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Abstract. The purpose of this paper is to give some complements to the various extremal de-
compositions of states on a C*-dynamical system i.e. a pair (A, G) where A is a C*-algebra and G is
a group acting on A by *-automorphisms. We shall see for instance that the method of decomposition
associated with a maximal abelian W/*-algebra does not give all the extremal measures in the general
case. We also give the explicit form of the greatest lower bound of all the extremal measures and a
certain form of continuity of the decomposition. Finally we characterize various systems in the literature
(G-abelian algebras, large systems and quasi-large systems) in terms of the equivalence of different
notions of ergodicity.

1. Introduction and Notations

Let A be a C*-algebra with identity, G a group and τ a representation of G
in the *-automorρhism-group Aut*(A) of A; in a number of recent articles, the
invariant states of A and their integral representation have been intensively
studied under certain conditions (G-abelian algebras, asymptotically abelian
systems, large systems, etc... (cf. [7, 8, 10, 12, 13]) and more recently Guichardet
and Kastler have studied the integral representation of quasi-invariant states
(cf. [8]). These systems have many applications in Physics, particularly in Statistical
Mechanics (cf. [8,12]).

The purpose of this paper is to give some complements to the various extremal
decompositions in the general case and to find necessary and sufficient conditions
for the uniqueness of the decomposition; we shall see, for instance, that the method
of decomposition associated with a maximal abelian W*-algebra does not give
all the extremal measures in the general case; we also give the explicit form of the
greatest lower bound of all extremal measures and a certain form of continuity
of the decompositions.

Finally we characterize various systems cited above in terms of their ergodic
states, we give in particular the converse of a result of Ruelle on G-abelian algebras
and the converse of a result of Haag, Kastler, Michel and Nagel on "quasi-large"
systems.

The author would like to thank Professors A. Guichardet and D. Ruelle for
their advice and encouragement and Professor G. W. Mackey for the hospitality
at Harvard University where part of this work was done.

Notations. Throughout this note, we use the following notations: A is a
C*-algebra with identity 1, G is a group, τ is a representation of G into Aut*(̂ 4),
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E is the convex compact set of states on A, I is the convex compact set of invariant
states (for τ) on A if a e A, the function a on E is defined by

ά(s) = s(a), se E .

For a fixed invariant state sel, the canonical cyclic representation associated
with s is (&s,πs9ξs) or simply (§, π, ξ) if there is no confusion; the canonical
unitarity representation Us (or simply 17) satisfies

π8(τga)=Ua

gπs(a)U8

β-\V U8

gξs = ξ8, VαeA, g e G .

We denote UG = {Us

g}geG and 9ts= {πs(,4)u UG}\ we remark that 0t's is the
set of elements of πs(A)f invariant under the action of the mappings T-^UgTU~1,
geG.

If B is an abelian W*-subalgebra of ns(A)\ vs

B (or vB or v if no confusion is
possible) is the 5-measure of s (cf. [14] 3-1-2).

Let Ω(s) be the set of all probability Radon measure μ on E satisfying

s(α) = j ά(ψ) dμ(ψ\ Mαe A .
E

Let Ω\s) be the set of measures of Ω(s) with support in / and let -< be the
Choquet-Bishop-de Leeuw order on Ω(s) and Ω^s) (cf. [1]) δs denotes the Dirac
measure at the point s.

2. Integral Representation of Invariant States

We summarize some classical results that will be useful in this Lemma:
Lemma 0. a) δs<μ for every measure μ with barycenter s.
b) Cartier-Fell-Meyer theorem (cf. [2]): the following conditions are equivalent:
(i). v<μ. n

(ii). If v= Σ vi wtth vi Positive measures, then there exist measures μt^0,

i = 1,..., n9 such that μ = £ μf and barycenter (μt) = barycenter (vt ).
ι = l

n n

c) Let μ= Σ oίjδs.(Xj>O, ^ α̂  = 1, barycenter (μ) = s, as otjSj^s, there
i = i 3

 J = I n

exi'sί bj (unique) in πs(A)f+ such that ^ ftj = 1 and
7 = 1

αjSjία) = < πs(a)bjξs, ξs>, Mae A.

d) (cf. [13] Corollar 1.4) L^ί B be an abelian W*-algebra of πs(A)', let {bj} be
a finite set of positive elements of B such that ]Γ bj = 1, we define OLJ ^ 0 αnrf s7- e E by

j

ocj = (ξs, bjξs), cCjSj(a) = <π s(α)4, £s>, Vα 6 A .

The measure μ{bj} = ^ α7 δS j is cα//ed α discrete B-measure. The discrete B-
j

measures form a directed filter converging vaguely to vB.
e) (cf. [13] Corollar 1.5) Let B and B be two abelian W*-algebras of πs(A)'.

Then(BcB)o(vs<vB).
f) Let B be an abelian W*-algebra of πs(A)\ se I. Then

{vB e &(s))o{Supp (vB) C I)o{B C Λi).
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3. Extremal Decomposition of Invariant States—Uniqueness—
Simplicial Systems

Lemma 1. Let s be a state on A; if ns(A)f is abelian, then the πs(A)'-measure v
of s is the unique extremal measure on E with barycenter s.

Proof. We observe by the Lemma Oc) that each finite discrete measure of Ω(s)
is a discrete πs(./l)'-measure. The lemma follows immediately.

Theorem 1. (Extremal decomposition of invariant states). Let B be an abelian
W*-subalgebra of M's, se /, let vs

B be the B-measure of s. Then
a) // vs

B is maximal in ΩJ(s) with respect to Choquet-Bishop-de Leeuw order
then B is maximal abelian in 0ΪS.

b) // B is maximal abelian in 0ΪS, then for any Baire subset A of I such that
A n S(I) = 0 (S(J) is the set of extremal points of I) vs

B(A) = 0; in particular if A is
separable, the measure vs

B is maximal for the order < .
Proof The part a) of the theorem is immediate.
Now let B be a maximal abelian W*-subalgebra of βfc's\ e is the orthogonal

projection on [J5ςs], D is the C*-algebra generated by (πs(A)v UGuB), E is the
set of states on D and s is the state defined by

s(d)=<dξs, ξs>, deD.

We have

D' = B.

Let vB be the B-measure of s on E.
1) By the Lemma 1, vB is the only extremal measure on E with barycenter s.
2) The group G acts on D in canonical way: d-^UgdU'1, deD. Let /denote

the set of invariant states on D and let J be the convex compact subset of / defined
by J= {φ e ϊ/φ(Ug) = 1, V# e G}; we can easily see that if μ is a discrete measure
on E such that μ-< vβ, then supp (μ) C J\ using the vague limit and the weak of J,
we obtain supp (vB) C J.

3) Consider the C*-algebra πs(A), let E' be its state space, let /' be the set of
invariant states of Ef, and for φeE, let φ\πΛA) be the restriction of φ to πs(A).
Put γ(φ) = φ\πs{A), y is a continuous mapping of E on E'. Let v' = y(vB), it is clear
that V is the έ-measure of y(s) on E and supp(v') C Γ.

We can identify E to a compact subset of E and ϊ to a compact subset of /;
so we can write V = vs

B = y(vB).
To finish the proof we shall show that if A is a subset of/ such that AnS'(ί) = 0

then y'1(A)nJnS'(E) = Φ (for vB is an extremal measure on E and supp(vB) C J).
Suppose that φ ey~1{A)r\J r\S(E) and let φ = y(φ); consider the cyclic

representation of D associated with φ: (§, ft, ξ) and let 17̂  = ft(Ug\ g 6 G. We have

1 = φ(Ug) = <π(Ug)ί b = Φ , l b = IIIII2

and
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Therefore

Ugξ = l VgsG.

The set of vectors UGξ, π(A)ξ, π(B)ξ generates §, as Ugξ = ξ and π(b) is a scalar
operator, for b e B (since B is in the center of D and π is irreducible), we have

(π πs(A)ξ) = £

and the representation π π& of 4 in |> is the canonical cyclic representation
associated with the state φ, ξ is the cyclic vector, and we have

π πs(τga) = iζπ πs(a) U~\ VaeA, VgeG.

Since φ is a pure state on D, we have

This relation proves that φ is an extremal state of/ i.e. φe An S(I) that contradicts
the hypotheses, q.e.d.

Definition. A system (A, G, τ) such that the set of invariant states is a simplex
is called a simplicial system.

We shall see (cf. [4]) that the notion of simplicial system coincides with that
of G-abelian algebra introduced by Lanford and Ruelle (cf. [12, 13]).

4. Examples of Extremal Invariant Measures Not Associated with
an Abelian W*-Subalgebra

The following proposition shows that we cannot obtain all the extremal
invariant measures by taking measures associated with abelian W*-algebras in
the general case.

Proposition 1. If an invariant state seI is such that 0ΪS is not abelian then
there exist extremal measures that are not associated with an abelian W*-subalgebra

Proof. Let bl9 b2e@'s + , bib2 + b2bί and bi + b2SU and let b3 = ί-b1-b2,
0Cj = (bjξs,ξs} and

Sj{a)= — <π8(a)bjξs9 ξs>, aeA, j= 1,2,3. (1)

the discrete measure μ on E defined by

j = l , 2 f 3

has the barycenter 5 and the support in /, there exists, by Choquet's theorem, an
extremal measure v on / such that μ •< v. Suppose that v = vB with B an abelian
P^*-subalgebra of @t's\ by Cartier-Fell-Meyer theorem the measure μ must be
a discrete β-measure, this implies that bjGB, 7=1,2,3, this contradicts the
hypothesis bίb2=\zb2b1. q.e.d.
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5. The Greatest Lower Bound of Extremal Invariant Measures

Lemma 2. Let (Bk)keK be a set of abelian W*-subalgebra of πs(A)' and B= f] Bk;
keK

v% is the greatest lower bound of the measure vs

Bk for the order -<.
Proof Let v = vB and vk = vBk; it is clear that v^vΛ, V/ceX. Conversely let μ

be a finite discrete measure of Ω(s) such that μ-< vk, Vfc e K; then μ is a discrete Bk,
Vfc e K, hence μ is a discrete B-measure, therefore μ-< v. q.e.d.

We have seen that, in general, there are many extremal measures on / as-
sociated with an invariant state s, but we have the following canonical measure
(which is not an extremal measure unless 0t's is abelian).

Proposition 2. Let s be an invariant state, let Bs = Center iβ'^i if A is separable
then the Bs-measure vs

B of s is the greatest lower bound of all extremal measures
on I with barycenter s for Choquet-Bishop-de Leeuw order.

Proof Let v = vs

Bs; as the center of M's is exactly the intersection of all maximal
abelian W*-algebras of 0t's, it is clear by the above Lemma 2 that

v = inf {vB/B maximal abelian W*-subalgebra of 0t's).

It is sufficient to prove that v -< μ, for all extremal measures μ on / with barycen-
ter s. Since v is a vague limit of discrete J5-measures v{bj}, it is sufficient to show

P

that for such a v{bj}, we have v{bj)-<μ. Let £ βiδg.^μ, tie^/

s+ such that (as in

1 p

Lemma 0),ifft = <£^s, O> we have ρ^a) = — <πs(α)ί^s, Q,Vα e A, and £ t~L
Pi Ϊ = I

n p

Consider the discrete measure μ! = Σ Ύij <W w ^^re

yij = <tibjξs,ξs}

Sijia) = (jιs{μ)tibj ξs, ξs), VaeA.
fij

We have
p p i

k\ l> S's i = i lJ 7ij S ' J S '

= (π(a)l£t)b.ξ .
\ \ί=l /

= 0CjSj(a\ VaeA.

In a similar way, we obtain
n

/ y δ (a) — β p(a\

Hence
P n

v,hι< y , y y-
\Oj) Λ / i ' / i I IJ

P P n

ί = l * ί = l /•=!
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p

Choosing an increasing filter £ βi^Qi converging vaguely to μ, the associated
ί = l

increasing filter yijδSιj (with v{bj} fixed) converges also vaguely to μ (for μ is maximal
in Ω*(s)); therefore

vibj}< Σ yiA,j
i=l

Hence v-<μ. q.e.d.

6. Decomposition of Covariant States

Proposition 3. Let A be a C*-algebra with identity, G a topologίcal group,
τ a representation of G into Aut*(./!), s a τ-covariant state on A (cf. [8]J, Z o the
W*subalgebra of invariant elements of Center {A"); the Z0-measure of s is "con-
centrated" on the set of Z0-pure states - namely if A is a Baire set in E with Af]^Zo

= Φ (^ZQ is the set of Z0-pure states on E) then v(A) — 0. If s is τ-invariant then
v is "concentrated" on the set of Z0-pure invariant states lf]^Zo.

Proof Consider §, π, ξ9 Ug associated with the covariant state 5; let B = π(Z0),
D the C*-algebra generated by π(A), UG and π(A)'\ we have

D' = π(A)'nU'Gnπ{A)" = B

since π(Z0) is the set of invariant elements of the center of π(A)" (cf. [8], Lemma 3);
let E be the set of states on D and consider the state s:s(d) = (dξ9 ξ}, deD; the
group G acts on D in canonical way: d-tUgdU'1, deD, geG.

Let v be the ^-measure of s on E, v is an extremal measure on E (cf. Lemma 1),
let γ be the natural continuous mapping of E into E (as in the proof of Theorem 1),
it is clear that v = y(v) is the Z0-measure of s on E.

Let A be a Baire subset of E such that A n # Z o = Φ, we shall show that y~x(A)
n${E) = Φ. Suppose that φey~1(A)r\i(E\ the representation π$ (with the
same notations as in the proof of Theorem 1) of D is covariant and irreducible

π$(D)' = π${π(A))'ΓΛπ${π(A)y nπ$(UGy = {scalars}.

Let φ = y(φ\ π1=ftφ π, U = πo U; we have (cf. [8] Lemma 3 with a trivial
modification):

or

π1(Z0) = πφ(π(A)γnπφ(π(A))fnπ$(UGY. (2)

The relation

7t9{π(Af))C7if(π(A)y

implies

π$(π(A)jDπ$(π(A)γ.

This last relation and (1), (2) give

πί(Z0)= {scalars}.
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The cyclic representation πφ of A is a subrepresentation of π 1 ? therefore πφ(Z0)
= {scalars} i.e. φ is Z0-pure (cf. [8]) which contradicts the hypothesis; hence

v(A) = v(y~1(Δ)) = 0. q.e.d.
Remark. This proposition is an improvement of some results of Guichardet-

Kastler (cf. [8]); the use of Z*-algebras provides another method giving other
properties of the Z0-measures, particularly for successive decompositions (cf. [3]).

7. Continuity of the Integral Representation

Let s be a fixed state on A9 we shall study a certain form of continuity of the
mapping: B->vs

B, with B an abelian FF*-subalgebra of ns(A)'.

Proposition 4. Let (Bk)keK be an increasing filter of abelian W*-subalgebras
of ns(A)\ let B be the abelian W*-subalgebra generated by (J Bk. The set of Bk-

k e K

measures vk of s in an increasing filter (for the order -<j converging vaguely to the
B-measure v of s.

Proof We can identify \Bξ\ = L2(X, # , μ) and B = L°°(X, Λ, μ), with (X, Λ, μ)
a probability space and Bk^Ud{X,^k,μ) where (&k)keK is an increasing filter
of σ-subalgebras of M.

The set (vk)keK is an increasing filter of elements of Ω(s) bounded by v. For
every continuous convex function f on E {vk(f))keK is an increasing filter of real
numbers bounded by v(/)5 let μ(f)= lim vfc(/), we have μ ( / ) ^ v ( / ) ; since the

set of functions f — g, with /, g continuous convex, are dense in C(E\ there exists
a measure μeΩ(s) such that vkΊ^μ for the vague topology, and μ<v.

To prove that μ = v, it is sufficient to show that v-<μ (for -< is an order); using
Cartier-Fell-Meyer theorem, it is sufficient to prove v{&}-<μ for all discrete
^-measures v{bj}.

Let b1j = E®kbj9 where E®k denotes the conditional expectation with respect
to &k\ we have b) e Bk+, ^ b) = 1, let v{bu} the associated discrete £fe-measure.

W e h a v e j

As the order -< is vaguely closed, it is sufficient to prove that

vihf}^v{bj) v a g u e l y , ; = l , . . . , n

i.e.
δs}tfδSj vaguely, j=ί,...9n9

or
s ί Ί? sj weakly, j = 1,..., n

ή , j=ί,...9n.

As E^bj^bj for the L^norm topology, we have the convergence also for the
σ(L°°, L^-topology, since the set (E®kbj)keK is uniformly bounded (cf. [11] IV.3.2.).
Therefore

ή(a) = (π{a)b% ξ} r Sj(a) = <π(a)bjξ9 ξ)

for all a e A, and j — 1,..., n.
The proof is complete.
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Proposition 5. Let (Bk)keK be a decreasing filter of abelian W*-subalgebras
of ns{A)' and let B — f] Bk. The set (vk)keK of the Bk-measure of s is a decreasing

ke K

filter (for the order O converging vaguely to the B-measure v of s.
Proof We show as in the proof of Proposition 4 that vk converges vaguely

to its greatest lower bound, and by the Lemma 2, this greatest lower bound is
precisely the 5-measure v. q.e.d.

Proposition 6. Let (Bk)keK be a set of abelian W*-subalgebras of πs(A)'9 indexed
by a filter K, such that Bk commutes with Bk,, for k,k'eK let lim^ sup Bk = Q \J Bt

kek ί^k

and l im x infi? k = \/ f]Bh where \/ Bt denotes the W*-algebra generated by
keKl^k l^k

(Bι)ι>k- V l ί m κ s u p β f c ~ \\mκ'mϊBk = B, then the filter (vs

Bk)keK converges vaguely
to vs

B.
Proof Let

Ck=\/Bι and Dk= f| Bz; (Ck)keK

l^k l^k

(resp. (Dk)keK) is a decreasing (resp. increasing) filter of abelian W*-subalgebras
of πs(A)'; the Proposition 4 and 5 show that v ^ ^ v ^ and vDkl*vB for the vague
topology; as we have DkcBkcCk; vDk-<vBk^vCk, this implies that for every
continuous convex function f on E

As vDk{f)^vB(f) and vCk(f)-^vB(f); vBk(f)j>vB(f). Since the functions of the
form /— g, with / g continuous convex, are dense in C(E) vBk -^ vB vaguely, q.e.d.

Definition. Let (Bk)keK be a set of abelian FF*-subalgebras of πs(A)\ such that
Bk commutes with Bk>, for k,k! e K; we say that (Bk)keK is independent if

</>A... bmξS9 ξsy = <bkξs, ξsy <ft^s, ξsy... <jbnξS9 ξs)

for all bkeBk, bιsBh ...,bmeBm, a n d fc, / , . . . , m dis t inct in K (cf. [11]) .

Corollary 1. Let (Bk)keK be a set of independent abelian W*-subalgebras of
πs(A)', indexed by a filter K. The filter (vs

Bk)keK converges vaguely to the Dirac
measure δs at the point s.

Proof By the {0, l}-law (cf. [11]) \imκinΐBk= l i m κ s u p B k = {scalars} and
sovs

B = δs. q.e.d.

8. Characterization of Simplicial Systems — A Converse of
Haag — Kastler — Michel Theorem

Let s be an invariant state of A, A" be the PF*-envelope of A, Z its center,
f (resp. fs, Zf) the set of G-invariant elements of A" (resp. πs(A"\ πs(2)) e (resp. es)
the finite part of the system (A", G) resp. [πs{A")\ G), Ks the projection on § G the
space of (UG)-invariant vectors of §, Ls the central support of Ks in /s (cf. [4]).
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We say that the invariant state s satisfies the condition

(Cx) if / S = C 1 *

(C 2 ) if (fs)es=<Ces

(C 3 ) if § G = <Eξs (or 5 is weakly clustering (cf. [12]))

(C 4 ) if St's = <C1 (or 5 is er^odic (cf. [ 12]))

(C 5 ) if Zf = C 1 (or 5 is centrally ergodic (cf. [8])).

Let <ff be the set of invariant states satisfying (C t ), i = 1,..., 5; it is clear that
XP r~ XP r~ XP s~ XP r~ XP

Throughout this paragraph, we assume A separable, G locally compact
separable acting (norm-) continuously on A.

Theorem 2. The following conditions are equivalent:
(i) The system (A G) is sίmplicial.

(ii) Sz = <?4 (i.e. {ergodic states} = {weakly clustering states}).
Proof. By [4] the condition (i) means that A is G-abelian; the implication

(i)=>(ii) is due to Ruelle (cf. [12,13]).
(ii)=>(i): let sel, B a maximal abelian sub-FF*-algebra of 0t's, let

®

t/,= J t/(x)/v(x), ^eG.
Θ

π = J πxrfv(x).

be a decomposition of § s , 4 , ί/g, π associated to B (cf. [5, 6]) satisfying for all x e X:

^(T,a)=l7(x)^x(fl)C7(x)*, VaeΛ, VgeG.

{πx(A)vU(x)G)' = Cis (cf. [5] p. 172)

U(x)gξx = ξx9 V^eG

Let sx = ω^, we identify § x = § S x , π x = πSχ: the state sx is ergodic (i.e. satisfying C4)
hence weakly clustering by the hypothesis i.e. (ξ>x)

G = C ξs , Vx e X. As K s e (C/G)'
®

(cf. [13]), i£s is decomposable: Ks = J X(x)rfv(x), and it is clear that X(x)§ xC §£
Λ:

Therefore

= } [_K{x)πx{a)K{x),K{x)πx{b)K{x)]dv{x)
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for all a, be A, and all sel; therefore A is G-abelian (cf. [12], 13]) i.e. (A, G) is
simplicial. q.e.d.

Theorem 3. The following conditions are equivalent:
(i) (A, G) is quasi-large (i.e. / e = (ZG)e cf. [4])

(ii) <?4 = S5 (i.e. {ergodic states} = {centrally ergodic states})
(iii) <?3 = ^ 5

(iv) ^ 2 = * 5 .
Proof. The implication (i)=>(ii) is due to Nagel (cf. [10]) and is a generalization

of a result of Haag, et al (cf. [14] Theorem 3.5.10 p. 150); it is clear that (i)=>(iii)
=>(ii).

(ii)=>(i): Let sel, μf be its πs(ZG)-measure, μf is supported by / (Lemma 0)
and the set of centrally ergodic states (or ZG-ρure states by Proposition 3) therefore,
the hypothesis implies that μf is supported by S{1) = SA, hence by Theorem 1,
πs(ZG) is maximal abelian in St's\ as πs{ZG) C Center (^) , it follows that 0t's = πs(ZG),
Vs e /; therefore (A; G) is quasi-large (cf. [4] Theorem 2).

Theorem 4. The following conditions are equivalent:
(i) The system (A; G) is large (cf [7] or equivalently fe C Z G cf [4]J.

(ii) For all sel, we have Ls = l 5 s and π s(ZG) = π s ( / ) .
(in) ^ = ^ 5 .

Proo/ (i)=>(iϋ). Let s e δ5, the system (πs(A)"; G) is finite and / s = Z G = <C. l^ s;
therefore (Ti =(f 5 .

(iii)=>(ii) By the Theorem 3, the system (A; G) is quasi-large; let se /, we have
e

(ZGy D /"s 3 Zf as in the proof of Theorem 2, let § s = J §xrfv(x)... be a decomposi-

tion associated to ZG, let

Ks=] K(x)dv(x)
X

Ls= } L(x)dv(x)
X

as fs is decomposable and L s e Center (/ s), it follows that L(x) e Center (Zs(xf)
for almost all xe X. Hence by the hypothesis L(x)= ί%χ a.e.; therefore

\/seI

We have proved (ii).
The implication (ii)=>(i) is clear (cf. [4]).
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