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Abstract. We discuss the infinite product of unitary operators in an incomplete direct
product of Hubert spaces. Necessary and sufficient conditions are derived under which
this infinite product leads to a continuous unitary one-parameter group provided each
factor is assumed to have this property. A certain minimal condition guarantees the
existence of a renormalized unitary group. An application is made to product representa-
tions of the canonical commutation relations in order to determine the admissible test
functions.

1. Introduction

Our investigations about infinite products of unitary one-parameter
groups are motivated by the following physical situation. Consider a
system which consists of infinitely many dynamically independent
subsystems. The time evolution of the subsystems may be described by
unitary operators Ur(t) acting in separable Hubert spaces Hr: r = 1, 2,...
labelling the subsystems. Independence of the various subsystems is
achieved most simply if one takes as representation space H for the total
system an incomplete direct product of the Hubert spaces Hr,
H = ^)(Hr9φr) [1]. {φr}?=ι, a sequence of unit vectors with φreHr,

r

which is called reference vector determines a separable subspace of the
nonseparable complete direct product. The (naively suggested) time
evolution of the total system should then be given by U(t) = (§ξ)Ur(t).

r

However, in general the infinite product of continuous one-parameter
groups of unitary operators does not lead to a continuous unitary one-
parameter group. U(t)= (χ)(7r(ί) may happen to be not even unitary

So, we are dealing with a family {Ur(λ)}™=1 of unitary operators
Ur(λ\ λeR, acting in separable Hubert spaces Hr such that

Ur(λ)Ur(λ')=U,(λ + λ')9 (1.1)
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and Ur(λ) is weakly (strongly) continuous in the real parameter λ. Let us
define a truncated product of the Ur(λ) by

UM(λ)=®U<n\λ)9 (1.2)
r

with I7r

(n)(λ) - Ur(λ) forr^n and l/r

(n)(A) -i, for r> n. Certainly, U(n)(λ)
represents a continuous unitary one-parameter group in each incomplete
direct product space. This is because U(n}(λ) can be written as a finite
product of commuting operators each of which having the stated
property. In the next Section we shall formulate necessary and sufficient
conditions under which U(n}(λ) or a subsequence U(nk)(λ) converges
strongly to a continuous unitary one-parameter group. We shall see
that a certain minimal condition implies the existence of real (renormali-
zation) constants {αr}^°=1 so that (g)Ur(λ)e~iλ*r is unitary. In Ref. [2]

r

this formalism has been used to construct a unitary scattering operator
for a model with infrared singularities. Section 3 contains an application
of our results to determine the admissible test functions for direct
product representations of the canonical commutation relations (CCRs).
A necessary condition on those test functions given by Woods [3] turns
out to be also sufficient.

2. Relation to Probability Theory and Main Results

Before going into details we recall some consequences which follow
from von Neumann's definition of convergence of an infinite product [1].
Let {zr}^=1 be complex numbers, zr = \zr\ e

iθr with —π<θr^π. Then
Π zr converges to a nonzero value if and only if

r

(i) Y[ \zr\ converges irrespective of any order of the factors to a
r

nonzero value and
(ϋ) Σ I Θ Γ | < O O .

r

Condition (i) is equivalent to Σ |1 — \zr\\ < oo and all zr φ 0.
r

The following lemma states a necessary condition for the convergence
of U(nk)(λ). Any subsets Δ ClR occurring are assumed to be Borel sets.
By μ(Δ) we denote the Lebesgue measure of Δ.

Lemma 2.1. Let nk, fc = l,2,.. ., be a subsequence of the positive
integers, nk+ί > nk for all k, and let U("k)(λ} be given by (1.2). // U("k\λ}
(with /c—>oo) converges strongly in H = (χ)(Hr, φr) to a continuous unitary

r

one-parameter group U(λ) then there exists a subset JClR, μ(Δ)ή=Q,
such that

Σ(l-\<Φr,Ur(λ)φry\)<cv forallλεΔ. (2.1)
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Proof. The group relation (1.1) implies Ur(G) = tr for all r and,
therefore, (7(0) = 1. Because of the continuity of U (λ) we have for all λ
close enough to zero, λ e Δ say,

= lim Π \<Φr, Ur(λ) φry\

Note that |<φr, Ur(λ) φr>| ̂  1 for all r and λ elR, thus f] |<φr, Ur(λ) φ^\
r

converges irrespective of any ordering. Equation (2.1) is necessary in
order that an infinite product converges to a nonzero value [1].

To prove the following theorem strong use is made of the intimate
relationship between continuous one-parameter groups of unitary
operators and characteristic functions of random variables.

Theorem 2.2. The following conditions are equivalent:

(a) There are real numbers {aLr}?=1 so that Ugn(λ) = (g) Ur(λ)e~iλΛr®t
r = l

converges strongly in H = (X) (Hr, φr) to a continuous unitary one-
r

parameter group Uren(λ) = (X) Ur (λ) e~ίλ"r .
r

(b) There exists a subset A ClR, μ(Λ) Φ 0, and

Σ (1 - \{φr, Ur(λ) φry\) = Σ (1 - \f, Wl) < oo for all λ e A .
r r

Proof. (a)-H»(b): Is immediate by Lemma 2.1.
(b)— »(a): Let fr(λ) = (φr, Ur(λ) φry. Since fr is a continuous function

of positive type satisfying fr(0) = 1, {/r}J°=1 may be regarded as charac-
teristic functions of mutually independent random variables {σr}™=ί on
a probability space ([4], Chapters II and III). The Condition (b) then
implies by Theorem 2.7 in Chapter 3 of [5] that the series Σ (σr — ar)

r

converges with probability 1 for some sequence of real numbers {α,.}^=1 .
Since fr(λ) e~lλar is the characteristic function of σr — ar, it follows from
Theorem 2.7 in [5] that

X |1 -fr(λ) e~iλ*r\ < oo for all λ elR, (2.2)
r

the convergence being uniform in every finite interval of λ. According
to Lemma 3.2 of [2] (see also Theorem 3.1 of [6]) Um(λ) = (X) Ur(λ) e~ ίλar

r

is unitary in H = 0 (Hr, φr) for all λ elR and £/ren(/l) = strong-
r

lim U$"}

n(λ). The group relation is obvious by the form of lLn(λ). To
n—>ao
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prove continuity we remark that for any Ψ e H and any ε > 0 there exists
N

N<oo and ιpN e (X) Hr such that \\Ψ-ψN®(® φr}\\ < ε ([7],
f = l II \r>N

Lemma 3.1). Thus it is sufficient to prove that

is continuous in A, and this follows from the uniform convergence of

Remark 2.3. The sequence {αr}*=1 is not uniquely determined. Let
n

ct!r = vLr + &r and £|ε r |<oo. Then lim (X) Ur(λ)e~iλa'r = e~ίλΣεr UΐQn(λ)

which is unitary, continuous in λ and fulfills (1.1) along with l/ren(λ).
If, on the other hand, (2.2) holds also true with {αr}^°=1 replaced by
{αί-K^i, then we have [1] (equivalence of product vectors) that

Π <Ur(λ)e-iλ<*φr9 Ur(λ)e-ίλa'φry = [] eίλ(^-^
r r

exists for all λeR By Corollary 2.9 of Ref. [8] we get £ |α;-αr| <oo.

Therefore, the generator of Uren(λ) is unique up to a finite additive
constant.

The next lemma indicates how to determine the sequence of re-
normalization constants K}?=1. Let fr(λ) = \fr(λ)\eίβr(λ\ Since fr(λ)
is continuous in λ and fr(0) = 1 we choose βr(0) = 0 and βr(λ) continuous
as long as/ r(A)φO.

Lemma 2.4. Let Condition (b) of Theorem 2.2 be fulfilled and let βr(λ)

be as above. Then < oo /or every λ φ 0 and £ |jβr(A) —

converges uniformly in λ on every bounded interval

Proof. Condition (b) implies that \fr(λ)\——> 1 uniformly in λ on
every bounded interval /. Let us assume this interval to be centered at
zero. Then fr(λ) φ0 and βr(λ) is continuous in λ for r > N and λ e/ with
some finite N = N (I). Moreover, Π fr(λ)e'iλΛf= Π \frW\eί{βr(λ}~λΛr}

r>N r>N

converges uniformly in λ to a nonzero value. This implies uniform

convergence of Π e

i\βr(λ)-λΛr\ = er>N Now, βr(λ) — λar is
r>N

continuous for λel and r>N and βr(λ) — λαr = 0 for λ = 0 and all r.
It follows that ^ \βr(λ) — λat,r\ converges uniformly on /. Since / was

r>N

1 Λ , Λarbitrary, < oo for every /I φ 0.
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According to Remark 2.3 one may especially choose ar = β r ( i ) .
The minimal Condition (b) of Theorem 2.2 guarantees the existence

of real numbers {αr};°=1 such that (X) Ur(λ) φr is equivalent to (x) eίλarφr.
Y r

According to Theorem 5.1 of Ref. [3] one would argue that this condition
is even sufficient to find a subsequence nk so that U(nk}(λ) converges
strongly to a unitary one-parameter group. The last half (sufficiency part)
of Theorem 5.1 in [3], however, is incorrect as can be seen from the
following.

Theorem 2.5. Let U(nk](λ) be given by (1.2) and let βr(λ) be defined as in
Lemma 2.4. U(nk)(λ) converges strongly in H = (X) (Hr, φr) to a continuous

r

unitary one-parameter group U(λ] if and only if

(i) Σ (1 - l/r Wl) «x>forλeΔ, μ(A) Φ 0, and

ί Hk \
(ϋ) Σ Σ /Wo) converges for some λ0 Φ 0.

k \r = nk-ί+l I

Proof. Necessity: Lemma 2.1 shows necessity of Condition (i). By
Theorem 2.2 and Lemma 2.4 we have that

converges strongly for all λ with any λ0 Φ 0. It follows that

ίT~ Σ βr(λo)

U<n*\λ)V(nk)(-λ) = e " = 1

converges for all λ [note that U(tlk)(λ) commutes with all V(nύ(λ')~]. By

Corollary 2.9 of Ref. [8] this implies convergence of
k \r = f i f c - ι + l

Sufficiency: If (i) is satisfied then there exists a sequence {a,.}̂
«k

such that U(ίlk)(λ) Y[ e~lλar converges strongly for all A to a continuous
r = l

unitary one-parameter group. According to Lemma 2.4 and the preceding
remark we have Σ I&W — λαr| <oo for all λ, especially for λ = λ0 so

r I "k \
so that Condition (ii) implies convergence of £ ^ α J . It follows

nk k \r = nk-i+l I

that PI e~iλ(*r converges to a continuous unitary group e~ίλa and we
r = l

have the desired result.
We turn now to the question whether one can always find a sequence

of unit vectors {φr}?=ι satisfying Condition (b) of Theorem 2.2.
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Theorem 2.6. Given a family of continuous unitary one-parameter
groups {Ur(λ)}™=1 acting in Hilbert spaces Hr there exists a sequence of
unit vectors {φr e Hr}™=1 such that

Σ (i - ι<0r, ur(λ) φry\) = Σ (i - l/r Wl) < °° (2-3)

for all λ of some subset of 1R 'with nonzero Lebesgue measure.

Proof. Let Ur(λ) = eiλΛr = J eίλxdE(? and let xr be a growth point of
E(*\ i.e., E(£+ε — E(£>0 for every ε>0. Choose a sequence of positive
real numbers {εr}*=1 such that £ ε, <oo. Let φre(E(*l+Er-E(£)Hr and

|| φj - 1 for all r. Then, for |λ| ^Ί,

< Max 2
-

sm
λy

Hence ̂  (1 - |/r(λ)|) < oo for |λ| ̂  1.
K

It is clear that (2.3) does not determine the sequence {φr}™=ι uniquely.
As can be seen from the construction above it does not even fix the weak
equivalence class.

3. Application to Product Representations of the CCRs

We want to apply our results to product representations of the CCRs
in order to determine the admissible test functions. We consider
representations which are infinite direct products of Fock and/or
Schrodinger representations of the CCRs. So, let {T^}J°=1 be a sequence
of test function spaces which we choose to be complex Hilbert spaces
with finite or enumerably infinite dimension. For gr e Vr let Wr(gr) be the
unitary Weyl operators of the Fock or, respectively, Schrodinger
representation [9]. Acting in Hr the Wr(λgr) are weakly (strongly)
continuous in the real parameter λ and satisfy the multiplication law

W,(gr) Wr(hr) = Wr(gr + hr) (3.1)

where (gr, hr) is given by

— (3.2)
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and <gr? hry denotes the scalar product in Vr. It follows that for fixed gr

and real parameters λ, λf we have

Wr(λgr) Wr(λ'9r) = Wr((λ + λ') gr) (3.3)

for all r. Consider the infinite Cartesian product F* = X Vr of the Vr
r

consisting of all sequences g = {gr}™=ι with greVr. Let Fbe that subspace
of F* which consists of all sequences with only finitely many non-
vanishing components, V = {g = {gr}™=ι :0r = 0 for almost all r}. We
extend the bilinear form (3.2) to elements of Fby defining

Let H — (X) (Hr9 φr) be an incomplete tensor product of the Hr with
r

| |φ r\\ — 1 for all r. For geV, g = {gr}?=ι we define in H a representation
oftheCCRsby

r

Let τ be the weakest topology on V such that the map g -> (X) Wr(λgr) φr
r

is norm-continuous for all A e R Since the representation W%) is
irreducible, τ coincides with the weakest vector topology on V such that
g-+W(g) is continuous in the strong operator topology [8,10]. Let
gW = {g(

ί

n}}^1 e V be a Cauchy sequence in τ and let Ψ — (X) φr e if.

Then
"(X) VFr(A^n))tp, - (X)

= 2(1 -ReΠ <^5\

for m.n ̂ co and all A. This implies

for all r and λ e R Let us choose ^s = ̂ s? the Fock (Schrodinger)
vacuum for some arbitrary 5, and ψr = φr for r φ 5. Then (x) ψr e //
and [12]

- έA 2 Uβί") - ̂ ||2).

Thus g(") converges in the strong topology on_T^. Since s was arbitrary
it follows that there is a canonical map σ from V(τ) (the sequence comple-
tion of V in the topology τ) into K* such that if lim g(n) = g (τ) with
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Theorem 3.1. Let V, W(g), Φ = (X) φr and V(τ) be as above. Let

β = {0rK°=ι e V*. Then g e σ(V(τ)) if and only if

£ (1 - |<ψr, Wr(λgr) φry\) = Σ (1 - I/,WQ <oo (3.6)

for all λ of some subset A C 1R wiί/z μ(Δ) φ 0.

Proo/. Necessity of Condition (3.6) has been shown by Woods [3].
To prove sufficiency we note that according to Theorem 2.2 there is a
sequence {αr}^=1 of real numbers αr such that W(λg) = (X) Wr(λgr) e~iλar

r

represents a continuous unitary one-parameter group in H. Moreover,

W(λg) = s-lim (g) l^(λ^) ίΓ"""®! for all 1 If £|a,|<oo then ac-

cording to Remark 2.3 we may choose αr = 0 for all r. Defining g(n}

= {9rn}}?= i by g™ = gr for r ̂  n, g?} = 0 for r > n, we have g(n} E V for all n,
^f(w)-^^(τ) and σ(^) = g. If ̂  |αr| diverges we denote the partial sums by

r
n

y(n\ y(n} = Σ αr Because ]̂ |αr| diverges there is a subsequence {απ}f=1
r = l r

(^+ι>r / for all /) of only positive or negative terms such that £ αn
i

diverges. Hence for every n there are finite integers L(n\ K(n\
K(n)

K(n) ^L(n)> n, such that Σ απ ^ \γ(n)\. It follows that we can find
l = L(n)

K(n) K(n)

real numbers x(n) with \x(n}\ ^ 1 and x(n} Σ ^1= Σ χ("} απ = - 7(/ί)

Define ^(n) = {g^} e 7 by 0<"> - ffr for r ̂  n, f̂ - x("> gfr |"for / = L(n\
K (n), and g("} = 0 elsewhere. To compute

= 2 ίi - Re

let / ( n ) = { r e N : r > n , r Φ r / for 1 = L(n), ...,K(n)}. Then the infinite
product becomes

Π l/ r,(A(l-x ( n )))l Π
l = L(n) rel(n)

l = L(n)
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where βr(λ) is defined as in Lemma 2.4. Now, by Condition (3.6)
Yl fr(λ)e~ίλ"r converges uniformly in every bounded interval of λ

r

(see Theorem 2.2). This implies that

Π
re/(«

and

Γ? l
l = L(n)

for all λ [note that K(n)^L(n)>n and |x(n)| ̂  1 for all n\. Considering
the third factor we remark that

-λy<">+ Σ O3 r ι(λ(l-x<">))-λα r ι)
ί = L(n)

K(n)
V1 ί R (i a

— / , \Pπ vΉ — '

and this tends to zero by Lemma 2.4. Hence

for all λ, i.e., 0(M)-»g(τ) and, clearly, σ(g) = g.
As a final remark we note that if σ(g1) = σ(g2) then W(λg2] = eίλcί

- W^g^ for some αeR This is because W(λg2) W(—λg^ commutes
with all W(f) where /e F, for only the weak limit σ(g2 — Qι) = 0 enters
in the bilinear form (3.4). Irreducibility and unitarity imply W(λg2)
• W(-λg1) = eίχ(λ} or W(λg2) = eiχ(λ) W(λgj. Now, the l.h.s. and the
second factor of the r.h.s. are continuous unitary groups and, therefore,
χ(λ) = λoc for some α eR
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