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Abstract. The existence of a phase transition of the first kind is proved for anisotropic
classical Heisenberg ferromagnet in two or more dimensions and with arbitrary parameter
of anisotropy α, |α| < 1 a similar fact is proved for much more general lattice spin systems.

Introduction

Bortz and Griffiths proved lately (see [1]) the existence of a phase
transition for sufficiently low temperatures in anisotropic classical
Heisenberg ferromagnets with small parameter of anisotropy α(|α|
< 0.0298 and |α|< 0.0198 for a square lattice and simple cubic lattice,
respectively). Here we prove the similar result for any α, |α| < 1. It is the
known Fisher's hypothesis (see [2]).

Theorem 1 of our paper contains essentially more general con-
ditions for the existence of a phase transition of the first kind in lattice
spin systems with continuous spin space.

The main difference between our method and the method of [1] is the
following: in [1] the sharp "border" is constructed and we construct a
spread gradually altering "border" (Bloch wall).

It is interesting to compare our result with the result of Mermin and
Wagner (see [3]) about the impossibility of phase transitions of the sort
considered here for the square lattice and for |α| = 1.

1. Formulation of the Main Result

Let T be an abelian group 27, v ̂  2, where TL is a group of integers.
Let S be a compact separable metric space with finite nonnegative
measure μ defined on Borel subsets of S. Assume to be given a real
measurable function U(sί,s2) = U(s2, sj onSxS which is bounded from
below on S x S.

We shall consider Gibbsian random fields on a lattice T with values
in S for any t e T (see [4, 6]). For simplifying notations we shall discuss
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in the sequel only the case v = 2 bearing in mind that extension for the
case v > 2 is trivial.

Let us denote
J = {ί:feT,|ί|=l},

where |ί| is the length of the vector t.
It is known [4], that there exists at least one limit Gibbsian distribu-

tion of a random field such that for any finite set

(i; is a number of elements in ¥) and for any given configuration s(t)
outside ¥ (i.e. function on T — ¥ with values in S) conditional probability
distributions are given with probability one by

/ v evp{-βUv(sl9...,sv/s(t))}
•m i. . v, v,, !&llp{-βUv(s1,...,sJs(t))dμ(sl)...dμ(s,)

where

Uv(Sl,...,sJs(t))= Σ V(Si,Sj)/2 +
i = l

A measurable one-to-one transformation ft of a measure space
(9ί'l9Σ1,μί) to a measure space («f2,Z2,μ2) we shall call admissible if
measure μ1h~1 on 3Γ2 *

s absolutely continuous with respect to μ2 and the
corresponding Radon-Nykodim derivative satisfies the following in-
equality

almost everywhere on ($£2, Σ2, μ2) f°
r some c1 and c2.

Further the following conditions for a function U(sί9s2) will be
fundamental.

1. U(sί9s2) is finite and continuous on SxS and takes its absolute
minimum exactly in two points (s0,s0) and (so, so) on ^e diagonal of
SxS.

2. There exists a one-to-one transformation g:S-+S which con-
serves measure μ and is such that ^f50 = sό and gs'Q = s0, U(sl9s2)
= U(gsί,gs2).

3. There exist two neighbourhoods O± and 02, 0^ Cθ2, of the point
s0? such that μ(0t) > 0, 02 (~}gO2 = 0, and for some ε > 0

(7(s1)s2)<{7(s/

1,s2)-ε

for any sl9s2e Ov and any s'l9s'2 such that they cannot simultaneously
belong neither 02 nor gO2.
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4. If μ(02 — Oi) > 0 then there exists an admissible transformation χ
of measure space 02 — O1 to some Borel A0C01 with induced measure μ
such that Γ r / ^ ττ( \U(s1,χs2)<U(sί,s2)-ε

for any s1 e O l 5 s2 e02 — 01? and

for any s2, s3 e 02 — 0^
5. There exists a partition of the set S — (O2U0^2) with finite number

of nonintersecting subsets Fί9 ί — 1, . . . , /c,

and admissible transformations /; :Fj->y4 t Cθ l 5 μ(,4j)>0 (on Ff and
the induced measure μ is given).

Let us denote

,
dμ dμ

We formulate now the main result of this paper.

Theorem 1. // a function U(sl9s2) satisfies the Conditions 1—5 then
for sufficiently small temperature T= i/β there exist at least two different
Gibbsian limit distributions with given conditional probability distri-
butions (1).

Remark ί. As it will be evident from the proof given below Theo-
rem 1 admits some generalisations: for example, for finite particle
(translation invariant or periodic) interaction U(X), where X C S - an
arbitrary finite set. Roughly speaking it is necessary then to demand that
conditions similar to 1-5 hold for all U(X) simultaneously.

Remark 2. The number β for which nonuniqueness already takes
place is estimated in the proof. This estimate depends strongly on 1 — |α|.
For obtaining better estimates it is necessary to choose optimal 0:

and O2. Here we do not discuss this question.

2. Proof of Theorem 1

Let A be an arbitrary measurable subset of S with positive measure μ.
Further we shall consider the set ¥ of all sites of lattice T within

a square with centre in the origin and which we shall assume sufficiently
large.

A site 1 6 T is called an A-site of a configuration s(t) if s(t) e A. We
shall consider only such configurations all sites of which outside V are
G -sites.
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Let us call sites ί 1 ? ί 2 eT interacting if t1 — t2eA. Sets T 'CT and
T" C T we call interacting if there exist at least two interacting sites
t1eT and t2eT'. We shall call a sequence of sites ί' = ί l 5 ...,ίw = ί"
such that \tt — ti+1\^d for z = l 5 . . . , w — 1 a d-path connecting sites t'
and t". A subset T' C T is called d-connected if its any two sites can be
connected with a d-path.

We denote A = S-Oί,B = gOl.
Let us consider any site ί0 e V. If we shall be able to prove that a

probability for ί0 to be an ,4-site is less than 1/2, then in a standard way
with the use of the "symmetry" g Theorem 1 follows. The proof given
below uses Peierls argument and is similar in some places to known
proofs (e.g., [1] and [5]). Essential complications arise due to specific
character of continuous spins. That is why we pay our attention only
on new elements in proof without repeating as far as possible well known
arguments.

Let ί0 be ^4-site and RA - maximal 1-connected component of A-sites
which contains ί0.

A set T — RA can be decomposed into several 1-connected com-
ponents R 0,R 1 5 ...,Rq. The component which contains T—¥ we shall
call outer and denote it R0.

We shall now define inductively a set RA(B) — an outer B-border of RA.
By definition RA(B) consists of and only of the following sites belonging

toRA:
1. the sites which interact with R0

2. sites which are not jB-sites and which interact with at least one site
of RA(B) defined earlier;

3. β-sites interacting with at least one defined earlier site of RA(B)
which is not a β-site;

4. the sites interacting with those Rt which contain at least one site
interacting with at least one site of RA(B) defined earlier.

The union of RA RA(B) and those R{ which do not interact with
RA(B) we denote^.

The union of RA — RA(B) and those RI which do not interact with
RA(B) we denote^.

Lemma 1. The set RA(B) is ]/2-connected.

Proof. For any 1-connected set (CcV the set of sites belonging to
outer component of T —C and interacting with C is j/2-connected.
This fact is evident from geometrical considerations after constructing
unit squares with centres in sites of T.

From this the proof of Lemma 1 is completed by induction.

Lemma 2. The number of y2-connected sets containing the fixed site t
and consisting of exactly I sites does not exceed 8'"1.
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Proof. We shall numerate sites of such set L. Let us put t1 = t. On the
first step all sites which are located at the distance not more than |/2
from ίj and belong to L we shall numerate after tl in some fixed (e.g.,
lexicographical) order.

Let m = m(k)^k sites be numerated after k steps. One the (k+1)-
step we take site tk and numerate with numbers m + 1, m + 2 and so on
the sites of L which we have not numerated earlier and located at the
distance not more than j/2 from tk (the number of such sites does not
exceed 8). The number of possible sequences of sites increases on each
step not more than in 8 times. Consequently, the number of all possible
sequences does not exceed 8*"1. From this Lemma 2 follows.

We get in a standard way from the Lemma 2 that the number of
possible sets RA(B) consisting of exactly / sites does not exceed cl2Sl

for some constant c.
We define now a transformation G of a space of configurations into

itself
(0s)(t),

Gs(t) = s(t),

where / is defined in the following way:

fs =

s,

χS,

fa,

gs9

χgs,

Let us decompose the set of all configurations into several subsets
(clusters) in the following way. We consider a partition 9Ϊ of S into
subsets Fί9 ...9Fk9 gOl9 0(02 —^ι)> O2 — 019 O l t Two configuration s^t)
and s2(t) belong to the same cluster iff for any ί e RA(B) the following is
true: s^t) and s2(t) belong to the same element of partition 9Ϊ.

The number of possible clusters does not exceed (k + 3)*.
Let us consider any such cluster L, partition function ZL over all

configurations of this cluster and partition function ZGL over all con-
figurations of the set GL (with fixed configuration of 01 -sites outside V).

It is easy to verify that for any two configurations s(t) and Gs(t) the
quantities

Us=U(s(t)9

and
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satisfy the following inequality

As g is a measure conserving transformation and the rest trans-
formations are admissible then the following inequality takes place

Gathering all estimates and considering

i

we can now prove Theorem 1 in an usual way.

3. Heisenberg Ferromagnet

In αnίsotropίc classical Heisenberg ferromagnet S is a unit sphere,
i.e. S = {s = (x, y, z) : x2 + y2 4- z2 = 1 } and

u(sι> s2) = - J(z1 z2 + «(*! x2 + yl y2))

for some real J >0 and |α| < 1. We can put further J= 1.
The transformation g maps a point (x, y, z) onto (x, y, — z\ and μ

is a measure on S invariant with respect to euclidean rotations and to the
transformation g.

Let us put
01 - {s : z > 0, r = ]/x2 + y2 < <5 } , δ > 0 ,

02 = {s:z>0,r<2(S}.

We define a transformation χ in coordinates r and φ(x = r cosφ, y = r sinφ)
in the following way:

We shall verify the Conditions 1-5 for U(sl9s2) putting

1. If |α| < 1 then zlz2 + a(x!X2 +^1^2) has its maximum exactly in
two points (s0, SQ) and (so, 50) on the diagonal of S x S where s0 = (0, 0, 1),
50 = (0, 0, — 1). This can be verified in an obvious way.

2. Condition 2 is evident.
3. Further we assume δ to be sufficiently small. That is why we should

only prove that
U(sί9s2)<U(s'l9s'2)-ε

for any slίs2eO1, s\ eS — (O2(JgO2\ s'2eS.
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We have

a— sup (— zlz2 — ί ίy2))= -inf (zίz2sι,S2eOι

= —inf (1/1 — δ2z2-{-(xδx2)

as U(sl9s2) is invariant with respect to rotations around z-axis and,
consequently, we can put sί equal to (<5, 0, |/1 — (52).

Consequently
α = _ (i _ ̂  _ |α| δ

2) = _ i + <$2(1 + |α|) .

Similarly, putting s'2 = (x'2, 0, z2), we have

b= inf ( — (z'ιZ2 + x'1x2)) = -su
sieS-(02U002) |zi |

S26S |Z2|^

- -max(|α|,l/ί-4δ2)- -]/l -4(52- -

It follows

4. We shall prove that

U(s1,χs2)<U(sί,s2)-ε

for any Sj 6 0^^ , s2 e O2 — O1 .
Let s1 = (r1? ^i), 52 = (r2, φ2). Then

[7(sl5 s2) - - 1/1 -r2 |/l-r2

— r x r2(cosφ1 cosφ2 + sin^i sinφ2) ,

dU 1/1 -r2

smφ2)

^ r 2_|α | r ι= r 2_|α | r ι +0(«$2)

/or

Then

as
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Similarly for any s1 = (r l5 φ^), s2 = (r2, φ2) e 02 — #ι we have

C/(s l 5 s2) — U ( χ s l 9 χ s 2 ) = rf/2 -f r2/2 — arί r2(cosφ1 cosφ2 + sinφί sinφ2)

- W^ι))2/2-(χ(r2))2/2 + α(χ(r1))(χ(r2))(cosφ1 cosφ2 + smφ1 smφ2)

+ o(δ2) ^ rl/2 + rl/2 - |α| r, r2 - (χM2^ - (χ(r2))2/2 + |α| (xM (χ(r2))

+ o(δ2) = (rι - r2)
2/2 + (1 - l α D r j r2 - (χ^) - χ(r2))2/2

- (1 - l«l) (χ(rj) (χ(r2)) + ^(^2) ̂  (1 - l«l) ^2(i - |α| - (1 - |α|)2/4)

+ o((52) ̂  3(1 - |α|)2 δ2

as

and as
inf rt(r1r2-(χ(r1))(χ(r2)))

Sl,S 26θ 2-Oι

is reached for r x = r2 = δ.
5. Condition 5 is evident.
We have proved thus the following

Corollary 1. Classical Heisenberg ferromagnet with arbitrary
parameter ofanisotropy α, |α| < 1, has a nonzero spontaneous magnetization
for sufficiently low temperatures.

Remark 3. It follows from Theorem 1 also the existence of a phase
transition in several other models, for example, in Vahcks-Larkin model
(see [7]). Griffiths result [8], where S is a unit closed interval, also can
be deduced from our result.
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