, R.: Isvestia Akad. Nauk SSR 34, 1173 (1970)
2. Bleher,P., Sinai, J.: Commun. math. Phys. 33, 23 (1973)
3. Cassandro,M., Gallavotti, G.: The Lavoisier law and the critical point. II Nuovo Cimento (to

appear)
4. Del Grosso,G.: Commun. math. Phys. 37, 141 (1971)
5. Dobrushin,R.L.: Funct. Anal. Appl. 2, 31 (1968) and 3, 27 (1969); Theory of Probab. Appl.

13, 201 (1968) and 15, 458 (1970)



Limit Theorems for Markov Processes 307

6. Friedman,N., Ornstein,D.: Adv. Math. 5, 365 (1970)
7. Gallavotti,G., Knops,H.: Commun. math. Phys. 36, 171 (1974)
8. Gallavotti,G., Martin-Lδf, A.: Block-spin distributions for short range attractive sing models.

II Nuovo Cimento (to appear)
9. Gallavotti,G.: La Rivista del Nuovo Cimento 2, 133 (1972)

10. Georgii,O.: Commun. math. Phys. 32, 107 (1973)
11. Gnedenko,B., Kolmogorov,A.: Limit distributions for sums of independent random variables.

London: Addison-Wesley 1968
12. Jona-Lasiriio,G.: The renormalization group: a probabilistic view. II Nuovo Cimento (to appear)
13. Kadanoff,L.O Physics 2, 263 (1966)
14. Kolmogorov,A.: Selected translations in probability theory, Vol. 2, p. 109. Providence R.I.
15. Lanford,O., Ruelle,P.: Commun. math. Phys. 13, 194 (1968)
16. Martin-Lδf,A.: Commun. math. Phys. 32, 75 (1973)
17. Spitzer,F.: Ann. Math. Monthly 78, 142 (1971)
18. Wilson, K.: Phys. Rev. B4, 3184(1971)
19. Benettin,G., Gallavotti,G., Jona-Lasinio,G., Stella,A.: Commun. math. Phys. 30, 25 (1973);

Abraham,D., Martin-Lδf, A.: Commun. math. Phys. 32, 245 (1973)
20. Ibragimov,!. A., Linnik, Yu. V.: Independent and stationary sequences of random variables,

p. 384. Groningen, The Netherlands. Wolter-Noordhoff Publishing 1971

Communicated by K. Hepp G. Gallavotti
Istituto di Fisica Teorica
Mostra d'Oltremare
1-80125 Napoli, Italy

G. Jona-Lasinio
Istituto di Fisica
delΓ Universita
Gruppo GNSM
Padova, Italy






