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Was the Big Bang a Whimper?
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Abstract. In many cases the spatially homogeneous cosmological models of General
Relativity begin or end at a "big bang" where the density and temperature of the matter
in the universe diverge. However in certain cases the spatially homogeneous development
of these universes terminates at a singularity where all physical quantities are well—behaved
(a "whimper") and an associated Cauchy horizon. We examine the existence and nature
of these singularities, and the possible fate of matter which crosses the Cauchy horizon
in such a universe. The nature of both kinds of singularity is illustrated by simple models
based on two-dimensional Minkowski space-time; and the possibility of other types of
singularity occuring is considered.

1. Introduction

In the standard spatially homogeneous and isotropic cosmological
models of General Relativity (see e.g. Refs. [ί, 2]) a singularity necessarily
develops at the beginning of an expansion phase if the energy density μ
and pressure p of the matter obey the inequality

μ + 3p^0 (1.1)

at all times. (We shall here assume the cosmological constant A is
zero; if it is non-zero, the corresponding inequality is μ+3p^2Λ,
where notation is as in [2].) Further this singularity is necessarily a
physical one if either of the sets of inequalities

P^O, μ o > 0 (1.2a)
or

3po>O (1.2b)
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are satisfied, where μ0 and p0 are respectively the density and pressure
at some arbitrary time £0, for then the curvature invariant

RabRab = μ2 + 3p2 (1.3)

diverges at the singularity. [Equation (1.1) is automatically satisfied in
these cases.]

The high symmetry imposed on these universe models means that
they cannot necessarily be regarded as good models of the actual
universe at all times; in particular they could be very misleading about
the nature, or even the existence, of a singularity. However a series of
theorems by Penrose and Hawking (see e.g. Refs. [3,4]) show that
singularities do occur in realistic models of the universe in which the
idealizations of homogeneity and isotropy have been dropped. These
idealizations may be replaced by an assumption that causality is not
violated, plus some geometrical restrictions which can be shown to be
satisfied in a realistic universe model because of the existence of the
cosmic microwave background radiation. The matter content is un-
restricted except that it is supposed that the stress tensor Tab obeys
certain inequalities which are generalizations of condition (1.1). When
these conditions are satisfied, the theorems indicate that singularities
exist; but they do not give any idea of the nature of the singularity.
What they in fact prove is that space-time must be geodesically in-
complete.

In a separate attack on this problem, Lifschitz, Khalatnikov and
Belinskii looked at power series solutions of the field equations near
a singularity. Their earlier investigations [5] showed the existence
of generic solutions in which an apparent singularity was not a physical
singularity, and their later investigations [6] showed the existence
of generic solutions which do have physical singularities; however one
does not obtain from their work a definitive conclusion as to the nature
of the singularity one would expect in a realistic model of the physical
universe.

In the absence of a more general argument, one can try to examine
this problem by looking at exact solutions of Einstein's equations.
After the homogeneous and isotropic world models, the simplest
cosmologies are the spatially homogeneous but anisotropic world
models [7]. It is known [4, 8, 9] that singularities occur in these universe
models also if inequalities like (1.1), (1.2) are obeyed (we shall for
simplicity assume that the matter takes a perfect fluid form). In the
case when the matter moves orthogonally to the surfaces of homogeneity
[7,10] it moves without acceleration or rotation and a physical singularity
occurs. In the case of "tilted" models, when the matter moves relative
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to these surfaces [11], it is not clear that this is the case1. While it has
been shown that a physical singularity occurs in tilted Type IX universes
if they can be extended far enough [12,13], Shepley [14] has given an
example (a L.R.S. Type V universe) which has a singularity where the
matter density does not go infinite.

We wish to examine here in which homogeneous cosmologies such
singularities can occur, and to examine further the nature of these
singularities. It turns out that in Shepley's example, there is a second
singularity where the matter density probably does go infinite; but
nevertheless it is an important example, for there could be similar
model universes with no initial singularity where the density, temperature
or pressure diverges; and we might then say that there was no "big bang"
in such a universe.

The existence of a singularity in an inextendible space-time is
recognized by the existence of an inextendible geodesic which is in-
complete, or more generally of an inextendible curve which has finite
length as measured by a generalized affine parameter [4,15]. Suppose
such a geodesic or curve λ(v), defined for affine parameter or generalized
affine parameter values 0 ^ v < v+, cannot be extended to the parameter
value v + . To classify the nature of the singularity the curve runs into,
[4,16], consider the components Rabcd(v) of the Riemann tensor with
respect to an orthonormal basis ea(v) of vectors defined along λ(υ).
If (i) all the components Rabcd tend to finite limits as υ-+v+ for some
orthonormal basis which is parallely propagated along λ(v\ the singu-
larity will be said to be a locally extendίble singularity. If (ii) some
component Rabcd(υ) with respect to a parallely propagated basis does
not go to a limit, but there is some other orthonormal basis along
λ(υ) in which they do all go to finite limits as v~* v+, we say the singularity
is an intermediate singularity. If (iii) there is no orthonormal basis along
λ(v) such that the components Rabcd(v) all go to finite limits as v-*v+,
we say that the singularity is a curvature singularity. Such a singularity
can be further characterized as a matter singularity if some Ricci tensor
components Rab(v) do not go to finite limits for any orthonormal frame
along λ(v), or as a conformal singularity if the Weyl tensor components
Cabcd(v) do not all go to finite limits2.

When there is a locally extendible singularity, there always exists
an open neighbourhood of λ{v) which can be extended in such a way that
λ(v) can be continued beyond λ(v+) in this local extension [17]. Roughly

1 References [8,9] do not prove there is a matter singularity, despite statements
claiming this.

2 Obviously further classification could be given according to whether these com-
ponents diverge, oscillate finitely or oscillate infinitely, in some particular family of frames;
and according to the behaviour of the covariant derivatives up to the rth order.



122 G. F. R. Ellis and A. R. King

speaking, the curvature tensor is perfectly regular near the singularity
but there are either too many or too few directions present in the limit
as v-*v+ for λ(v+) to be a regular space-time point. Cone singularities,
covering space singularities and the singularity in Taub-NUT space
are examples of such singularities [16].

In the case of an intermediate singularity, space-time is quite regular
near the singular point if a suitable reference frame is used, but a non-
convergent Lorentz transformation relates this frame to a parallely
propagated frame. Thus arbitrarily large or irregular tidal forces may
tear apart an observer falling into such a singularity, but other observers
can move arbitrarily close to the singularity without experiencing very
large or irregular forces. As well as in the homogeneous cosmologies we
consider here, such a singularity occurs in certain plane wave solutions
[31], and in conformally transformed Taub-NUT universes ([4], p. 291).

Both intermediate and curvature singularities are p. p. singularities
in the notation of Hawking and Ellis [4], that is, are singularities in
which the curvature tensor components do not go to finite limits if a
parallely propagated frame is used as a reference frame; clearly if such a
singularity occurs, this is sufficient to prove there cannot be a continuation
of the curve λ(v) in any extension of the space-time. When a curvature
singularity occurs, every observer moving arbitrarily near it experiences
unboundedly large or irregular gravitational forces. Examples are the
singularities in Robertson-Walker spaces where (1.2) hold (a matter
singularity) and in the Schwarzschild solution (a conformal singularity).
It is plausible, but has not been rigorously proved, that a curvature
singularity occurs if and only if a s.p. curvature singularity [4] occurs,
that is, if some scalar polynomial constructed from the curvature tensor,
the metric tensor gab and the totally skew tensor ηabcd does not go to a
limit along λ(v) as v->v+. It is obvious that an s.p. singularity implies
a curvature singularity, but the converse is not obvious, particularly
in view of the fact that some curvature tensors are non-zero but define
no non-zero scalar polynomials. In the particular case we are interested
in, when the Ricci tensor has a perfect fluid form with a uniquely defined
timelike eigenvector, and we only consider the curvature tensor rather
than its derivatives, these singularities are the same (Lemma 6.2).

For our present purposes the important point is that any singularity
along a given curve must obey either (i), (ii), or (iii), and so can be
classified as belonging to one of these three classes.

In Section 2 we show that spatially homogeneous universes cannot
in general remain spatially homogeneous - a breakdown of prediction
occurs. In Section 3 we discuss those cases in which we can show there
is a matter singularity, and in Section 4 those cases in which there is an
intermediate singularity, when the spatial homogeneity breaks down;
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in the latter cases the density does not go infinite, and the space-time
can be extended across a Cauchy horizon. In Section 5 we discuss the
possible extensions which can be made across the Cauchy horizon into
a stationary inhomogeneous region, and into further regions. In Section 6
we discuss the possibility that a conformal singularity might occur
but no matter singularity, and in Section 7 we summarize our results
and discuss their relation to more realistic universe models. We also
give a simple model for the intermediate singularities, which explains
their main features.

When detailed calculations are needed, we use the notation of [11];
however, one should be able to read the theorems and understand their
meaning without having to consult that paper. Our discussion will not
include the Kantowski-Sachs Type I [7] universes explicitly; we expect
no surprises in this case.

2. The Breakdown of Prediction in Spatially Homogeneous Cosmologies

The space-times (Jί,g) we consider will satisfy the following con-
ditions (cf. [4], Section 3, and § 5.4):

(1) (Jί, g) is a space-time (i.e. a connected 4-dimensional C°° Haus-
dorff manifold Jί with C 3 Lorentz metric g) which is inextendible

(2) g satisfies Einstein's field equations with a perfect fluid matter
source, i.e. there is a vector field u on Jί such that

Kb = (β + P) uaub + \(μ - p) gab, uaua = - 1 (2.1)

(3) a C1 equation of state p = p(μ) for the fluid is given, and is such
that the inequalities

μ>0, μ^3p^0, i^dp/dμ^O (2.2)

are satisfied everywhere on M
(4) the Cauchy data for the field equations on some spacelike surface

£f in Jί is invariant under a continuous group G of diffeomorphisms
of £P which is simply transitive on 9>\ and the domain of development
(D(£f\ g) of y in (Jί, g) is isometric to the unique maximal Cauchy
development of this data. Further the closure D(ίf) of D(ίf) in Jί is
maximal.

The first part of condition (4) implies that the initial data on Sf
is analytic; as the intrinsic geometry of £f is invariant under the group
of diffeomorphisms G, this is in fact a group of isometries. £P is therefore
a complete surface (i.e. without edge). We may assume that no non-
spacelike curve intersects it more than once, for if this were not so there
would be a covering space (Jί, g) in which this was true for each image
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of 9 [4,18], and we could then consider this space instead of (J(,g\
Because of the existence of the vector field u at each point of y , £f
is two-sided; we choose the unit normal n to 9 to point into the same
half of the light cone as u at each point.

By condition (3), the Cauchy problem for the field equations has a
unique local solution when regular Cauchy data {μ,ua,hab,χab}

3 are
given on a spacelike surface and satisfy the constraint equations on that
surface. Therefore the Cauchy data on ίf determines a unique maximal
Cauchy development (see e.g. [4], Chapter 7); and the second half of
condition (4) ensures that the actual development of 9* in Jί is just
this unique maximal development (without this condition, one could
for example cut out points in Jί to the future oiSf and then go to a covering
space in such a way as to obtain an inextendible domain of development
D(9) of ίf in (Jt, g) which was different from the maximal development).

We define the map Φs: 9 -* Jί to be the map sending a point qe9
a proper distance s along the geodesic γ(s) normal to 9 through q
in the + na direction (negative values of 5 corresponding to a map a
distance \s\ in the — rf direction); and similarly Ψτ\£f-+tJί maps a
point q e 9 a proper distance τ along the integral curve of + if through q.
There will be positive numbers s ± 5 τ ± which are the largest numbers
(possibly infinite) such that the maps Φs, Ψτ are defined for — s_ < s < s+,
— τ _ < τ < τ + respectively; we denote the images of ίf under these maps
by Jί(s) = ΦX&\ #Xτ) = Ψτ{Sf). Because of (2.2), ua is uniquely defined
at each point, up to a sign, by (2.1); therefore its integral curves (the
fluid flow lines) cannot intersect. As no non-spacelike curve intersects
9 more then once, different surfaces #Xτ) cannot intersect. Thus as
long as, for a given value τ, Ψτ{q) is defined for each point q e Of, the
surface #"(τ) is homeomorphic to 9 and does not intersect any surface
#"(τ') with τ' φ τ. The same is not obviously true for the surfaces Jί{s),
for the normal geodesies to 9 could possibly intersect each other.

Let S±,T± be the largest numbers such that the images Jί(s\ J^(τ)
lie in the domain of development D{£f) of 9 for — S_ <s<S+, — T_ < τ
< T+ respectively. Because of (4), this Cauchy development will be
spatially homogeneous. More precisely,

Lemma 2.1. The domain of development (D(Sf\ g) of 9 admits the
group G as a group of isometries, with the homogeneous spacelike surfaces
Jί(s\ — 5_ <s<S+, as the surfaces of transitivity. These surfaces are
the same as the surfaces ^ ( τ ) , — T_ <τ<T+ they are Cauchy surfaces
for Di&Ί and the map Ψ:(-T_,T+)x 9-*Dψ?) which maps (τ, &>) to
#"(τ) = Ψτ(9) is a diffeomorphism.

3 hab is the first fundamental form of y and χab its second fundamental form; ua may
be expressed in terms of a magnitude β and a vector c lying in Sf [see (2.3)].
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Fig. 1. °ll,Ψ are identical and have identical Cauchy data, so their Cauchy developments
D + (<%), D + (Ψ) are identical. In particular the distance τ1 along the fluid line through r
till it intersects the normal geodesic through p at a distance s1 from p, is identical to that
for the fluid flow line through r' which intersects the normal geodesic through p' at a distance

Si from p'

Consider a point Then there is a geodesic γ(s) through q
normal to £f ([4], §6.7) so there is an su — S_ <sι <S+, such that
qejV{s1). By (2.2), μ + p>0, so (2.1) shows there is a unique integral
curve of the timelike vector field u through q; as qeD(^\ this curve
intersects 5 ,̂ so there is a unique τ l 5 — T_ <τ 1 < T+, such that qe^(τγ\
Let ^ =(J~(q)κjJJr{q))r\^Ar\ this is non-empty, and P Ξ Φ ^ " 1 ^ ) ,

r = Ψτi"*(g) are in Φ. Given an element geG, it maps ty(Lϊf to kl'QSf
where % and the Cauchy data on °ll are identical to °W and the Cauchy
data on °W. The maximal Cauchy development of °U is unique, and is
therefore also the maximal Cauchy development of %'\ in particular,
the geodesies normal to £f and the integral curves of u in this maximal
development are uniquely determined. By (4), this maximal Cauchy
development is isometric to the domains of development (Diβ\g\
(D(Ψ\g) of %W in {Jί,g)\ so (D{<%),g), (D(W),g) are isometric. In
particular, for each geG the map g = ΦSi~

log°ΦSi is an isometry

mapping qeJί{s^) into g(q)eJr{sί\ the map g = Ψτi~
1 °g° Ψτi is an

isometry mapping qe$F(τγ) into g(q)e^r(τ1\ and g{q) = g{q) (see
Fig. 1); thus these are in fact the same surfaces, and G acts as a group of
isometries of (D(£f)9g) transitive on them. It acts transitively because
for each point q'eJί(s^) there is an isometry geG such that g(p)
= ΦSι~

1(q'); then the associated map g is an isometry mapping q to q'.
The rest of the statement now follows easily. •

4 J~(q) is the causal past of q9 and J+(q) the causal future of q (see e.g. [4]).
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Note that in fact there is nothing very special about the surface
9*\ given D(£f), we could have chosen any of the surfaces JV(S\
— S_ < 5 < 5 + , as the homogeneous initial surface Sf. From the homo-
geneity, it follows that the following lemma holds:

Lemma 2.2. The geodesies orthogonal to ίf are orthogonal to the
surfaces Jf(s\ — <S_ < s < S + , and have no conjugate points in D(^).
If y(s) is a geodesic orthogonal to £P such that there are no points conjugate
to Sf in y\s\ — 5_ ^ — s ' < s < 0 , then y(s) lies in D(6f) for — s'<s<0.
The map Φ: (-S_,S + )x ^ ^ D ( ^ ) which maps {s,Sf) to Jί{s) = Φs{£f\
is a diffeomorphism. •

Let na be the future-directed unit tangent vector to the congruence
of geodesies orthogonal to the surfaces Jί(s) in D{6f). The metric tensor
hab of these surfaces is given by hab = gab + nanb. The relation between u
and n is determined by β, ca where

uα = coshβttα + sinhβeα, caca=ί, cana = 0. (2.3)

Further we define θab = na;b; then θab = θ{ab), θabn
b = 0, and θab\se = χab

where χab is the second fundamental form of the surface Sf=Jf(ΰ).
The trace of θab is θ, so θ = θa

a = na.a; and the length ϊ is defined by
1 ϊ %θ

Lemma 2.3. // (/}, θ) are bounded for -sf < s ^ 0, where s'>0 is
finite, then s_ ^ S_ >s'. Further S_ ^ T_.

The first integral relation ((2.17 b) of [11]) can be written

θ2 = θabθab + 2μcosh2 j? 4- 2p sinh2 β - 3R (2.4)

where 3R is the Ricci scalar of the 3-surfaces Jf(s)\ and 3R^0 if the
universe is not Type IX [10], while if the universe is Type IX, 3R is
bounded above if ΐ is bounded below (we are indepted to Matzner for
discussions on this point). Hence in both cases, μ and θabθ

ab are bounded
for 0 ^ 5 > —s' (or else θ would be unbounded); so there are no points
conjugate to ^ in y(s), 0 ^ 5 > — 5 ' , which shows that S_^s', by
Lemma 2.2. The problem is to prove the strict inequality. For 0 ^ s > — s\
local coordinates {xa} = {ί, xκ} may be used, such that the metric takes
the form

ds2 = -dt2 + hμv(xa)dxμdxv

where na = δa

0, θμv = dhμv/dt, and hμv are analytic functions on each
surface Jί(s). As θμv is bounded for 0 ^ s > —s', so is

hμy(t,xκ)=lθμy(s9x
κ)ds + hμv\r.
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The solution is analytic on each surface Jf(s) in D(Sf); hence there is
regular bounded Cauchy data {μ, ca, β, hab, θab} on each surface Jί(s\
0 ^ s > — s'. If 5_ > s\ consider the surface Jί(-s') in Jί. By continuity
there is regular bounded Cauchy data on Jf( — s')\ and the constraint
equations are satisfied, as the conservation equations guarantee that
they are satisfied on each surface Jf{s) in T>(£f\ because they are satisfied
on 9>. Hence by (4), there is a non-trivial Cauchy development D(JV(— S'))
which contains Jf( — s')\ so S_>s'.

On the other hand, if s_ were equal to 5', one could attach a surface
Jf(—s') to Ji by the condition that [0, — s']x<5^ is homeomorphic
to D~(Sf)vjV( — s') under a mapping Φ which is the diffeomorphism
Φ : (s, Sf)-+Jf (s) when restricted to [0, — s') x 9>. Extending the Cauchy
data to Jf(-s') by continuity, the argument used previously shows
there is a Cauchy development D(Jί{—s')) whose past part is not
contained in {Jί^g)\ but this is a contradiction because of (4) and the
fact that D(Jί{— s')) is, by Lemma 2.1, the same as D(Sf). Finally the
inequalities follow because ds/dτ = — uana = cosh/?^ 1. •

There is an obvious dual to this result in which the future is replaced
by the past.

Under the circumstances we are considering, the Cauchy development
of ^ is strictly limited.

Theorem 2.4. One of S+, S_ is finite. If the universe is not Type IX,
the expansion θ of the normals diverges and 1-+0 as s approaches this
limit.

The divergence θ obeys Raychaudhuri's equation (cf. [2,4, 11],
Eq. (2.16c))

2 0. (2.5)

Combining this with (2.4), one obtains

dθ/ds + Θ2 = -3R + μ(sinh2 β + \) + p(sinh2 β - f). (2.6)

Because of (2.2), (2.5) shows

dθ/ds + ̂ S2<0; (2.7)

and when the universe is not Type IX, 3R ^ 0, so (2.2) and (2.6) show

dθ/ds + θ2 > 0. (2.8)

One can integrate through the inequalities (2.7), (2.8) to show:

Lemma 2.5. Suppose θ0 = θ\#, > 0 in a universe which is not Type IX.
Then -S_<s<0=>

H'Γ3>Θ>HΓ\

where H\ H are positive constants; for 0<s<S+, these inequalities
are reversed. D
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Suppose now θ0 is positive in a universe which is not Type IX. Then
Lemma2.5 shows θ stays positive for — 5 _ < s < 5 + , and will become
infinite a finite distance 5" to the past of ίf if y(s) can be extended that
far. Then s"^S_, or else there would be a point conjugate to £f along
y(s) in D{£P\ contradicting Lemma 2.2. Hence S_ is finite. Lemma 2.3
shows y(s) can be extended in D(£f) as long as 0, μ, and β are all bounded.
Equation (2.4) shows that if μ is unbounded on some open interval,
0 is unbounded there also, and Lemmas 2.7 and 2.8 will show that 0
is unbounded if β is unbounded. Hences y(s) can be extended as long
as 0 is bounded, so s" ^S_, which implies s" = S_. Lemma2.5 then
shows that Z-»0 as s-> — S_, and that 0 diverges there.

A similar argument applies when 0O is negative, and s" = S+, in a
universe which is not Type IX. In the case of a Type IX universe, (2.7)
still holds and shows that either S_ or S+ must be finite. The case θ0 = 0
can only occur in a Type IX universe; and in this case both S_ and S+

are finite. D
This shows that either in the past or in the future, one cannot predict

what happens for more than a finite time s" on the basis of the Cauchy
data on ίf. We shall from now on choose the direction of time such that
this happens to the past. With this choice of sign, 0O > 0, S_ is finite,
0>O for — S _ < s < 0 , and 0->oo as s-> — 5_ from above. We shall
later show that in all universes which are not Type IX S+ is infinite,
i.e. there is no singularity to the future of the surface Sf (see Lemma 5.2).

Before proving Lemma 2.8, we prove two useful preliminary results.
Define the functions w, r, up to multiplicative constants, by dw/w
= dμ/(μ + p\ dr/r = dp/(μ + p). Then (rw)/(rowo) = (μ + p)/(μ0 + Poi where
μ o ^ μ U Po=P(μoX ro=r(μo), wo=w(μo). We choose r o , ω o so that
r>0, ω>0. Now inequalities (2.2) readily show that:

Lemma 2.6. μ^μo=>p^po, r^r0, w^w0; μ/μo

(p/Po)1/4^r/ro; i ( μ - μ o ) ^ P - P o / (wM>)1/3 ^r/r0;
For μ^μ0, these inequalities are reversed. •

In terms of these quantities, the energy-momentum conservation
equations are (cf. [11])

dlog(wϊ3 cosh β)/ds = 2tanhβ cda
d, (2.9)

d\og(r sinh β)/ds = -caθabc\ (2.10)

where ad is the trace of the commutation coefficients (or Lie derivative
components) yκ

μv of a basis of invariant vectors in the surfaces Jί{s)
( s e e [ 1 0 , l l ] ) ; s o α e = i f β β , adn

d = 0.

Lemma 2.7. In a universe which is not Type IX, — S _ < s < 0 = >

Ϊ^ rsinh^ ̂  B'Γ*, Ml'1 < wcosh^ < M'Γ5
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where B,B' are constants ^0 , M, M are constants >0; B,B' are >0
unless β o = O, when B = B' = 0. When 0<s<S+7 these inequalities are
reversed.

Given θ and θabθ
ab, the range of values θabe

aeb can have (for any unit
vector ea orthogonal to na) is bounded by ^θ±(lψabθ

ab-^θ2))1'2.
By (2.4), θ2 > θabθ

ab, and θ > 0 for - S_ < s < S+9 so

-±θ<θabe
aeb<θ. (2.11)

Using this one can integrate through (2.10) to obtain the first inequality.
When αα = 0, (2.9) easily implies the second inequality is satisfied;
when α b φ0, 3R^—6ada

d (see equation (8 b) of Appendix I in [10];
this is the case when n1 = 0) so Eq. (2.4) shows f θ2 > 6 ada

d. As θ is positive,
it follows that for any unit vector e orthogonal to w,

- f < 9 . (2.12)

Using this one can integrate through (2.9) to obtain the second ine-
quality. •

Lemma 2.8. Consider a universe which is not Type IX. If β is unbounded
on some open interval of s(s< 0), then θ is also unbounded there.

From Lemma2.5 and Eq.(2.4), (H')2Γ6>θ2>2μcosh2β. When
μ^μ0, Lemmas 2.6 and 2.7 show μcosh 2 β> (μ0M/w0) Γ~1coshj5; and
when μSμ0, μcosh2β> μo{M/wo)

413 Γ4/3(cosh/?)2/3. Hence there are
positive constants A, A such that if μ ^ μ0, Al~5 > coshjS, and if μ ^ μ0,
A'Ϊ~Ί > cosh β therefore whenever (for s < 0) β is unbounded, fapproaches
arbitrarily close to zero, and θ is unboundedly large then, by
Lemma 2.5. •

3. Matter Singularities

In a great many cases one can show that the cause of the breakdown
of prediction is a singularity where the fluid energy density and the
space-time curvature go infinite.

The simplest situation is the case where if is parallel to na, i.e. the
fluid flow is orthogonal to the homogeneous surfaces, (cf. [10]). The
result is essentially well known:

Theorem 3.1. If if is orthogonal to £f, then s_ = τ_ is finite. Both the
energy density μ and the curvature invariant RabR

ab diverge on Jf(s)>
-S_<s<S+, as s^-S_ = -s_.

If ua is parallel to na on &>, then if is parallel to na in D(£f) (cf. [11]).
Thus the fluid expansion θ = ua.a is the same as the normal geodesic
expansion θ, and diverges in the finite distance S_ if the universe is
not Type IX, by Theorem 2.4; and ί->0 then. Now Lemmas 2.7 (with
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β = 0) and 2.6 show μ-»oo as s-> — S_. Then RabRab diverges by (1.3),
which follows from (2.1).

The same result will be true for a Type IX universe, provided it can
be extended far enough to imply f-> 0. However because β = 0, one can
use the fact that 3R is bounded above if Γis bounded below to generalize
the second half of Theorem 2.4 to this case also; and the result holds
also for Type IX universes. •

In the case of tilted cosmologies (when u and n are not parallel)
the situation is more complicated. Matzner et al. [12] showed there
was a matter singularity in all Type IX dust universes when Γ->0, and
Matzner [13] extended this result to the case of perfect fluid Type IX
universes. They did not however prove the universes could be extended
until ί->0. We here consider universes other than Type IX, and use
essentially the same methods as Matzner et al to prove that matter
singularities occur in all Class A universes (except Type IX, which our
method does not cover) and in certain Class B universes, where we use
the notation introduced in Ref. [10] for the group types. The group
structure contants Ca

βy obey the relation Ca

βoc = O if and only if the
vector ad (see Lemma 2.6) vanishes. If Ca

βa = 0oad = 0, we say the group
is in Class A; if Ca

β(X + 0<=>ad + 0, we say the group is in Class B.

Theorem 3.2. In a tilted homogeneous model with (abc
b) bounded

above for s < 0, s_ > τ_ is finite; and if the universe is not Type IX, both
the energy density μ and the curvature invariant RabRab are unbounded
on Jf(s) ass-+ — S_ = —s_ (or equivalently, on J^(τ) asτ~> — T_ = — τ_).

If the universe is Type IX, the first part follows from [13] 5. Now
suppose it is not Type IX. By Theorem 2.4, f->0 as s-» — 5_ so we can
only hope to avoid a matter singularity if β-+oo as s-» — 5_ (by Lemmas
2.5-2.7).

Let there be some upper bound on (adc
d) for s < 0 ; integrating

through (2.9) shows

- 5 _ < s < O^wcoshβ > MΊ~3, M"(>0) constant. (3.1)

Also Eq. (2.4) shows

Θ2^θabθab + 2μcosh2β. (3.2)

Combining (3.1), (3.2), and Lemma 2.5 shows

- S _ < 5 < 0=>(θabθab)/φ2) < 1 - (2μ/w2) (M"2/Hf2). (3.3)

Now suppose there were an upper bound μ! to μ for — £ _ < s < 0 .
Then (3.3) and Lemma 2.6 show

(θabθab)/(θ2)<\-η

And will also follow from Theorem 4.1.
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where η = 2 μ 0

2 M " 2 ( μ ' w 0

2 # / 2 Γ 1 if μ ^ μ0, and η = 2μ0

3/2M"2

• ( μ ' ^ w o 2 / / ' 2 ) - 1 if μ ^ μ 0 . Using this and the relation (0β l,0β b)±^ |0αb£
f leb|

which is valid for any unit vector e orthogonal to w, (2.10) shows

- S_ < s < 0=> I dlog(rsinhβ)/ds| ^ |0| (1 - ηf.

Integrating through this inequality shows that

-S_<s<0=>rsinhβ<BΓ3il-η)\ B(>0) constant. (3.4)

Finally (3.1) and (3.4) together show that, for - S_ < s < 0,

w/r > {M"tcinhβ)/(BΪε), e = 3(1 — (1 — ηf) > 0 .

By Lemma2.6, this would imply μ->oo as 5 ^ —5_ (when ί-»0 and
j?->oo); so the assumption that μ is bounded above as s-> — S_ has lead
to a contradiction. •

When the conditions of Theorems 3.1 or 3.2 are satisfied in a
universe which is not Type IX, we know that the density is unbounded
within a finite proper distance along the normal geodesies and along
the fluid flow lines. We also know that it is unbounded on every past
inextendible non-spacelike curve, within a finite proper time, because
the surfaces Jf{s) are Cauchy surfaces; however we do not yet know
if this happens within a finite affine distance along every past-directed
non-spacelike geodesic.

Lemma 3.3. When the conditions of Theorems 3.1 or 3.2 are satisfied
in a universe which is not Type IX, the matter density is unbounded within
a finite affine distance on every past-directed non-spacelike geodesic
through 6f.

Let the geodesic xa(v) have tangent vector fc"; then the affine parameter
υ is related to 5 by

v= -J M T 1 ds= -3 lilθinX))-1 dϊ. (3.5)

We write the geodesic tangent vector in the form k" = (nbk
b) κ~1(—κna + ea)

where eae
a = 1, eana = 0, κ> 0 and κ2 ^ 1 as \C is timelike or null (As it is

past-directed, nbk
b > 0.) It then follows that

d{(nbk
bΓ[)/dv= -θabe

aebκ~2 <±θ , (3.6)

on using (2.11). Hence s < 0=>

(nbk
by1 < A\~1, A(>0) constant. (3.7)

With (3.5), this shows

lΐ2ί dΐ.
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From the proof of Lemma 2.8, this is bounded as s-> — S_, i.e. as
ί->0. Thus the geodesies, which pass through every surface Jf{s\
— S_ < s < 0, as these are Cauchy surfaces, do so in a finite affine param-
eter distance. •

4. Intermediate Singularities

Theorem 2.4 shows that the Cauchy development of the spatially
homogeneous initial data is limited. Theorems 3.1 and 3.2 show that
in a wide variety of circumstances this is due to the occurence of a matter
singularity; in these cases, the causal past J~{ίf) of the surface £f is
precisely equal to its past Cauchy development Ώ~(Sf) (so T_=τ_) .
We now consider the cases where J~{&?) — D ~ ( y ) φ 0 ; these are the
cases where the fluid crosses a Cauchy horizon H~(y), coming from a
region of space-time which is not determined by the data on the surface
£f (and in this case, T_ < τ_).

An example of a universe in which this happens has been given by
Shepley [14]. We shall extend this result to show there exist other
such solutions.

Theorem 4.1. There exist tilted homogeneous cosmologies in which
J~{S?) — D~(^)ή=0 for every group type in ClassB, and for both zero
and non-zero vorticity. There exist no such universes in Class A.

The past Cauchy horizon H~(£f) is defined to be the past boundary
of D~(£f) in Ji. First, we note a lemma which follows from (4) and the
homogeneity of D{^)\

Lemma 4.2. // J~{^)- D~ (5^)4=0, the past Cauchy horizon H~{Se)
is the homogeneous null surface #X — T_), which is homeomorphic to £f. •

Consider now the tilted homogeneous cosmologies in the "fluid basis"
of [11]. If we can find a solution in which the tilt parameter λ = rtanh/?
is less than r in some region ^lίCJi and equal to r on the boundary
dtf/ of <%, we have a solution of the desired type, as the surfaces of
transitivity then make a transition from being spacelike to being null.
As most of the field equations and Jacobi identities determine the
propagation off a given homogeneous surface, all we have to do (cf. [11])
is find a set of initial data on a null surface λ = r such that the constraints
((̂ 4) — (D) of [11]) are satisfied, and the Jacobi identities naβa

β = 0 of the
group are also satisfied (these are just the equations obtained on
eliminating the derivatives between the (123M012); (123)? (012)' a n d
(123), (012) Jacobi identities of Appendix A in [11]). We can, for example,
do so by setting all the ya

bc to zero except θί = θ2, θ3, y1

2$> T2i3> a n < ^
y1i3 = y223 > ensuring that y1

13 — θί ΞΞ/CΦO. Then naβa
β = 0, and the

constraints (A) — (D) reduce to
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on the surface λ = r, in the case Λ = p = 0 = ω, r= 1. One can now easily
see that these constraints can be satisfied for each group type in Class B.
More complicated examples show that non-zero Λ, p or ω do not prevent
the constraints being satisfied on the surface λ = r, in Class B universe.
They cannot be satisfied in any Class A universe (in agreement with
Theorem 3.2). •

The simplest such universes are tilted L.R.S. (TypeV) models;
the example given by Shepley [14] is a zero-pressure solution of this
kind (whose local behaviour has been previously studied by Farnsworth
[19] and Ellis [20]); it is the special case of Theorem 4.1 in which

τ123 = y2i3 = o.
We now wish to examine the nature of the singularity in these models.

We first prove two preliminary results.

Lemma 4.3. If the density μ is bounded in D ~ (if) in a universe which
is not Type IX, then βφO, ad + 0; and 0->oo, β~+oo, a2 =ada

d-*oo, and
adc

d is unbounded below on the surfaces Jί(s) as s-» — S_. Every past
inextendible non-spacelike geodesic through if passes through every
surface Jί(s\ — S _ < s < 0 , within a finite affine parameter distance.

For — 5_ < s < 0 , there are constants Ai,Bi such that

A1ΐ
3<w<A2Γ

1, (4.1)

Bj4<sinhβ<B2Γ
1112. (4.2)

If μ-+0 as s~+ — S_, then there is a singularity ass-+ — £_, and J~(£f)

The statements for θ and adc
d follow from Theorems 2.4 and 3.2.

The divergence of β if μ is bounded follows from Lemmas 2.6 and 2.7.
The equation for a [(2.16a) of [11]) and (2.11) show -\d(a2)jds
= θaba

aab^θa2, so a2l6>A, A = constant >0. The statement about
the geodesies follows from the proof of Lemma 3.3.

To prove the second part, note that Eqs. (2.9)—(2.12) imply the
inequalities (for β > 0)

θ(tsinh2β + f t a n h β - 1)> w~xdwlds{{ - tanh2βdp/dμ)

θ(i + dp/dμ + f dp/dμtanhβ) > (tanhβ)~x dβ/ds (1 - tanh2βdp/dμ)
(4.4)

Using (2.2) one can integrate through (4.3), (4.4) to obtain (4.1), (4.2).
(In fact if dp/dμ is constant, one can get much better bounds on w, β by
integrating through (4.3), (4.4).) Finally, if μ->0 then w->0; but the
conservation equations show w = woexp[ — γQθdτ~\, which can only
tend to zero in the finite interval (— T_, 0) if θ is unboundedly large on
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Jί(s) as s-> — S_. Hence the fluid congruence is singular on any curve
y(s), — iS_<5<0, in the limit s—• — S_, and the space-time cannot be
extended to y(-S_). Π

Lemma 4.3 applies to the homogeneous cosmologies with J~(£f)
— Ό~(Sf) Φ 0, for then, given any point p e £f9 μ is bounded on the curve
Ψτ(p) for 0 > τ > — τ_, so μ is bounded in D~ (ί^). In fact in this case it is
obvious that β-*oo because this is precisely the statement that the
spacelike surfaces of transitivity go null.

The last part of the statement shows that if J~(5^)-D"(c5^)Φ0,
then μ (which must tend to some limit as s-> — S_, as Ώ~(£f) is extendible)
tends to a non-zero limit as s-» — S_.

When H~(<£f) exists, its null generators are group orbits; they are
geodesies which are complete in the future but incomplete in the past.
In order to simplify this and the following proofs, we add to the Conditions
(l)-(4) of §2 the requirement: (5) £f is simply connected.

It then follows, as the group is not Type IX, that 5^ is homeomorphic
to R3 (Schmidt, [21]). This requirement is not essential, as if it is not
true in (Jί, g) there is a covering space (Ji, g) of (Jf, g) in which it is
true; and the properties of (J£,g) can then be found from those of
(<y#, g) by use of the canonical projection.

Lemma 4.4. // J~ (£f) — D~ (Sf) + 0, the null geodesic generator λ(u)
of K~(Sf) through any point qeH~(^) is the orbit of a canonically
parameterized group of isometries {Hλ(v)}9 — oo<ι;<oo. The range of
u is + oo > w > — w_, where w_ is finite; the divergence θ = k?.a of the
(future directed) null tangent vectors k = δ/du, or its derivative dθ/du,
diverges to oo as w-> — w_. There is a spacelike 2-surface Ά (homeomorphic
to R2) such that the mapping H: (— oo, oo)x £-^H~(^) which maps
(v, Ά) to Άυ = {Hλ(v) q,qe£} is a diffeomorphism.

By Lemma 4.2 there is a unique null geodesic segment λ(u) through
each point qeH~(^), which is complete in the future direction. As

is a homogeneous surface, there is some Killing vector field

ξ in D~(&?) such that ξ\q is parallel to the null geodesic tangent vector
d/du\q. Let the canonically parameterized group of isometries generated
by ξ be Hq(v); this is a complete group because of the homogeneity
of H~(£f), which follows from that of Sf. Because ξ is a Killing vector,
its magnitude ξ2 = ξaξ

a satisfies d(ξ2)/dv = O; so the group orbit
Jήfq = {Hq(v)q, —CO<V<GO}, is a null curve. However this orbit lies in
H~(Sf), and the only null curve through q lying in H~{£f) is the null
geodesic λ(u); so this null geodesic is the orbit of q under the group of
isometries Hq9 (which we can write as Jfλ{v% and much of the elegant
Boyer-Ehlers analysis [22] applies. The Killing vector ξ is spacelike
in the surfaces ^ ( τ ) , 0 > τ > — T_, as these are spacelike surfaces, and
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is null on H~{Sf\ On λ(u) the Killing vector ξ = d/dv and geodesic
tangent vector k = d/du are parallel vectors (we take them both future
directed) obeying the relations k?.bk

b = O, ξa.bξ
b= +cξa; and just as in

Lemma 2 of [22], c is a (real) constant on λ(u) (which, if non-zero, can
be chosen to be positive).

Two cases arise: (i) c + 0oξ2

ia\qή=0. In this case the parameters
w, v and the vectors ξ, k are related by

k = Qxp(—cv)ξ, u= —u_ +c~1Qxp( + cv); w_,c(>0) constant

(4.5)
on λ(u). Clearly u can be extended beyond every value greater than — u_
it cannot be extended to the value — w_, for then the points λ( — M_)
would be fixed points of the group in R~(ίf\ and the flow lines of the
fluid passing through these points would be a preferred subset (at most
2-dimensional) of R~(ίf\ contradicting the condition that H
be homogeneous. Thus in this case the geodesic generators of H
are incomplete, (ii) c = 0oξ2Jq = 0. In this case the geodesic generators
of H~(£f) are complete (see [22]). We shall now see that only the first
case is possible.

Because of Condition (5) and Lemma 2.1, H~(£f) is diffeomorphic
to R3; as there is a future-oriented null geodesic generator of H~(£f)
(complete in the future, but possibly incomplete in the past) through
each point of H~(£f\ one can find a smooth spacelike 2-surface Ά
which intersects each geodesic generator just once. Defining Άv by
mapping Ά a group parameter distance v along each geodesic generator,
it is a spacelike surface in H~(Sf\ as it is not tangent to λ(u). This map is
regular as long as ^bka.h is bounded; but this is true as long as dθ/du
is bounded, because θ obeys the equation

dθ/du = kb >aka;b + Rah]ekh<ψ (4.6)

along λ(u) [which is just the null analogue of (2.5), (2.7), the inequality

following because of (2.1) and (2.2)]. Hence u can be extended beyond

every value u! for which dθ/du is finite. On the other hand (4.6) shows

that θ-xx) (and dθ/du-^oo) for some finite value u" of u if λ(u) can be

extended that far; however it cannot be extended to the value u", for

if it could the points at which θ was infinite would form a preferred subset

(at most two-dimensional)6 of H~(ίf\ again contradicting the ho-

mogeneity of H~{£f). Thus there is a finite value w_ such that — >oo
du

precisely as u-> — M_; the geodesic generators of H~~(βf) are incomplete;
and (4.5) holds.

6 If an affine transformation of u is made, the points of H~(Sf) on which §—>-oo remain
invariant (see [9]).
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Using any remaining freedom in the normalization (on 2) of each
Killing vector ξ\q parallel to the null generator of H~(^) at qe£ to
ensure that {ξ\q, q e £} is a C1 vector field on J, the map H is a diffeo-
morphism. •

Note that while H~ (£P) is a local isometry horizon, according to
Carter's definition [23], it is not a Killing horizon (see remarks below);
in fact the Killing vector field will in general be null, in H~'{Sf\ only
on the null geodesic λ(u) through q, and will be spacelike elsewhere in
H~(5f). The essential difference between our situation and that studied
by Boyer-Ehlers is that in their case the fixed point of the group is in the
horizon H~(£f), and so the horizon bifurcates there; in our case the
fixed point is excluded from the space-time, and so the horizon K~(ίf)
is a single smooth null surface which is incomplete in the past.

The fluid is invariant under the group Hλ(v), so an infinite number
of flow lines intersect the geodesic λ(u) to the past of Ά (for this corre-
sponds to — oo < v < 0). However this happens in the finite affine distance
— w_<w<0, so in some sense an infinite amount of matter passes
through a finite region of space-time. The matter itself encounters
only bounded densities and curvatures on each world line near H~(£f)\
so it seems likely that the singularities which occur are intermediate
singularities, in the classification introduced in Section 1. This ex-
pectation is fulfilled, as we now see.

Theorem 4.5. If J" (Sf) - D~(Sf) φ 0, each past directed null geodesic
generator of H~(£f) ends at an intermediate singularity. Further each
past directed geodesic orthogonal to ίf remains in D~(£f) and has a past
endpoint at an intermediate singularity; so s_ = S_.

Given any curve λ(r) with tangent vector k = d/dr, (2.1) shows

) (uak
a)2 + i ( μ - p) (fcafc*). (4.7)

First, let λ(ή be a future-directed null geodesic generator λ(u) of H
Then (4.5) relates k to the future-directed Killing vector ξ which is
parallel to k on λ(u)\ so

RahVtf - (μ + p) exp(- lev) (ξau
a)2 on λ(u). (4.8)

Now (μ + p) is constant and positive on λ(u\ as this is an isometry orbit
and (2.2) holds on Jί\ and (ξau

a) is constant on λ(u\ because ξ is a Killing
vector, and so must commute with u. Thus the first and third factors on the
right hand side of (4.8) are constant and positive on λ(u)\ hence as v -• — co,
i.e. as u~+ — w_, Rabk

akb-+oo. As Rahk?kh is just a Ricci tensor component
in a parallely transported null tetrad along u in which k is one of the null
vectors, this suggests that a Ricci tensor component must diverge in a
parallely transported orthonormal tetrad along λ(u). To prove this
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rigorously, let (k, /, w, ~n) be a parallely transported null tetrad along
λ(u\ with fc ί = — l , n n = l and the other scalar products zero, and let
(£, ι/, v, v) be a null tetrad dragged along λ(u) by ξ, with ξη= — ί,
v v = 1 and the other scalar products zero. As k and ξ are parallel null
vectors on λ(u) obeying (4.5), the most general transformation relating
these bases on λ(u) can be written

k = exp(- cv) ξ , / = exp(cι?) (η + Bv + Bv + BBξ), n = eiθ(v + Bξ)

where θ is a real function of i; and B a complex function of υ. The com-
ponents of Rab in the basis (ξ, J/, v, v) are constant along λ{u) because
the Lie derivatives with respect to ξ of Rab and of the basis both vanish
on λ(u); so if |J5| does not diverge as v ~» — oo, the only divergent component
of Rab in the basis (ft,/, n,n) is Rabk

akb, and hence in the canonically
associated parallely transported orthonormal basis the Ricci component
jRab(ka + la)(kb-\-lb) diverges. On the other hand if |B| diverges, at
least one of the components \Rah{na + na) (nb + nb\ jRab(na + na) (nb - nb)
is unbounded as i;~> —oo. Hence in any parallely transported ortho-
normal basis along λ(u), there is always some Ricci tensor component
which does not go to a limit as u-* — w_. On the other hand this is not a
curvature singularity, as all Ricci (and Weyl) components are constant
along λ(u) in the orthonormal frame which is canonically associated
with the frame (ξ, η, v, v).

Second, let λ(r) be a past directed normal geodesic y(s). Then
}C=-na\ by (2.3), Eq. (4.7) becomes

Rabn
anb = cosh2β(μ + p)-±(μ-p).

As μ and p are bounded in D~(Sf) but ^~^ooas5~> — 5_, this shows that
Rabn

anb -+ oo as 5 ~> — 5_7. In this case, na is a unit timelike vector parallely
propagated along the geodesic y(s); so adding three unit, orthogonal
spacelike vectors which are parallely propagated along y(s\ we have a
parallely propagated orthonormal tetrad along γ(s) in which one Ricci
tensor component diverges as s-> — S_. This is not a curvature singularity,
because on some fluid flow line we can choose an orthonormal tetrad in
which the timelike vector is the fluid flow vector ua and in which [as
it crosses H~(^)~\ all the Ricci and Weyl components are well behaved
as s~> — 5_. Spreading this tetrad over the surfaces Jf{s\ —S_<s<0,
by the simply transitive group of isometries, it provides an ortho-
normal tetrad at each point of D~(βf) in which the curvature tensor
components are well behaved; so in particular, we have an orthonormal
tetrad along y(s) in which the curvature tensor components are well-
behaved. Π

7 μ + p cannot go to zero as s-> — S_, because it takes the same values as on the fluid
lines which cross H~{^)\ and μ + p > 0 on H~(Sf).
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It is instructive to consider explicitly what parallel propagation
of vectors along λ(u) looks like in the fluid basis of [11], with β replaced
by the parameter λ = rtanhβ. To do this consider a surface on which
λ = r9 which is the condition for a null surface of transitivity. The con-
dition £ 2

f l Φ 0 is just the condition (λ/r)i0 + 0, so (by the argument
just given) we must have

£ 2 , α W ) * O o 0 3 + r i O Φ θ on H+(<f). (4.9)

In fact a check shows that (4.9) must be true because of constraint
equation (C) of [11]; for this shows that if θ3 + rtO = 0 when λ = r,
the condition μ + p > 0 cannot be satisfied. Now the vector C = u — c
is a null vector in ¥L~{if) and so is parallel to the null geodesic generators
of H~(£f}\ because it is invariant [on λ(uf] under the group of isometries
generated by ξ, it must differ from ξ (which satisfies the same condition)
by at most a constant multiple on λ(u). Thus we can normalize ξ so that
on λ(u), C = d/dv where v is the group parameter. Now parallel pro-
pagation of a vector X along the integral curves of C is given by dXb/dv
= +{Γb

3f — Γb

Of) Xf, where the components are taken with respect
to the fluid basis. The quantities Γa

bc are constant on λ{u), so unless all the
combinations (Γb

3f — Γb

Of) are zero, a Lorentz transformation with
unbounded parameter values will relate a parallely propagated basis
to a fluid basis, as υ-+ — oo and (4.9) shows they are not all zero. Thus an
intermediate singularity will occur as υ ~> — oo if this corresponds to a
finite value of the affine parameter u. However an explicit check shows
that the vector K = exp( — (r 0 + θ3) v) C obeys the above equation for X,
and so is parallely propagated along λ(u); this shows that the constant c
in (4.5) is just +(r 0 -h 03), which is non-zero, and so v-+oo corresponds
to a finite value of u.

One can also check whether C is parallel to a Killing vector field
on H~(^) [and not just on λ(u)~\. In fact if ξa were a Killing vector
field on H~(Sf), then ξa would be a null geodesic congruence generating
if-(.50 and Eq.(4.6) would show Rabξ

aξb = O on H~{^); but this
implies (μ + p) (uaξ

a)2 = 0, contradicting μ + p + 0 on H~(6f). Hence
H~(£f) is not a Killing Horizon.

While we now know what happens on the normal geodesies to if,
and on the generators of H~(£f\ we do not yet have information about
what happens on a general non-spacelike geodesic through if. The
geometry of the spaces we are considering is complicated by the fact
that u and n do not, in general, span 2-surfaces in space-time.

By (4.7), (2.3), and Lemma 4.3, as s-» - S _

Rah^kb^{μ + p) Qxp(2β) ((na + ca) iff + i ( μ - p) K>ka

on any past-directed non-spacelike curve λ(r) with tangent vector k.
Here r must be a monotonic function of — s; (na + ca) k" ̂  0 and μ, p go to



The Big Bang 139

finite limits μ0, p0 such that μ0 + p0 > 0, so

lim (rcα + cfl)/cα + O^Kflfofc
β/cb-»oo as s ^ - S _ ;

and if lim (na + ca) k" does not exist, Rabkf*If is unbounded as s-> — £_.
S~* o —

Now suppose that lim (na + ca) k" = 0. We write out the corn-
s ' -S-

ponents in a normalized tilted basis, i.e.

k= -k° u + k1 c + k2 e2 + k* e?,

where (c, e2, e3) are an orthonormal triad in the surfaces Jί(s). By (2.3),
the condition fcflfc

α^0 shows that -k°eβ ^k1 ^k°e~β\ and the limit
condition shows that, given any positive number ε, Ik1 — e~βk°\ <ε for s
sufficiently close to — S_. Hence there is an s " > 0 such that s < — s"
implies e~β — ε/k° < kx/k0^e~β. Now a detailed geometric argument
shows that any non-spacelike geodesic satisfying this condition
crosses R~{ίf\ Thus any past-directed non-spacelike geodesic in
D~(Sf) either crosses H~(^) or runs into an intermediate singularity.
The same conclusion can be shown to be true for any timelike curve
of bounded acceleration.

Finally we remark that if Condition (5) had not been put on, our
conclusion would have been qualitatively similar, except that the
singularities occuring would have been intermediate singularities which
in addition could have had some of the nature of a cone singularity;
that is, there would have been too few directions, in the limit 5-> — S.,
for one to be able to construct a regular tangent space for any of the
singular points (cf. [4], p. 274, where certain identifications result
in a cone-type singularity in Minkowski space-time, and [16]).

5. Continuation across the Horizon

When J~(£f) — D~(<Sf)ή=0, one cannot in general say much about
this region of space-time from the data available in D{£f)\ for new
information is available in this region, and affects the development
of the fluid across the horizon R~{Sf\ In particular cases one can
deduce something about the further behaviour; for example, in the
Farnsworth (Type VL.R.S.) solution [14,19] a matter singularity
will probably eventually occur, because the matter moves without
acceleration or rotation; so Raychaudhuri's equation applied to the
fluid congruence shows that a matter singularity must eventually
occur on each fluid flow line, if they can be extended far enough.
However we cannot~deduce this result in more complex models with
non-zero pressure or rotation.
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To deduce the behaviour beyond the horizon we have to make some
further assumption, which in effect determines what new information has
come into this region. We can only hope for some sort of unique pre-
diction by assuming that no new information has come in; and there
seem to be effectively two ways of doing this.

The first way is to assume that the symmetry properties of the space-
time in D(£f) are continued across the horizon. More precisely, we can
replace assumption (4) by assumption (4'):

(4') A continuous group G acts as a C2 group of isometries of (,/#, g),
simply transitive on 3-dimensional surfaces of transitivity; and at
least one of these surfaces is spacelike8.

The second possibility is to assume that the solution in J~ (<£?) — D~ {ίf)
is obtained by analytic continuation of the solution in D(^\ which is
analytic if the equation of state is analytic. More precisely, we can
replace assumption (1) by (Γ):

(1') (*/#,#) is an analytic space-time which is inextendible and
locally inextendible9.

It can be shown that when p(μ) is analytic, these two ways of ex-
tending beyond the horizon are equivalent, providing one does not
run into a locally extendible singularity. As the symmetry extension
[i.e. assuming (4')] is less restrictive (for one cannot obtain an analytic
extension, in general, if p(μ) is not analytic) and unique even if there
are locally extendible singularities (we cannot guarantee that analytic
extension will give a unique answer then), we shall proceed by using
(4') to determine the solution beyond the horizon; in general, our
results will also hold for the obvious analytic extension.

Thus we proceed by assuming (1), (2), (3), (4'), and (5). Now (4.7)
and (4.9) show

Lemma 5.1. The map Ψ : &> x(0, ~τ)-» J~{£f) defined by Ψ(p,τ)
= Ψτ(p) if pe£f and τe(0, — τ_) is a diffeomorphism of ^ x ( 0 , — τ_)
onto J~(y). The group G has the surfaces ^(τ) = ψτ(£f\ 0 > τ > - τ _ ,
as surfaces of transitivity. If τ_ > T_, then for values of τ just less than
— T_ these homogeneous surfaces are timelike; and each surface $F(τ)
which is null divides regions of J~ (5^) where they are spacelike and timelike,
and is a Cauchy horizon for the spacelike surfaces. D

After proving two preliminary results, we shall show there can
be at most two such null surfaces ^{T^. We first return to consider the
Cauchy development D(S?) when Conditions (ί)-(5) hold. In §2, we

8 One could use the slightly weaker concept of a 3-transitive group [24] here but
would obtain the same set of solutions. £f can be chosen to be one of the spacelike surfaces
of transitivity; then (l)-(4) hold in Ό(ίf\

9 If the solution runs into a locally extendible singularity, one cannot make this
stipulation; but without it, analytic extension is not unique.
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considered this development to the past of ^ , i.e. for negative values
of s and τ. Now we consider the region of D(£f) to the future of y .

Lemma 5.2. Let (1)—(5) hold with G not a group of Bianchί Type IX.
Then S+ = s+ is infinite. As s~>oo, flUo, ί->oo; σabσab->0, 3 # - + 0 ;
μ-»0, p-»0, /—> oo. Every future inextendible timelike and null geodesic
through Sf is complete.

The argument leading to (4.2) shows that for s > 0 , £ ' ί 4 >sinhβ,
B'>0; hence j8->oo=>ί-»oo, which by Lemma 2.5 can only happen when
0->O and s->oo. Thus an argument similar to that of Lemma 2.3 shows
that the solution can be extended for infinite values of s in D + (^).
Now Eq. (2.4) shows σabσab->0,3£->0, μ-+0; by (2.2), p-+0 also. Lemma
2.7 shows w-*0, and so (cf. [11], p. 213) /->oo.

The statement for the geodesies follows much as in Lemma 3.3.
We have k as the future directed tangent vector; Lemma 2.5 shows
( — kana)~ί>Cl~1, where C is some positive constant, and then
v>3C$(ΐ2θ)~ί ά\, which shows I -KXD as f-*oo, i.e. the geodesies are
complete in the future direction. •

One might hope that the following conditions would hold:

β—>0 as s—»oo, and τ+ = T+ is infinite. (5.1)

However in general we are unable to state this; in fact B. Collins has
found some Type VL.R.S. solutions in which /?-»oo as S->ΌO, and in
which τ + = T+ is finite. When this occurs, the fluid runs into a conformal
singularity (cf. the proof of Lemma 4.3). However we expect this dis-
agreeable behaviour to be the exception rather than the rule. We shall
refer to a region J + ( 5 0 for which (5.1) holds as a regular future infinity.
Lemma 5.2 assures us that in the case p = 0, we can at least say that τ +

is infinite.
Next we consider when we can continue the solution along the

fluid flow lines. The assumption (4;) of a global group of isometries in
effect changes the equations from a hyperbolic system of partial differen-
tial equations, to a system of ordinary differential equations determining
the development along the fluid flow lines. Their solution exists and is
unique as long as the fluid flow is non-singular. More precisely,

Lemma 5.3. Let τ ; ^ τ _ . // the fluid shear and expansion go to well-
defined finite limits as τ—• — τ;, then the solution can be extended beyond
— τ', i.e. τ ' < τ _ .

The essential point is that as long as the fluid shear and expansion
are regular, the surface J^(τ) is regular and the solution can be extended
beyond it. One way to see this is to use Taub's coordinates ([25]; see
also [26]), obtained by choosing usual group coordinates in the surface
£f and then dragging them along by the fluid to all the surfaces #Xτ),
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— τ _ < τ < τ + . This provides a global set of comoving coordinates
for {Jί, g\ in which the metric takes the form

ds2 = haβ(xd) dx«dxβ - r(xc)~2 {dx° + Va{xy) dxa)2 (5.2)

where Va are the coordinate components of the vector υ = λc (Fo = 0,
as cau

a = 0) and haβ are the coordinate components of hab (again, ha0 = 0);
Greek letters run from 1 to 3. Because of Lemma 2.6, if r-»oo, a matter
singularity occurs. In fact the conservation equations along the fluid
flow lines show that the matter variables will be well-behaved as long
as θ is. Apart from the fluid index r, the variation along the flow lines is
in the functions haβ(Va are constants along the fluid flow lines because
of the conservation equations); and θa0 = 0, θaβ = ̂ rhaβ0, θ = jrgaβhaβ>0.

Thus as long as the coordinate components of σaβ, θ are bounded and
have regular limits, which will be true when the same is true for the
components of θab in a parallely propagated orthonormal frame along
the fluid flow lines, the metric is regular; the field equations (which
involve essentially only haβ,θaβ and matter variables) are regular, and
their solution is regular beyond — τ'. (One could alternatively use a
tetrad basis, such as the fluid basis of [11], and consider the problem
in this basis.) Thus the solution can be extended beyond — τ' unless
either the shear or expansion of the fluid [measured in coordinates
(5.2), or in a parallely propagated orthonormal tetrad along the fluid]
does not go to a bounded limit as τ —> — τ'. •

We can now characterize the only possible solutions in which the
fluid crosses a horizon into a region which has the same symmetry
group as D(£f\

Theorem 5.4. // (1), (2), (3), (4'), (5) hold with J-{S?)-D-(Sf)*0,
then D+(Sf) obeys the conditions of Lemma5.2. The spacetime {Ji,g)
consists of the spatially homogeneous region 3}χ = D(^\ plus a stationary,
spatially inhomogeneous region 22, which either (a) terminates at a
finite value — τ_ where the fluid runs into a singularity where either
θ or σab does not go to a bounded limit; or (b) contains fluid flow lines which
all extend to infinite proper times (τ _ is infinite) or (c) can be continued
across a horizon to a spatially homogeneous region ® 3 , where @3 again
obeys (in a time reversed sense) the conditions of Lemma 5.2.

This follows from the information we have available; having crossed
the horizon, the fluid either ends at a singularity in 3}2 (where either the
fluid shear or expansion does not have a good limit, by Lemma 5.3);
or can be continued indefinitely in Q}2\ or else crosses a horizon into ^ 3 ,
where now all the conditions of 2ιι hold but in a time-reversed sense.
3)γ (geodesically complete to the future) and ^ 3 (geodesically complete
to the past) cannot be extended further (if τ + or τ_ is finite, then by the
proof of Lemma 4.3, at least a conformal singularity occurs there). •
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Note that every past-directed timelike curve of bounded acceleration,
or null geodesic, in <3γ either runs into an intermediate singularity,
or crosses the horizon. In Case (a) such curves in 3)2 either run into the
intermediate singularity, or into the singularity which ends the fluid's
history; Case (b), they either run into an intermediate singularity,
or continue for ever in 3)2\ and in Case (c), they can cross the horizon
into Q)z instead of running into the intermediate singularity. The timelike
surfaces of transitivity in Q)2 have many properties similar to those
of the spacelike surfaces in 2)1 and ^ 3 ; for the geodesies normal to one
of these surfaces are normal to all of them, and just as in § 2 these geodesies
can have no conjugate points in S)2, but their divergence is unbounded
as the horizons are approached. It is probable that there will be causal
violations in Q)2 in Cases (b) and (c); since otherwise the existence of
closed trapped surfaces in Q)2, which implies that the future null geodesic
generators of j + (p) (for any point p) form a compact set, makes it unlikely
that any null geodesies could reach infinity. (Hawking, private communi-
cation). In Cases (b) and (c) there is no curvature singularity, i.e. no "big
bang", in (Jί, g); rather there are one or two intermediate singularities
which we shall colloquially refer to as "whimpers". In Case (a) ("whimper-
bang") we have both an initial singularity and an intermediate singularity
(but note that the singularity where the fluid begins might not be a matter
singularity, cf. the next section). One can more readily understand the
nature of these solutions by examining their structure as shown in Fig. 2;
these are similar to the usual Penrose diagrams (cf. [4]) indicating
conformal structure, but here each point represents a 2-surface diffeo-
morphic to R2 rather than a 2-sphere. They represent diagrammatically
the splitting of space-time into blocks ®/? with infinity brought to finite
values by suitable transformations1 0; because of the group of isometries,
the structure is the same through {Jί, g).

For completeness we include the diagrams for the cases where the
solution cannot be extended across a horizon (discussed further in
§ 3 and § 6). Note that while the normal geodesies run into the intermediate
singularities, the matter sidesteps these singularities and crosses the
horizon in those cases where J~(jy) — D~(£f)ή=0.

We have shown that these are the only possible behaviours when a
Cauehy horizon exists. The Farnsworth solution is one of kind (a), where
the fluid begins at a singularity (probably a matter singularity). We do
not have explicit examples fo solutions of kinds (b) ("whimper") or (c)
("whimper-whimper"); and indeed it is possible that a detailed examina-
tion of the field equations might show that no such solutions actually

1 0 These diagrams do not represent actual cross-sections of the space-time, in general,
because u and n do not in general span 2-surfaces. Each diagram shows one of the various
conformal structures, and assumes the infinities are regular.



144 G. F. R. Ellis and A. R. King

infinity

singularity which

s=== is probably a
matter singularity

ΛΛ/V intermediate singularity
homogeneous surface
geodesic normal

^ horizon (arrow shows
incomplete direction)

*~fluid flow line
infinity

Fig. 2a—e. The structure of spatially homogeneous universes (showing one of the possible
conformal structures at infinity, which has been assumed to be regular). Solutions where

Ύ (a) Type IX, (b) all other Bianchi types. Solutions where Jf-
(c) "whimperbang", (d) "whimper", (e) "whimper-whimper"
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exist (our examination has effectively been based on four of Einstein's
equations; the other six equations might imply non-existence). In order
to find examples of these solutions, or to prove their non-existence,
one will have to undertake a more detailed study of the field equations
than has been made here. A Lagrangian or Hamiltonian approach
will be difficult (see [25]) and it may be that only machine integrations
will settle this question. There are particular cases where one can obtain
further information; for example examination of the conservation
equations shows that if a is always parallel to c, or is always timelike
in Θ2, the fluid cannot cross two horizons (here aε=jya

εoc in a group
invariant tilted basis, and c is the unit projection of u into the homogene-
ous surfaces). An extension of results in [11] then enables one to state
if ω = 0 and the group is not Type III, the fluid cannot cross two horizons.

6. Conformal Singularities and Singular Infinities

We have now (in § 3) discussed some cases where the breakdown of
prediction in D+(,9}) is known to occur because of a matter singularity,
and (in § 4 and § 5) investigated those cases where the matter crosses a
Cauchy horizon. The question that remains is whether these are the
only possible behaviours, or not.

More precisely, we wish to pose the following question: suppose
that (l)-(5) are satisfied, and that J~{£f) is the same as Ώ~(Sf) (so
τ_ = T_^s_ = S_); does it then follow that the matter world lines in
D~(6f) end at a matter singularity, or not?

We have been unable to obtain a definitive answer to this question.
Suppose that J~(<9

?) = D~(£f), and that no matter singularity occurs;
then we know some conditions that will have to be fulfilled (Lemma 4.3),
and that coordinates (5.2) cover J~(<£f), which ends where either θ or
σab is not well behaved (Lemma 5.3). Thus either the derivative of θ or of
σab cannot go to a bounded limit as τ-> — τ_; so one might hope to be
able to show that there was either a matter singularity or a conformal
curvature singularity along the fluid flow lines, by using the propagation
equations for θ and σab. The vorticity enters these equations, its evolution
being determined by the vorticity propagation equations; but although
the acceleration (given by (1.25) of [11]) is well behaved if θ is, the same
is not true of the derivatives of ύa which enter these equations. So all
that one can find from the Raychaudhuri equation is that if the solution
cannot be extended beyond D~{ff) and no matter singularity occurs,
either σ2 is well behaved but one of σa

bσ
b

a, σa

bσ
b

cσ
c

a is not, or at least
two of θ\ σ2, ω 2 and ύa.a are not well-behaved. This information does
not seem sufficient to enable one to use the shear propagation equations
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(see [2]) to show that Eab is not wellbehaved in a parallel propagated
frame.

To examine this further, we use (1.25) and (1.16) of [11] to write
Raychaudhuri's equation for the fluid in the form

0 (1 - tanh2^ dp/dμ) + θ2 U- (2 - tanh2 β ) - ί -

dv μ {6Λ)

+ cosh β —- Θ(2Θ + ca.atanhβ) (1 - tanh2 β)
dμ

+ 2σ2 + i ( μ 4- 3p) = 2ω 2 + tanh2β(dp/dμ)' θ,

which is valid in D{^). As τ->—τ_, jS->oo, 0->oo and c f l. f l= —2αεc
ε is

unbounded above. The methods of Lemma 2.7 show that jθ<2θ
+ tanhβc α

; f l <§0, so the third term in (6.1) acts as an anti-damping
term causing instability. The sign of the coefficient of θ' is always
positive; the term in (dp/dμ)' will in almost all conceivable circumstances
be negligible. The problem is the second term; if 0^ dp/dμ ^ 1/6, this
term is positive and assists collapse, but if ίβ^dp/dμ^ 1, this term is
negative and resists collapse. It easily follows from (6.1) that:

Lemma 6.1. Let dp/dμ be constant and ω = 0. If θ is positive at any
time, it remains positive in Z)~(y)). If further 0^dp/dμ^ 1/6, a matter
singularity occurs within a finite distance, if s can be extended far enough
in Ό(Sf\ D

Thus under these restricted circumstances, acceleration cannot
prevent a matter singularity occuring in Ώ~(Sf)\ but it seems quite
feasible that, for example, if p = \μ the acceleration could prevent a
matter singularity occuring even if the vorticity were zero. It is also
conceivable that a conformal singularity might be avoided by suitable
balancing of the other terms in the shear propagation equation.

Hence if J~(&?) = D~(Sf), all we really know is that a singularity
occurs along each matter world line; if this is not a matter singularity,
it could conceivably be a locally extendible singularity, an intermediate
singularity or a conformal curvature singularity. On the other hand the
acceleration, shear and vorticity would have to be very finely balanced
for any of these singularities to occur without the expansion diverging
and a matter singularity occuring. Thus even though we have no rigorous
proof, we may make

Conjecture 1: the matter flow lines cannot end at a locally extendible
or an intermediate singularity.

It seems very likely that this is true, the essential point being that
in the cases considered in § 3 and § 4, the matter lines did not run into
the intermediate singularity, but bypasses it; if they had run into this
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singularity (or into a locally extensible singularity), it seems likely that
this would have turned it into a matter singularity. Similarly, we may
make

Conjecture 2: the matter flow lines do not end at a conformal curvature
singularity.

While it is conceivable that the shear, vorticity and acceleration
terms could balance each other in Raychaudhuri's equation without θ'
becoming disastrously large1 1, this requires a very fine balance to be
kept, and we can see no reason why such a fine balance should be
maintained. The other possibility is that the shear (and other terms) can
diverge with θ' diverging but θ remaining finite. For example, consider
pressure-free matter moving without rotation, so ω = 0 = ύa, μ = M/l3

(M constant > 0). Now suppose the Weyl tensor is such that for / less
than some value l0, σ2 = Σ2l~ΐ(l — li)~a where Σ,α and lγ are constants,
0 < £ , 0 < α < l , 0 < / 1 < / 0 . Then one can integrate Raychaudhuri's
equation to show that along the fluid flow lines, 0 < lx < I =>

3(Γ)2 + 2Σ2(ί - a)~1 (/ - /O1 -a-MΓ1 = constant

so as /~^/x from above, σ2->oo but /' goes to a finite value; and so /
and μ go to finite values also. In this case, the evolution of the shear
is such that a conformal curvature singularity occurs before a matter
singularity can occur. However we know of no exact solution with
p^ l/3/ι in which this behaviour occurs in D(£f)12 (although Collins
has found an example in which this does occur, when p = μ).

The situation, then, is that we can give no proof of either conjecture;
but it seems very likely that Conjecture 1 is true, and fairly probable
that Conjecture 2 is also true. If they are true, then the end of the Cauchy
development D ~ (Sf) occurs either at a matter singularity as in § 3, or
at a Cauchy horizon as in § 4 and § 5.

What we are able to say for certain is that when a curvature singularity
occurs it is also a scalar polynomial (s.p.) singularity [4]:

Lemma 6.2. When (1)—(3) hold, a curvature singularity occurs along
a given curve if and only if a s.p. singularity occurs along that curve.

This follows when one remembers that the vector u is uniquely
determined algebraically by the curvature tensor because of (2.1) and
(2.2), so the "electrical" and "magnetic" parts of Eab, Hab of the Weyl
tensor (see e.g. [2]) are uniquely determined, and their eigenvalues are
scalar invariants. •

1 1 It is even possible that θ —> — co and μ -»0 as τ -> — τ_.
1 2 However in the L.R.S. Type V solutions, if we do not assume the solution across

the horizon is obtained by analytic continuation, then it seems perfectly possible one could
have solutions with this behaviour in J~(Sf) — D~(Sf).
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A similar question arises in the "whimper-bang" case of § 5; while we
then know the flow lines come to an end at a singularity, we do not know
which type of singularity occurs. This is similar to the problem we have
just discussed, but more difficult because of the timelike nature of the
surfaces of transitivity. Collins has found examples in which the singu-
larity that occurs is a conformal singularity; however one might still
hope to prove that Conjectures (1) and (2) are true in general.

Finally, a similar question arises in the case of the behaviour at
infinity. In the case (§ 5) where only one whimper occurs, although we
know that the matter flow lines are complete, and so that they do not
run into a singularity, the nature of the final state could be singular
rather than regular. More precisely, consider a fluid flow line y(τ); as
τ-> — oo, it is quite conceivable that μ and p diverge, in which case we would
say there was a singular infinity in the universe model. Obviously one
could classify the possible singular behaviours of infinity as in § 1,
according to the behaviours of the curvature tensor components in an
orthonormal frame as τ-> — oo, into that of a curvature singularity and
that of an intermediate singularity. Clearly the future infinity in D + (^\
and the past infinity in the "whimper-whimper" case, are in some sense
singular when β->oo as s-> + oo; we have not investigated these cases
(in which the fluid can run into some kind of singularity as s->±oo)
in any detail. When β—>0 as s—• + oo, Lemma 5.2 makes it seem unlikely
that any singular behaviour will occur at infinity if (2.2) holds; but the
vorticity conservation theorem (see [2]) makes it quite likely that the
shear (and hence Weyl) terms diverge if dp/dμ= 1. Thus it is certainly
quite possible that even when the matter flow lines do not run into
singularities (as τ-» + oo), in some cases the behaviour of the universe
model is singular in a well-defined sense.

7. Conclusion

We have been considering perfect fluid spatially homogeneous
cosmologically models, and have found that in certain cases (including
all non-tilted models and all Class A models except perhaps Type IX)
the Cauchy development of the fluid from a spacelike surface of homo-
geneity is terminated by a matter singularity where the matter density
blows up. In some cases the matter bypasses an intermediate singularity
and crosses a Cauchy horizon into further regions of space-time; and
then either ends its history at a singularity, or possibly continues forever
without running into a singularity. There remains a possibility, which
seems rather unlikely, that the matter might be unable to escape beyond
its Cauchy development not because of matter singularity but because
of either a milder (locally extendible or intermediate) singularity, or
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because of a singularity in the conformal structure. We shall not consider
this third rather remote possibility further here.

To illustrate the essential features of the other two possibilities we
shall briefly explain how they can easily be understood by examining
a simple model for their behaviour based on two-dimensional Minkowski
space. First remember that the action of the Lorentz transformation
("boost") about a given point p in two-dimensional Minkowski space
is such that it acts in surfaces at constant distance from p (see Fig. 3).
The transformation through a hyperbolic angle β moves the straight
lines through p into each other, leaving invariant the null rays through p,
and leaving p itself fixed.

Now consider "painting on" a single matter flow line onto this space.
First, paint on the matter flow line in some arbitrary manner through p.
Then move this timelike line around by repeated action of the Lorentz
group boosts about p through the angle β; the resultant fluid flow field
on the space is invariant under the action of this group of isometries.
We really wish to consider the limit as j8->0, when the group action is
continuous and each surface at constant distance from p becomes a
surface of constant density; but for didactic purposes it is easier to
continue thinking of β as a finite angle. We now have a model of a
spatially homogeneous universe, with all observable properties uniform
on the surfaces at constant distances from p. However all the fluid flow
lines "pile up" at the null cone through p (see Fig. 3 b) and they intersect
at p because this is a fixed point of the group. Hence the fluid divergence
is unbounded at p, and the fluid conservation equations imply that
μ~>oo there: a "big bang" develops, the density of the fluid increasing
indefinitely on the surfaces of constant density as they approach p.
Thus in fact one now has to cut out of the resulting space the singular
point p and the null lines through p, where the matter density would
otherwise be infinite. This behaviour of the matter is an exact model of the
"big-bang" matter singularity in the Robertson-Walker universe, the
non-tilted universes, the Class A universes, and so on; the energy density
diverges on every past-directed non-spacelike curve through any
homogeneous spacelike initial surface £f, and this remains true no
matter what orthonormal basis might be used for measuring the stress
tensor Tab along such a curve.

Now suppose that the initial timelike line that was painted on did not
pass through p, but went from I to II, succesively crossing each surface
at constant distance from p in II. One could again spread this line over
the space, by repeated use of the Lorentz group about p, to obtain a
world model which was intially spatially homogeneous. Again the
normals to the homogeneous surfaces intersect at p, but now the matter
flow lines, though they "pile up" at the null line at 45° through p (see
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Fig. 3c), do not pass through this intersection; they cross H {£?) into a
region where the surfaces of homogeneity are timelike. As they continue
across each of the surfaces of homogeneity the density, pressure and so
forth are perfectly regular on each of these surfaces; so there is certainly
no matter singularity bounding D~ {£f\ However consider a null geodesic
generating H~(Sf); this geodesic crosses an infinite number of matter
world lines in a finite affine distance. This suggests that a singularity
occurs on the line at 45° where the matter world line pile up; and this

,spαcelιke\surfαces at
ull \constant

. \distance
timehke \ f romr

homogeneous
v surfaces

matter. ,
singularity

Fig. 3a—c. Two-dimensional Minkowski space as a model for singularities, (a) The action
of the "boosts" about p. (b) A matter line through p9 moved over the space by the boosts
about p, leads to a flow diverging from p. A matter singularity occurs, (c) A matter line
not through p, moved over the space by the boosts about p, leads to a flow which "piles up"
towards p but does not converge there. An intermediate singularity and a Cauchy horizon

for the homogeneous spacelike surface £f occur
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is indeed so. For example, use of Eq. (4.7) with k1 chosen to be the unit
normal vector na shows that the stress tensor component Tabn

anb

diverges along the normals, because uan
a diverges on the surfaces of

homogeneity as one approaches the horizon. Thus at least one matter
tensor component diverges in an orthonormal frame (with na as the
timelike unit vector) which is parallely transported along a normal
geodesic; so these normals cannot be continued to or beyond p. In
fact the whole line at 45° has to be removed from this space. On the
other hand one can obtain an orthonormal basis along a normal geodesic
by moving along an orthonormal fluid basis (i.e. one with u as the timelike
unit vector) under the action of the group, from some chosen fluid
flow line to the normal geodesic; then all the matter tensor components
are perfectly regular in this basis (both the matter tensor and the basis
are invariant under the group) all the way up to p.

This behaviour of the matter13 gives an exact model of an intermediate
singularity, such as that which occurs in the Farnsworth solution.

While we know that an intermediate singularity is possible in each
group type in Class B, we do not yet have any indication as to how
general the occurence of these singularities is. However one can investigate
this by counting up the degrees of freedom in setting initial data on the
null surface H~{£f), for each group type in Class B; and it then becomes

13 The geometry of the space-time is regular in all frames, for we have not used Einstein's
equations in these models.
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clear that there is an open set of models in each group type in Class B
in which an intermediate singularity occurs. This might still be a small
proportion of the possible models in each group type, but it is not
negligible.

The next question is whether the occurence of the intermediate
singularities in these exact universe models is compatible with the
present limits on the isotropy of the microwave background radiation.
To check this we have considered L.R.S. Type V tilted universe models
which are almost isotropic at late times; to simplify the calculations,
we followed [28] by taking this model as a perturbation of the unique
simplest "matter plus radiation" Robertson-Walker universe with
k = — 1. We assume decoupling takes place in the spatially homogeneous
region @v Just as in [28] (and cf. [29]) one can then find an expression
for the observed temperature To of black-body radiation emitted at
temperature Te and universe radius le; one finds

c4 -4c2q2 + q4

q { q _ M ) 2 { c 2 + q2)2dq

+ A2- **
i-M)(c2 + q2)2

where Aί9A2,M are constants describing the universe model; l0 is the
radius of the model at the time of observation, and c = cot(φ/2) where
φ is the angle between the direction of observation and the axis of
symmetry, measured from the + α direction. The anisotropy in this
expression can be arbitrarily small, and so is certainly consistent with
present day observations. A plot of this temperature as a function of φί4

is given in Fig. 4a and b for cases in which the matter runs into a singu-
larity before it can cross a Cauchy horizon, and in Figs. 4c and d for
cases where the matter crosses a Cauchy horizon and then later runs
into a singularity. Note the somewhat different modes of anisotropy
in these two cases. (We are indebted to Miss M. Shapcott for plotting
these curves.)

One further point of interest is that of the helium production in these
universes. If the production of helium were to take place in 3)x (or even £^3)
the calculation would be as usual, allowing for a possibly different
timescale of evolution through the helium production phase. However
if it took place in ^ 2 > it would happen in a highly inhomogeneous
situation; so very appreciable diffusion of particles could take place
between regions at different temperatures and stages of nucleosynthesis,
possibly producing markedly different results from the standard
(spatially homogeneous) situations.

The integrals in (7.1) can be worked out analytically.
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Fig. 4a—d. The temperature of the microwave background radiation in rotationally
symmetric Type V tilted universes, as a function of the angle from the axis of symmetry.
Cases (a) and (b) are ones where a matter singularity occurs before the matter can cross a
Cauchy horizon; cases (c) and (d) are cases where the matter crosses a Cauchy horizon,

and then a matter singularity occurs

Our examination of these homogeneous models has been on the
basis of General Relativity with A = 0. If A Φ 0 one can of course avoid
the occurence of any singularities by taking A positive and large enough
(it then acts as a negative energy density term); but this is only possible
if the deceleration parameter q0 is negative at the present time, and one
may also raise philosophic objections (cf. [2]). Nevertheless it is a
possibility that should be borne in mind. If the A term is non-zero but
does not prevent the occurence of a singularity, it does not seem likely
that it would change the nature of the singularities occuring (but its
effect on infinity could be considerable).
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One can of course examine the types of singularity occuring in many
other theories of space-time in a way similar to that we have used in
General Relativity. It is interesting to note that in the steady-state
universe, there is an incompleteness in the space-time (cf. [4]) which
(just as in our Minkowski model) is associated with an intermediate
singularity of the matter field but not of the space-time geometry (Carter
and Hawking, private communication).

One further line of investigation which suggests itself is to consider
what behaviour a quantum theory of gravity would predict near an
intermediate singularity; it may be relatively simple to extend the previous
examinations (see e.g. [30]) of homogeneous cosmological models to
investigate this.

Ultimately, of course, one would like to drop the restriction to
spatial homogeneity and examine more realistic universe models in
which inhomogeneities occur. We know that intermediate singularities
occur in a fairly wide class of homogeneous cosmological models;
will they be likely to occur in more realistic universe models? We cannot
provide a clear answer to this at present; as mentioned in the introduction,
all that the Penrose-Hawking theorems predict is the existence of some
singularity, without restricting the nature of the singularity. However,
one can obtain some clues by considering perturbations of the homogene-
ous universes, i.e. considering an initial data surface 5^ on which the
initial data is almost spatially homogeneous. The essential point here
is that if one sent a photon down the horizon H~(£f) in the models
we have considered, an infinite blue shift would occur (in the time-
reversed situation) as it approached the intermediate singularity [cf.
Eq. (4.5); u ξ is constant along the null geodesic generators of H~{£f\
so uk diverges]. Thus the photon would arrive with infinite energy
the effect of the perturbation (firing the photon down the null geodesic)
would be to turn the intermediate singularity into a curvature singularity
in this time-reversed situation (we are indebted to Misner for discussions
on this point). Hence we may surmise that intermediate singularities
are unstable, and can only occur if exceptional, high symmetry conditions
occur. One might be able to investigate this generally by an extension
of the approximation techniques of Lifschitz and Khalatnikov. In the
case of our homogeneous universes, it suggests that the perturbed
universe would be an inhomogeneous universe in which instead of each
intermediate singularity there would a curvature singularity. However
there is no reason to think that much of the matter in the universe would
fall into such a singularity; rather than being a big bang, it would be a
"little bang" into which a small amount of matter and radiation fell
(or from which a small amount of matter and radiation emerged),
most of the matter in the universe missing it. Thus we may surmise that
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Fig. 5. A perturbed "whimper-whimper" universe probably leads to an inhomogeneous
space-time with two "little bangs"; but most of the matter avoids these singularities

if the "whimper-whimper" universe of § 5 were perturbed, the resulting
universe would be one in which matter collapsed from a state rather like a
time-reversed Robertson-Walker universe; two little bangs occurred,
most of the matter sidestepping them and then re-expanding to a state
again like the presently observed universe (Fig. 5). Unfortunately this
line of argument does not lead us nearer to an "oscillating" universe
model for there is no indication that curvature singularities are unstable,
and in fact we surmise the contrary, that curvature singularities are
stable. Thus perturbation of the Type IX universe (Fig. 2a) would probably
lead to the same diagram, and not to a universe with an infinite number
of expansion and contraction phases.

Finally we will need investigation of highly inhomogeneous spaces,
determining in more general situations when intermediate and curvature
singularities can occur (cf. [27] for an investigation of some matter
singularities in a highly inhomogeneous situation).

Acknowledgements. We are grateful to members of D.A.M.T.P. Cambridge, the
1st Institute of Theoretical Physics, Hamburg, and the Institut Henri Poincare, Paris, for
discussions and suggestions at various stages of the development of this work. In particular,
the development of the main ideas has resulted from discussions with B. Schmidt and
S. Hawking; particular sections have benefitted from discussions with R.K.Sachs,
C. J. S. Clarke and C. W. Misner; and many aspects of the paper have been considerably
developed due to comments from C. B. Collins. A. R. K. acknowledges the support of an
S.R.C. studentship.



156 G. F. R. Ellis and A. R. King

References

1. Robertson,H.P.: Rev. Mod. Phys. 5, 62 (1933). Weinberg,S.: Gravitation and Cosmo-
logy, New York: Wiley 1972. Peebles,P.J.E.: Physical Cosmology, Princeton 1972

2. Ellis,G.F.R.: Relativistic Cosmology. In: Sachs,R.K. (Ed.): General relativity and
cosmology, XLVII Enrico Fermi Summer School Proceedings, 104. New York:
Academic Press 1971. Ellis,G.F.R.: Relativistic cosmology, In: Schatzmann,E. (Ed.):
Proceedings of the 1971 Cargese Summer School. New York: Gordon and Breach
1973

3. Hawking,S.W., Penrose,R.: Proc. Roy. Soc. (London) A314, 529 (1970)
4. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time, Cambridge

1973
5. Lifschitz,E.M., KhalatnikovJ.M.: Advan. Phys. (Phil. Mag. Suppl.) 12, 185 (1963)
6. Belinskii,V.A., KhalatnikovJ.M., Lifshitz,E.M.: Advan. Phys. (Phil. Mag. Suppl.)

19, 523 (1970)
7. Schucking,E.: Relativistic cosmology. In: Witten,L. (Ed.): Gravitation, 438. New York:

Wiley 1962. Kantowski,R, Sachs, R.K.: J. Math. Phys. 7, 443 (1966)
8. Shepley,L.C: Proc. Nat. Acad. Sci. 52, 1403 (1964)
9. Hawking, S.W., Ellis, G.F.R.: Phys. Lett. 17, 246 (1965)

10. Ellis, G.F.R., MacCallum,M.A.H.: Commun. math. Phys. 12, 108 (1969); MacCallum,
M.A.H.: Commun. math. Phys. 20, 57 (1971)

11. King,A.R., Ellis,G.F.R.: Commun. math. Phys. 31, 209 (1973)
12. Matzner,R.A., Shepley,L.C, Warren,J.B.: Ann. Phys. (New York) 57, 401 (1970)
13. Matzner,R.A.: J. Math. Phys. 11, 2432 (1970)
14. Shepley,L.C: Phys. Lett. 28A, 695 (1969)
15. Schmidt,B.G.: J. Gen. Rel. Grav. 1, 269 (1971); Commun. math. Phys. 29, 49 (1972)
16. Schmidt, B.G., Ellis, G.F.R.: Unpublished
17. Clarke,C.J.S.: Commun. math. Phys. 32, 205 (1973)
18. Geroch,R.P.: J. Math. Phys. 8, 782 (1967)
19. Farnsworth,D.L.: J. Math. Phys. 8, 2315 (1967)
20. Ellis,G.F.R.: J. Math. Phys. 8, 1171 (1967)
21. Schmidt,B.G.: Commun. math. Phys. 15, 329 (1969)
22. Boyer,R.H.: Proc. Roy. Soc. (Lond.) A311, 245 (1969)
23. Carter,B.: J. Math. Phys. 10, 70 (1969)
24. Carter, B.: Domains of stationary communication. Preprint. Cambridge (1972)
25. MacCallum,M.A.H., Taub,A.H.: Commun. math. Phys. 25, 173 (1972)
26. Treciokas,R., Ellis,G.F.R.: Commun. math. Phys. 23, 1 (1971)
27. Eardley,D., Liang,E., Sachs,R.K.: J. Math. Phys. 13, 99 (1972)
28. MacCallum,M.A.H., Ellis,G.F.R.: Commun. math. Phys. 19, 31 (1970)
29. Hawking,S. W.: Mon. Not. Roy. Ast. Soc. 142, 129 (1969); Collins,C.B., Hawking,S.W.:

Mon. Not. Roy. Ast. Soc. 162, 307 (1973)
30. Misner,C.W.: Minisuperspace. In: Magic without magic. Wheeler Festschrift (1973).

Ryan, M.: Hamiltonian cosmology. Lecture Notes in Physics 13, Berlin-Heidelberg-
New York: Springer 1972

31. Stormer,O.: Doctoral thesis, Hamburg University (1971) Osinovsky, M.E.: Preprint,
Kiev (1973)

Communicated by J. Ehlers George Ellis
Department of Applied Mathematics
University of Cape Town
Rondebosch
Cape Town, South Africa




