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Abstract. It is shown that the Kirkwood-Salsburg equations for a classical lattice gas are equivalent
to the Dobrushin-Lanford-Ruelle equilibrium equations. The term "Kirkwood-Salsburg equations"
is used here in a restricted sense, and thus the known result for a larger system of equations is improved
(see Table 1). Some information on the spectrum of the Kirkwood-Salsburg operator is found in
connection with zeros of partition functions. An example is given to show that the Kirkwood-Salsburg
equations can have other solutions than states in the space of uniformly bounded correlation functions.

1. Introduction and Notation

Let us first briefly recall some by now standard notation concerning inter-
actions and states for a classical lattice gas (see e.g. [1,2]). In this paper, we mean
by a lattice L nothing more than a countable (finite or infinite) number of points.
A configuration is a subset X C L, where the points in X are called occupied, the
points outside X empty.

For two sets X, Y with Yc X, we shall denote the difference by X - Y. Further
we shall not distinguish in notation between a lattice point x and the set consisting
of that point only.

An interaction is a mapΦ from the finite, non-empty sets YcL to the real
numbers with the property

Σ |Φ(y)|<oo, VxeL. (1)
Y.xeY

The energy of a finite set X, given a fixed configuration S C L — X, is then

W(X\S) = β Σ Φ(Y)-βμ\X\, (2)

where \X\ is the number of points in X. For 5 = 0, one usually writes W(X 10)
= U(X). The inverse temperature β and the chemical potential μ are absorbed in
W for notational convenience.

By Eq. (1), |»^(J!f |S)| < oo. Moreover, with SM = SnM,

lim W(X\SM)=W(X\S) (3)
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uniformly in S. (In precise terms, the notation in Eq. (3) means the following:
For all ε > 0 there exists a finite set K C L — X, K independent of S, such that

\W(X\SM)-W(X\S)\<s

for all finite McL-X with M D K)
In particular, let the interaction be of finite range, which means that the set

M (X) of points, interacting with a finite set X, is finite. Then, for all M D M(X),

W(X IS) = W(X I SMiX)) = W(X ISM). (4)

Note further, that for finite S

W(X\S)= U{XuS)-U(S).

Linear relations between quantities W can conveniently be checked with the help
of this relation, even if S is infinite.

A state on L can be characterized in a number of ways:
By the generalized correlation functions {μA(X\ A finite, XcΛ}, μΛ(X) being

the probability that the points in X are occupied and that the points in A - X
are empty. The μΛ(X) must be non-negative and satisfy the consistency relations,
for ACM,

Σ μM(XuY) = μΛ(X) (5)
YCM-Λ

By the correlation functions ρ(X) = μx{X), with the converse relation

Y). (6)
YCΛ-X

As a positive linear form on the algebra C of continuous functions of configura-
tions.

An equilibrium state corresponding to the interaction Φ is defined as a state
satisfying the DLR (Dobrushin [3]-Lanford-Ruelle [4]) equilibrium equations,
which can be expressed as follows:

There is some increasing sequence of finite sets {A}, with A-*L, such that the
equations

lim μΛvM(XυSM)/μM(SM) = e x p [ - W(X\S)-]/ZΛ(S), (7)
M->L — Λ

(8)
YCΛ

hold for all A, X C Λ, S C L - A.
For finite range interactions, the equations are simplified to [cf. Eq. (4)]

μΛuMiΛ)(XvS)/μMiΛ)(S) = expl-W(X\S) ]/ZA(S) (9)

Let us now give various systems of equations for the correlation functions,
which are closely related to the DLR equations. For the lattice gas, correlation
equations were first given by Gallavotti and Miracle-Sole [5].
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By the Mayer equations we designate the following family of equations:

έ?(0) = l ;

ρ(X)= X X (-l)Wρ(YvSuT)K(X,Y,T), (10)
TCL-X SCX-Y

where
K(X,Y, T)= Σ (-ίf-R^xp[-W(X-Y\YuR)^, (11)

RCT

and where X, Fare finite sets with YcX, Y + X. In Eq. (10), Γruns through the
finite subsets of L — X.

A number of subfamilies of (10) is introduced by putting further restrictions
on the pair (X, Y\ see Table 1.

Table 1

Symbol Name Restriction

M Mayer —
EKS Extended Kirkwood-Salsburg | Y\ = \X\ - 1
KS Kirkwood-Salsburg Y = X - x, x first point in X
MM Mayer-Montroll 7=0

To obtain the KS equations, an order has to be introduced on L; Y is then
obtained from X by removing the first point.

We trivially have the implications of the following scheme.

MM

In fact, EKS is equivalent to M ([2] the analogous statement for continuous
systems has been proved in [6], for polymer systems in [7]). Also, in [2, 8] (and
[6,8] for continuous systems) the EKS equations were shown to be equivalent
to the DLR equations.

Still, the family EKS seems superfluous; it is tempting to consider instead
families, which have (for finite L) as many equations as unknowns. This re-
quirement is satisfied by the KS and MM equations. For the lattice gas, the MM
equations are quite unsatisfactory:

Proposition 1. The MM equations may have other states than equilibrium states
as a solution.

Proof. Let L consist of two points, and let Φ = 0, μ = 0. Then the MM equations

ρ(2) = l -



238 H. J. Brascamp

Thus, ρ(i) = ρ(2) = j, but ρ(12) is undetermined. For the equilibrium state,
ρ(12) = i Q.E.D.

The KS equations are better behaved: in Section 2 we show that all states
satisfying the KS equations are equilibrium states. It should be noted, that the
proof strongly depends on the fact, that L has a first element in its order. Therefore
the question remains open if the order is such that L extends to oo at both ends.

Let us write out the KS equations:

ρ(0) = l;

ρ(X) = Σ to(^uΓ)-ρ(XuT)} Σ (-iΓ^'expC-^xIXiUK)], (12)
TCL-X RCT

where Xγ is obtained by removing the first point, x, from X. Let us note in passing
that the right member of Eq. (12) can be conveniently rewritten as

ρ (X) = lim X μXuM (X, u Y) exp [ - W(x | Xx u Y)] . (13)
M-+L-X

In Section 3, arbitrary complex values for the fugacity z = exp(βμ) are con-
sidered. A connection between the zeros of the partition function, the spectrum
of the KS operator and non-uniqueness of the equilibrium state is found. To
elucidate this point, note that Eq. (12) can be written in a vector form

ρ = z + zKρ, (14)

where the KS operator K does not depend on z. As usual, we shall consider Eq. (14)
on the Banach space B of vectors {ρ(X)} with norm

sup|ρ(X)|<αo. (15)
x

Obviously, if the equilibrium state is not unique for some value of z, Eq. (14)
has more than one solution, and the point spectrum of K contains the point
z"1. As Theorem 4 (ii) shows, z" 1 is in the spectrum of K, if z is a limit of zeros of
partition functions.

A serious drawback against the space B is the following: For positive, real z
it may happen, that the equilibrium state is unique, whereas the KS equations
have more solutions in B (not representing states); then again, z" 1 is in the point
spectrum of K (see Section 4, Example 1).

Therefore it may seem natural to consider instead of B a smaller space, namely
the space of bounded linear functionals, C*, on the algebra C of continuous
functions of configurations. The corresponding norm is

sup Σ
Λ XcΛ

However, the space C* is completely unsatisfactory for the consideration of the
spectrum of K: On C*, K is not bounded, and if z is not positive real, Eq. (14) has
generally no solution at all in C*. Then the spectrum of K consists of the whole
complex plane. The intuitive reason for that is, that for an "equilibrium functional"

Σ \μΛ(X)\ « ZΛ{\A)l\ZΛ{z)\,
XCΛ
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which grows exponentially with \Λ\. For example, if Φ = 0,

XcΛ

Thus B seems to be the only reasonable space in which to study the spectrum
oϊK.

One could try to circumvent the study of the spectrum of K and establish a
connection between the zeros of the partition function and non-uniqueness of the
equilibrium state, as the results in Section 3 suggest. A further negative result is
however, that non-uniqueness of the equilibrium state for a positive, real z neither
implies, nor is implied by, the fact that z is a limit of zeros of partition functions
(see Examples 2 and 3, Section 4).

2. The Equivalence of the KS Equations and the DLR Equations

In this section we restrict ourselves to positive, real z and to states. On the
lattice L an order is introduced, so that L= {1,2,3,...}. Henceforth, we shall
write Zfc(S) for Z[lf jk](S),Eq. (8).

Theorem 2. For a lattice gas with arbitrary many body potentials, only restricted
by Eq. (1), all states satisfying the KS equations are equilibrium states.

Proof. The proof will be given in three steps: First for finite L, next for infinite L
with finite range interactions, and finally for arbitrary interactions.

Step 1: consists of the following lemma.

Lemma 3. For finite L = {1,2, 3,..., n} and any interaction, the KS equations
have the Gibbs state,

as the only solution.

Proof Instead of the 2n unknowns ρ (X), X c L9 it is more convenient to use
the μ(X) = μL(X). In terms of these unknowns, the KS equations read [cf. Eq. (13)]

Σ
YCL

1vY)-], I # 0 . (17)
YCL-X YCL-X

Let us regroup the 2" -1 Eq. (17). If X Φ 0, X C [1, n - 1], then (Xun)} =X1un.
Therefore the equation for I c [ l , n - 1 ] contains all terms occurring in the
equation for Xun, so that the latter can conveniently be subtracted from the
former. We get

Σ μ(XunvY)= Σ μ(X^nuY) exp[- W(x\Xιunu 7)],
YC[l,n-l]-X Ycll,n-l]-X

,n-i], XΦ0;

Ycll,n-i]-X Yc[l,n-1]-X

IC[l,n-l], ZΦ0;

Σ μ(Yun)= Σ μ{Y)eiφl-W(n\γβ. (20)
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Note, that Eqs. (18) and (19) have the form of Eq. (17), but with [1, ή] replaced
by [ l , n - l ] and energies W(X\ή) and U(X\ I c [ i , n - 1 ] , respectively. Thus,
if we assume Lemma 3 to be true for n — 1 points, the 2" — 1 Eqs. (16) and (18)—(19)
i m p l y

μ(X) = [ l ρ ( n ) ] e x p [ l / ( Z ) ] / Z l l . 1 , X C [ l , n l ] .

The remaining unknown now follows by substituting these expressions into
E q ( 2 0 ) : ρ(n) = [1 -ρ(n)] exp[- 17 ( ) ] ZMl^
or

This proves Lemma 3 for /t points, assuming that it holds for n — 1 poinzs. Since
the lemma is obvious for n = 1, the proof is concluded by induction. Q.E.D.

Step 2: We now consider the KS equations on an infinite lattice L = {1,2,3,...}
with finite range interactions.

Fix a natural number n, and take Λ= [l,n]. Let further M consist of all
points outside Λ, interacting with A; by definition, M is finite.

If X C Λ9 X φ 0, and 5 C M, then (XuS)x = Xί uS. Therefore the KS equation
starting with ρ(XuS) reads [cf. Eqs. (13) and (4)]

ΓCM-S }

= Σ μ ^ M ^ i

TCM-S

wher again it is more convenient to use quantities μ instead of ρ. The equations
for fixed X and different sets S can be combined, as in Step 1, to give

(22)
= Σ μΛuM(XivYvS)exip[-W(x\XίvYvS)l.

YCΛ-X

For fixed S C M, a set of equations of the form of (17) results, the energy assigned
to X being W(X\S). Therefore, by Lemma 3, the solution to Eq. (22) is

μΛuM(XvS) = μM(S) expl-W(X\S)-]/Zn(S).

Since the above holds for any natural n, we have found the DLR Eq. (9). Q.E.D.
Step 3: We conclude the proof of Theorem 1 with the case of infinite range

interactions.
Let A = [1, n], and fix a configuration S C [rc + 1, oo). Take M = \n + 1, n + m],

K = [n + m +1, n + m + fc], and let SM = SnM. Let X C Λ, X φ 0. Then the KS
equations become [cf. Eq. (13)]

(23)
= lim Σ μ^wuic^iuyuS^uRίexpC-^ίxl^uruS^uΛ)],

fc^°° YCΛ-X
RCK
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where a recombination like in Eqs. (21) and (22) has been carried out. Now note,
that, by Eq. (3),

with εM independent of X, Y, S and R, and

Therefore

lira εM = 0.
m —•oo

YCΛ-X YCΛ-X

ύsMμM(SM). (24)

Comparing Eqs. (24) and (17) and applying Lemma 3 (which in fact states that the
2n x 2n KS matrix is invertible), we find that

SM) - μM(SM) expl~W(X\S)]/ZΠ(S)| £

with lim δM = 0. Since in the above rc is arbitrary, we have recovered the DLR
m~-* oo

Eq. (7). Q.E.D.

3. Complex Fugacity: The Spectrum of the KS Operator

We now turn to the case ol complex fugacity z. The KS equations and the DLR
equations will be examined in the space B of uniformly bounded correlation
functions, Eq. (15).

Theorem. 4. (ia) For finite L = [1, ri], z"1 is in the spectrum of the KS matrix
iff z is a zero of one of the partition functions Zn or Zk_ί (/cu S), 2 ̂  k ̂  n, S C [/c + 1, ή].

(ib) If Zn = 0, the KS equations have no solution, but the homogeneous equations
have the solution

= exp [-

(ic) // Zk_1 (kuS) = 0 and Z^ΦO, the KS equations have the usual Gίbbs
solution. Moreover the homogeneous equations have a non-trivial solution, which is
in the case of S = [k + 1, ri] given by

YClk,ή], Y+[k,ή];

U 1 ]

(For other S the eigenvectors have a more complicated form.)
(ii) For infinite L, let z be a zero of one of the partition functions

Z^ikvSvfr + ί, co))9 2^k^p, Sclk + Up]. (26)

Then z~x is in the point spectrum of the KS operator. The corresponding eigenvector
is given by

) = 0, N^p, IC[l,p], SC[p + liV] S+[p+liV];
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where y(X) is the eigenvector of the KS operator for the finite volume [1, p], with
energy W(X | [p + 1, oo)) assigned to the configuration X C [1, p].

(iii) Let the interactions be of finite range. Then the KS equations are equivalent
to the DLR equations if none of the partition functions (26) is equal to zero.

Proof, (i) Let Λn be the 2"x2" determinant of the Eqs. (16) and (17). With
the rearrangement of Eq. (17) into Eqs. (18)—(20) and the induction argument
in the proof of Lemma 3, one readily sees that

An_1(ή) differs from Δn_x in that the energy U(X) is replaced by W(X\n). Since

fc=2

This proves (ia). The expressions for the eigenvectors in (ib) and (ic) can easily
be verified.

(ii) With the KS equations expressed in the form (22) and (23) and with
part (i) as a guide, one checks that Eq. (27) indeed solves the homogeneous KS
equations, provided that the corresponding partition function is zero.

(iii) If Zπ(S f)φ0, Step 2 in the proof of Theorem 2 remains valid here, by
Theorem4(ia). Even if Zn(S) = 0, Eq. (22) implies that

μΛuM(XuS) = μΛuM(YvS)expt-W(X\S)+W(Y\S)-], (28)

by Theorem 4 (ib). Equation (28) is the form, in which the DLR equations can
reasonably be extended to complex interactions. Q.E.D.

In Theorem 4 (iii) we restrict ourselves to finite range interactions, because
Step 3 in the proof of Theorem 2 does not extend as straightforwardly as Step 2.
The subtle estimation (24) depends on the fact that we are dealing with states in
that case.

It can be shown (cf. [8]), that in the space B the EKS equations are equivalent
to the DLR equations for all complex values of z. Theorem 4 (iii) thus shows the
effect of taking a smaller family of equations.

The spectrum of the KS operator for finite volumes has been studied by
Pastur [9], for lattice systems as well as for continuous systems. He considered
Eq. (14) not on the space B, but on the subspace of vectors ρ such that Kρ is inde-
pendent of the particular order chosen on L. Solutions in this subspace in fact
satisfy the EKS equations, and Pastur's result, that z " 1 is in the spectrum of K
if z is a zero of the partition function Zn, is consistent with Theorem 4(ia).

It has also been shown by W.Klein [10], who studied continuous systems,
that the KS operator for finite volumes has a pure point spectrum.

4. Examples

We first give an example of a situation, where the equilibrium state is unique,
but where the DLR equations have more solutions in the space B, Eq. (15)1.

1 For one-dimensional systems with finite range interactions the DLR equations are known to

have other solutions than states [12, 16]; however, those solutions are never in B (the related remark

in the conclusion of [12] is wrong).
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Example 1. Consider the Bethe lattice [11] (Fig. 1) with attractive nearest
neighbor interaction:

φ (χ5 y) = — j < 0, if x, y are nearest neighbors

= 0, otherwise.

The interaction is invariant under the ''translation" group, generated by three
elements, α, b, c9 with

a2 — b2 = c2 = 1 abφba, acή=ca, bcή=cb.

Fig. 1. The Bethe Lattice

A particularly of the Bethe lattice is, that for any two points x, y there is a
unique chain of nearest neighbors connecting x and y. For an arbitrary set X
we define its connected completion X to consist, with each pair x, j / e l , of the
whole chain connecting x and j ; . A set X is called connected if X = X.

Let A be a connected set. For x e i , let m(x) be the number of nearest neigh-
bors of x that lie outside A. The interior of A is the collection of points xeA
with m(x) = 0; the border oΐA consists of the points with m(x) = 1,2, or 3 (m(x) = 3
can only occur if \A\ = 1).

Now consider the expression

μA(X) = μΛm e x p [ - U(X)] Π (ί ί)m ( J C ), (29)

where g is a solution of the equation

2 + ί) = qt, (30)

and where ί = exp(^/?J). Equation (30) is the equation occurring in the Bethe
approximation for the case of three nearest neighbors. It guarantees that the
μΛ(X), Eq. (29), satisfy the consistency relations (5). Thus, if q ^ 0, Eq. (29) deter-
mines a state. Obviously, it is an equilibrium state, since m(x)φθ only on the
border of A.

Equations (29) and (30) immediately lead to the following property, familiar
for one-dimensional systems [12]. Let Aί9 A2 be finite connected sets, such that
AίnA2 = A3 + 0. Let X1cA1-Λ39 X2CA2-A3, X3CA3. Then

μAιuΛ2(X1uX2uX3) = μAl(X1uX3)μA2(X2uX3)/μA3(X3). (31)

Equation (31) remains true for arbitrary Al9 A2 such that A1nA2 = A1nA2

then both members of Eq. (31) for Aί9 A2 can be summed over all configurations
in Ax — Aγ and in A2 — A2 [with Eq. (5)].
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Let us now restrict ourselves to z = t 3 (μ = — § J), the case of particle-hole
symmetry. Then Eq. (30) becomes

( t q 2 + ί)/{t + q2) = q9 o r (q - 1) [_q2 - ( t - i ) q + 1 ] = 0 . (32)

If ί>3(/?J>21og3), there are three positive solutions to this equation, and,
accordingly, three translation invariant equilibrium states (actually, there are
many more non-invariant equilibrium states).

Lemma 5. //15Ξ 3 (/? J 5Ξ 2 log 3), Eq. (29) with q = 1 gives the unique equilibrium
state.

Proof. Consider the sequence of volumes {Λn} as in Fig. 2. Let Bn = An — An_ 1

thus, J5Π is the border of Λn9 and m(x) = 2 for x e £„.

Fig. 2. The sequence of volumes {/!„}

Now consider the Gibbs state in the volume ΛN, and let μN

Λn(X\ XcΛnf be
the corresponding generalized correlation functions. As a boundary condition
for ΛN9 fill BN+ί either completely with particles or completely with holes. Then

where

and where
q0 = t, for particle boundary condition

q0 = t " 1 , for hole boundary condition.

Since for t ^ 3 Eq. (27) has one real solution, in both cases

lim qN_n = 1,
iV->oo

so that for both boundary conditions the limiting state is given by Eq. (29) with
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Now by the Fortuin-Kasteleyn-Ginibre inequalities, the correlation functions
ρ(X) for any boundary condition are in between those for particle and for hole
boundary conditions (cf. [13]). Thus, the equilibrium state is unique. Q.E.D.

However, a complex solution of Eq. (32) still gives a solution of the DLR
equations (although not a state). We show that this solution is in the space B,
Eq.(16).

Lemma 6. The correlation functions ρ(X), computed with Eq. (29) and a complex
solution q of Eq. (32), still satisfy

for 2.93 < ί < 3 .

Proof For t < 3, the two complex solutions of Eq. (32) are

so that
\q\ = ί; | 9

3 + l | = ( ί - 2 ) ( ί + l)*; \t + q2\ = (t-

If X is connected, Eq. (29) or, more easily, Eq. (31) gives

so

I ρ P O I ^ + l Γ 1 . (33)
Now let X be an arbitrary finite set, consisting of several connected pieces Xt.

To form its completion X, a number of connected sets Yj (called links) have to be
added. A typical link Y is pictured in Fig. 3. Let Y be connected to n ^ 2 of the
sets Xt in the points (©), called hinges. (The hinges are in X, not in Y. A point may
be a hinge of two links.) Then Y consists of n — 2 points with 3 nearest neighbors
(O), called knots, and In — 3 chains of arbitrary many points ( ), connecting
knots and hinges.

Fig. 3. A typical link with hinges (®), knots (O), and chains ( )

Let Hj be the family of hinges of the link Yjm We shall show that

I ρ ί i f y l ^ l ^ + ί Γ 1 . (34)

Then by repeated application of Eq. (31), for \Λ3\ = 1, to the Xt and Hj9 ρ(X) for
an arbitrary set can be estimated as

where use has been made of Eqs. (33) and (34) and of the fact that the density
(one-point correlation function) satisfies
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Thus only Eq. (34) remains to be proved. Let K be the collection of knots in
the link Y, and let H be the family of hinges of Y. Then

ρ(H)= £ μHuK(HuT). (35)
TcK

Again using Eq. (31), each term on the right-hand side of Eq. (35) can be expressed
in one- and two-point correlation functions.

The computation of the two-point correlation functions is a one-dimensional
problem, solvable with the transfer matrix method. For two points x, y with
distance d,

q

This gives

Therefore we get the estimates

\Q(x,y)\ = \μx,yW\ ^ Φ + flT1 \q3 + 1Γ 1 (36)

\ μ x , y { x ) \ £ \ q * + lΓ2. (37)

Note that (36) is an equality if x and y are nearest neighbors (d = 1); (37) becomes
an equality for d-> oo.

The summation (35) can now be estimated by noting that instead of over
|if I — 2 knots one can sum over \H\ — 2 independent chains. Hence

It is the last crucial estimation that gives the lower bound 2.93 for ί. Q.E.D.
We conclude with two examples showing that there is no rigid connection

between non-uniqueness of the equilibrium state and zeros of the partition
function approaching the positive real axis.

Example 2. Consider the two-dimensional Ising model with attractive nearest
neighbor interaction. Then at the critical temperature, the zeros of the partition
function approach the positive real axis; however, the equilibrium state is unique
there.

Example 3. Consider the two-dimensional Ising model with repulsive nearest
neighbor interaction. Then for low temperatures there are fugacities z l 5 z 2,
such that there are two equilibrium states for zt < z < z2 [14], and such that the
partition function is free of zeros for zί < \z\ < z2 [15]. Although this last property
has only been proved for special boundary conditions, we certainly expect it to
remain true for the boundary conditions in Eq. (26), at least in the neighborhood
of the positive real axis.
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