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Abstract. We construct free, Euclidean, spin one-half, quantum fields with the following
properties: (i) CAR; (ii) Symanzik positivity; (iii) Osterwalder-Schrader positivity; (iv) no
doubling of particle or spin states. They admit the recovery of the relativistic Dirac field
by the Osterwalder-Schrader technique. We then formally parametrize interacting theories
by a natural class of Hermitean, Euclidean actions, and obtain a simple, Hermitean,
Feynman-Kac-Nelson formula. The interacting theory formally obeys all the properties
(i)—(iv), and admits the reconstruction of a physical Hubert space, including a Hermitean,
contraction semigroup for the Wick rotated time evolution. We propose a system of
axioms for the interacting theory.

I. Introduction

Nelson's work on Euclidean field theories for spinless bosons [1,2],
has proved a very significant conceptual and technical stimulus in the
program of constructive quantum field theory. It was followed by two
important papers of Osterwalder and Schrader [3,4], who discovered the
Osterwalder-Schrader (OS) positivity condition. Modulo a troublesome
technicality in their original proof, the OS positivity condition was the
key property which allowed the reconstruction of a Wightman field
theory from the Euclidean Schwinger functions at unequal arguments,
with or without an underlying Euclidean field theory.

They also discussed fermions, and got an algebraically simple,
Feynman-Kac-Nelson (FKN) formula, at the expense of doubling the
fermion fields, and of a non-Hermitean Euclidean action.

There continues to be an interest in the formulation of the Euclidean
fermion problem, and there have been recent technical advances in
work by Brydges and Federbush [5], Schrader and Uhlenbrock [6],
and Wilde and Perez [7]. We refer particularly to the rather extensive
work of Schrader and Uhlenbrock for a more complete list of references.
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We also want to cite explicitly a paper by Hegerfeldt [8], because his
axiomatic approach is close in spirit to our own, although he only
mentions fermions in a side remark.

In this paper, we choose a different construction of the free, charged,
Euclidean-Dirac (ED) field than that of Osterwalder and Schrader.
We proceed by first supplying a factor y5 in the relativistic two-point
function at Schwinger points, to make it Hermitean, and then adding a
term with support at the origin of four-dimensional, Euclidean space,
to make it positive. The latter step can be done in many ways; but we
choose a scheme that not only does not double particles, but also does
not double spin states.

The resulting ED fields obey canonical, anticommutation relations
(CAR), which turns out to be of some importance in the FKN formula.
In particular, the ED field anticommutes with itself, as does its adjoint,
while the field and its adjoint anticommute at unequal Euclidean space
arguments. We call this situation "local anticommutation relations".

The natural expression of the OS positivity condition turns out to
be in terms of an auxiliary, nonlocal field, related to the original ED
fields by inverse differential operators. The nonlocal fields are defined
at sharp times, and the OS positivity condition, when expressed in terms
of them, is of the Nelson type.

In spite of the nonlocality in the OS positivity condition, the abstract
proof that one gets a Hermitean, contraction semigroup on the physical
space goes through; and one can see by inspection that the entire
relativistic reconstruction for the free field goes through.

Next, we consider at the heuristic level local polynomial interactions,
and obtain a formal parametrization of a natural class of Euclidean field
theories with fermions in terms of Euclidean actions. Our actions are
Hermitean, with locally commuting integrands; and our version of
OS positivity is preserved. The construction of a physical Hubert space
and a Hermitean, contraction semigroup on it, induced by the Euclidean
time evolution, goes through.

Finally, we abstract from our heuristic discussion a proposal for
a set of Euclidean axioms for fermions. This proposal remains subject to
modification. The recovery of the time evolution goes through, but we are
currently studying what might be rigorously sufficient for the existence of
the analytic continuation to the relativistic fields in the physical space.

II. Dirac Matrices and the Euclidean Group

Our Minkowski metric is (H ), and we follow the van der Waer-
den representation for relativistic Dirac matrices:
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σμ = c

σμ = c

f
75 =

Euclidean Fermi Fields

Jt ^ih ff),
r " ~ ( i , - σ ) .

= — 7, and

r-*'7o7i7273 = 75 =

= o -/

67

δ μ = σ" <->(/,-σ).

Then yg = y0 = yj 7 7,

7s = - ^ 0 7 1 7 2 73 = 7? = 75Γ

(3)

Osterwalder and Schrader exploited the fact that O+(4,1R) is iso-
morphic to the subgroup of L+ (4, <C) (identity component of the complex
Lorentz group) that leaves the set of Euclidean points z = ( — iyθ9y),
y e IR4, invariant. Our notation for the correspondence between O+ (4, ΪR)
and its covering group SU{2)xSU(2)cSL{2X)xSL{2X) is the
following. We introduce the Euclidean-Pauli four-vector of 2 x 2 matrices,

τμ = τ"<->(-iJ,σ). (4)
Then

U1τμUί = R\τv; Ul9U2eSU{2)

=>JReO+(4,lR).

We define Euclidean-Dirac (ED) matrices:

(These matrices result from those of Osterwalder and Schrader by
multiplying from the left by —iy5.) Then

and

ftW5} = 0. (8)

The ED representation of SU(2)x SU{2) is

i

UyEμU* = ICμγEv. (10)

The Euclidean (as well as the Dirac) raising and lowering matrix is

κυκ~ι = uTr~1 = u. (12)
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The last identity is also obeyed by the ED charge conjugation matrix
(which plays no role in our theory):

These matrices obey the following:

κ = κ = -κΎr = -κ-χ,
r-< jn r~<Ύx r*— 1 .

ΠI. The Free Euclidean Two-Point Function

The relativistic two-point functions are

-tk x
e

= {iγ.d-m)τ'
(2π)3 2ω

where
ω = (m2 + k2ψ, and k = (ω? k).

We define Euclidean two-point functions:

SE

+{y) = (ΩE,ψE{y)xp*{0)ΩEy

= ( 2 π Γ 4 j dμ £ (/^ + y£ p -

where

(17.b)

( l o )

A = (p2 + m2)/2m, μ = (m2 - p2)/2m,
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and where we follow the convention that dot products involving p
rather than k are Euclidean:

P-y = Po3>o + V'X -

The Euclidean two-point functions have the property that for y0 > 0,
and z = {-iyo,)i):

SE

+(y) = y5 S+(z) = <«,

S*(y) = S_(z) y5 = <O, ψ(z) y5 ψ(0) Ω}

i.e., we are making the formal correspondence

ψ%{y)^xp{z).

Now S± can be regarded as the two-point functions of a field ψE

and its Hermitean adjoint t/?|, because the matrices in the integrands
can be written

= ( ± yE' P + ™y5) (I ± 7s) (+ ΪE P + my5)/2m.

Since (I±γ5)/2 are orthogonal projections, this displays M± as the
squares of Hermitean matrices. It also shows that M+ have rank two,
so that each particle has only two independent spin states.

The eigenvalues are easy to compute, because M± are unitary
equivalent to

and

so the eigenvalues are 0 and 2/1, with two-fold degeneracy.

IV. Euclidean Fock Representation

We define p-space creation and destruction operators on the
Euclidean Fock space « f £ i n a ED spinor basis, i.e., we do not factor
out the analog of the Dirac wave function. The nonvanishing anti-
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commutators are

{b (p), b* {p')} = M+ (p) δ(p- p'), (23.a)

{φ), c*(p')} = M_(p)τ'δ(p - p'). (23.b)

We specify an irreducible, Fock representation, with Euclidean
vacuum:

= 0. (24)

The action of the unitary Fock representation of an element (α, U)
of inhomogeneous S U{2) x S (7(2) is:

U(a, U)*

U(a,U)*

U(a,U)ΩE = ΩE

b(p)U(a,U) = e-ip"Ub{

c(p)U{a,U) = e-ip"Uc{

R-'P),

R-'P),

(25.a)

(25.b)

(25.c)

plus the equations derived from these by Hermitean conjugation. The
"bar" notation always means complex conjugation, except on the
Minkowski, Dirac field. Thus, b and c transform like ED spinors with
lower and upper indices, respectively.

The ED fields are

() J Ί / 2

 P

 2 ίb(p)e^-y + c^p)e-v'y] , (26)
ypz + m2(2π) y

and the Hermitean conjugate. Note that ψE and ψ^ transform with lower
and upper indices, respectively, and that they obey CAR:

{ψE(yl ψE(y')} = M (yl wl (/)} = o,

y)/

We introduce a complex space of spinor-valued test functions, F,
with arguments yelR4; e.g., F = ^(1R4)®C4, or F = L2(1R4)®C4. The
smearing operationssmearing operations

are linear in /, and we always think of multiplication by / from the right
in the spinor space.

Our convention for Fourier transforms is

= (2πΓ 2 f d4y e~ip'y f[y). (28)
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We shall be especially interested in the differential operators:

The inverses are well-defined by

#~ 7 < - Φ E V + 75 m) g/(p2 + m2),

5 - 7 ^ ( - τ £ p4-y5rn)τ^/(p2 + m2).

We define scalar products in the one b and c particle subspaces of J^,
respectively, by

<9,0>h = <ΩE,ψE(f)iμi(f)ΩE>

(g, g\ = <ΩE, ψ*(f) ΨE(f) ΩE)

= jdμEg*MΎJg.

The corresponding Hubert spaces are denoted Jfb and J^c, respectively,
and the one-particle subspace of !FE is ̂  = #th®fflc.

Note that i7 = L2(IR4)®<C4 is indeed natural, because the matrices
M±/(p2 + m2) are uniformly bounded.

For later convenience in describing the appropriate OS positivity
condition, we introduce an auxiliary pair of conjugate fields:

ψEφf),
φ*(f) = (D-1ψE)*(f) = ψUD-1f).

Because of Eq. (21), their two-point functions are

<ΩE, φ(f) φ*(f) ΩE} = (g, g}N+ = J g* (^~~^ 9 dμE, (33.a)

<Ω£, φ*(f) φ(f) ΩE} = (g, gyN = J g* ί~^j 9 dμE. (33.b)

The nonvanishing anticommutation relation is

{Φ(f),Φ*(f')} = ±\g*g'dμE=± (g,g'}N. (34)\ggdμE

The notation "JV" anticipates a Nelson-type application of the Sobolev
scalar product. The natural test function space is a Sobolev space, and
the anticommutation relation is of course non-local. Covariance under
inhomogeneous S U(2) x S (7(2) is preserved.
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V. Euclidean Time Reflection and OS Positivity

We define a linear, local, Euclidean time reflection operator Θ as
follows:

ΘΩE = ΩE,

Wί). ( 3 5 )

f)

It is easy to verify that

Θ2 = I, Θ* = Θ-1 = Θ. (36)

Note that Θ has the correct action as an automorphism of inhomo-
gerieousSl/(2)xSi7(2):

Θ U{a, Ut x U2) Θ'1 = U(θa9 U2 x Ux). (37)

This is correct, because conjugation of Eq. (5) gives

U2τμU?=(ΘRΘ)\τv. (38)

The action of Θ on φ is:

-ι = φ(Kyfβ),

f)

The reflection operator that appears in our form of the OS positivity
condition is most simply expressed by its action on φ. We define a
linear, time reflection T by:

TΩE = ΩE,

Tφ*{f)T-1=φ*{fβ), (40)

Again, one gets
T2 = I, T-X = T* = T. (41)

The action of T on ψE is nonlocal:

TψUβT-^ψUD-'DJe)

TψE{f)T-ι=ψEφ~ιDβfβ)

where Dβ results from D by sign reflection of the γE0 term.
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Let F+ and F+ be the subspaces of test functions /+ such that Df+,
respectively, Df+ have support as distributions in the interior of y0 ̂  0.
That is, /+ = D~1h+, respectively, D~1h+, where h+ is in N+, the subspace
of the Nelson (Sobolev) space spanned by vectors with strictly positive
time support. Recall that

ΨΪ(f+) = Φ*(Df+) ψE{f+) = φ(Df+). (43)

Let J% be the linear submanifold of J ^ spanned by polynomials in
ψ% and ψE smeared, respectively, in F+ and F+, applied to the vacuum.
Then 3F+ is also the submanifold of 3FE generated from ΩE by φ and φ*
smeared in JV+. For the sake of notation, we do not take the completion.

Lemma (OS Positivity). Let ^ + E ^ + . Then <^+, T 0>+ > ̂  0. (44)

The proof is a simple imitation of an argument due to Osterwalder
and Schrader. The statement is true for two-point functions, as one sees
most clearly in the φ representation of J%. It then follow easily for
Wick ordered monomials. For polynomials, one writes the Wick ex-
pansion, making use of the fact that T commutes with the Wick expansion
because of its unitarity in the contraction functions, and one then uses
orthogonality of the Wick monomials applied to the vacuum.

The reconstruction of the Wightman Fock space follows standard
lines. One has the choice of working with the φ representation and
Nelson's sharp-time method, or of working with either the φ or the ψE

representation and following the OS construction. We prefer the OS
construction because of the probable instability of the sharp-time method
under interaction in four-dimensional space-time.

The physical Hubert space #"+, then, is obtained from #+ by
dividing out the kernel of the bounded, positive, bilinear form defined
on #V by T. The unitary, Euclidean time evolution U(t)= (7[(ί, 0), /]
preserves J*+ for t ̂  0, and obeys

TU(t)T'1 = U(-t). (45)

It therefore passes to a Hermitean, contraction semigroup on #+ by an
argument due to Osterwalder and Schrader, and refined by Heger-
feldt [8].

Of course, one can verify explicitly, by inspection of the two-point
function, that <#+ is identified with the Wightman space, and that one
recovers the Wick rotated, physical time evolution, and the Wick
rotated, free Dirac field operators.

In that regard, we remark that the free Dirac field could already
be recovered from the subspace of #+ generated by ψE and \p% smeared
with functions in F having strictly positive time support. After careful
consideration of the formal interacting case, we have decided it would be
dangerous to try to get away with that in general.
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VI. A Heuristic Feynman-Kac-Nelson Formula

Rather than derive in the usual way an expression for the Schwinger
functions in terms of the Euclidean action associated with a local
relativistic interaction, we proceed by guessing directly how to
parametrize Euclidean theories in terms of Euclidean actions. In our
heuristic discussion, we constrain ourselves to preserve the following
"non-technical" properties:

(i) existence of an invariant vacuum,
(ii) Symanzik positivity,

(iii) Osterwalder-Schrader positivity,
(iv) unitary Euclidean covariance (including reflection invariance),
(v) local anticommutation relations,

(vi) Hermitean, contraction semigroup property.
The kind of Euclidean action V we consider is formally the integral

V=$V(y)d4y

of an invariant, local polynomial, which couples spinless or vector, free,
Hermitean, Euclidean boson fields, which of course commute with every-
thing in sight, with powers of local, Hermitean bilinears in the free,
ED field of the form

(DψE)*(y)ΓDψE(y),

where Γ is a coupling matrix, and where the reason for the derivative D
will emerge. Because our Dirac fields obey CAR, it is easy to write
down physically interesting couplings such that the integrand of the
Euclidean action is not only formally Hermitean, but formally commutes
with itself at different arguments. The action will not, however, commute
with the ED field.

We impose the following local conditions on the action integrand:
(i) V(y) is a local function of free fields of the sort described above.

(ii) V(y)=V*(y).
(iii) [7(j;),K(/)] = 0,y*jΛ
(iv) l/(α, U) V(y) U(a, U)'1 =
(v) ΘV(y)Θ-ί =

(vi) TV(y)T-1 =

A simple example is the Yukawa interaction

Viy) =: (DψE)* (y) y5 DψE(y): φE(y),

where φE is a boson field with even parity under Θ and T. Another is
the massive vector interaction

V(y) = : (DψE)* (y) yEμD ψE(y): ΛE(y),
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where

ΘAE(y)θ-1=ΘAE(θy)9 and TAE(y) T'1 = AE(θy).

These examples are T covariant because we used DψE rather than
ψE. The D has no effect on Θ co variance, but it has the virtue that DψE

transforms locally under T:

= ψUD-ιDθDθfθ) = ψUDD^Defe) (46.a)

= {DψE)*(fβ).
Similarly,

TDψE{f)T-'={DψE){fθ). (46.b)

Consider the formal expression

δ = exp - V . (47)

We think of it heuristically as a Hermitean, positive definite, invertible,
invariant operator on the Euclidean Fock space 3FE (which now includes
bosons). To imitate its role in the strictly boson theory, we would like to
use it as a metric operator to define a new Hubert space. But the fact that
δ fails to commute with the ED field suggests a modification of the field,
if we want to preserve the properties mentioned above. This can be done
as follows.

Define the Euclidean, pre-Hilbert space 3tfv of the interacting
theory (for a "suitable" dense set of vectors in i ^ , including ΩE) by the
scalar product

<Ψ, Ψ>v = <Ψ, *Ψ>/<ΩE9 SΩE} . (48)

The denominator normalizes the interacting vacuum state Ωv, which is
identified with ΩE in the above construction. The Hermitean adjoint
operation for operators on fflv is related to that for operators on 3FE by

βΛ = δ'1Θ*δ. (49)

Define interacting ED fields in terms of free fields by

ψv = δ-*ψEδ*9
Ψv (50)

Aδ-ίtδ*

The definition of ψφ is consistent with Eq. (49). The interacting fields
obey CAR because the free fields do. They should be modified in general
by a wave function renormalization constant, which we omit for sim-
plicity. Even then, we would have local anticommutation relations.
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The old action of the Euclidean group, including Θ and T, is still
unitary, because the invariance of $ implies that

ΘA = Θ* = Θ'1 TA = T* = T " 1 .

The vacumm Ωv = ΩE remains invariant. The interacting fields ψ$,
where " # " means supply the adjoint or not, appropriate to the subscript,
have the same transformation laws under U, Θ, and T as the free fields,
again because of the invariance of S± *.

So far, we clearly have an invariant, normalized vacuum, Euclidean
covariance, local anticummutation relations, and Symanzik positivity.
It remains to check OS positivity and the semigroup property.

For that purpose, we split V into positive and negative time parts,

V±=

and we note the global properties that we actually need:
(i) V+ are functions of positive and negative time fields, respectively,

with D's acting on the fermi fields;
(ϋ) V+ = Vf

(iϋ) [F+,F_] = 0;
(iv)
(v)

XP

± ,

Now let J>fκ+ be the submanifoldjof 2tfv generated from the vacuum
by ψA and ψv smeared in F+ and F+. Note that the fields DψE have
another nice property; they have local anticommutation relations with
φ e.g,

{DψE(h Φ*(/')} = {ΦΦ^Jl Φ*(f)}=<D2f, /%/m. (54)

The last line vanishes if / and f have disjoint y-supports, because
D2 = D2<r+p2 + m2 kills the nonlocal factor in dμE. This has the con-
sequence that ψ*(f+) are formally functions only of free fields smeared

We make the corresponding split:
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in the appropriate F+ and F+ . For example,

In other words, J^v+ is manufactured from J% .

Theorem A (OS Positivity).

Let 0>y+e2tfy+. Then (0>V+,T0>V+}V^O. (56)

Proof. From the intertwining property of T and the Hermiticity
of S± , we have

<Pv+,fiT<Pv+y = <fi+<?v+,Tfi+0>v+>. (57)

The results follows from OS positivity in J*+ and the remarks above.
We can now construct a physical space J$v+ from jfv+ by the OS

method just as before in the Fock space, and by the same token, a
Hermitean, contraction semigroup. (Strong continuity is formally easy.)

To complete the formal reconstruction, we need to construct the
Wick rotated, physical field operators. One can give an ultra-heuristic
argument, which treats the φ field at time zero as an operator and then
concludes from the commutation relations with the action that this
operator passes to the physical space. That becomes a bit too conjectural
for our taste, and so we defer the argument until we can justify it by a
more technical, axiomatic study, now in progress. It does seem worth
remarking that, even for the formal argument, it seems essential to have
the full space JfF+, and not just the subspace of strictly positive times
relative to ip*.

We conclude this section with our version of the Feynman-Kac-
Nelson formula:

Theorem B (FKN).

. ψUfn)ΩV)v

< Ω ^ l ( f ) t ^ (58)
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VII. Preliminary Axioms for Euclidean Dirac Fields

We propose the following axioms for ED fields ψ and ψ*. It should
be clear to the reader how to include Euclidean bosons.

(i) We are given a separable Hubert space J4?E and a unitary,
strongly continuous representation U(a,U) of inhomogeneous SU(2)
xSU(2\ and of the reflections, with a unique, invariant_vacuum.

(ii) Irreducible field operators ψ(f) and ψ*{f) = ψ{f)* are densely
defined on the usual domain generated by polynomials from the vacuum.
The vacuum is cyclic. The fields are operator-valued, tempered distribu-
tions in the usual Wightman sense. In particular, the test function space

(iii) The fields ψ* (/) transform under the full Euclidean group
by the same laws as our ED free fields.

(iv) We have local, anticommutation relations:

{ψ(f), y>*(/')} = 0 if y* and / ' have disjoint supports.
(v) There is a unitary, Hermitean, time reflection operator T on

Jfe which leaves the vacuum invariant and has the same action on
tp# (/) as described before for the free field.

(vi) Osterwalder-Schrader Positivity: Let J^E+CJ^E be the sub-
manifold of J^E generated from the vacuum by polynomials in ψ* and
ψ smeared, respectively, in F+ and F+, where

F+ = {f+eF:Df+eN+}

F+ = {f+eF:Df+eN+}

N+ = {h+eF:h+(y) = 0 for y0 ^ 0} .

Let ^ + e J4?v+. Then < ^ + , T0>+ > ̂  0.
(vii) Nelson's Property A')\ Let

φ*{f) ^ ( / T 1 / ) ,

φ(f) = ψ(D-1f).

Then the unsmeared fields φ# (y) obey a sufficiently strong version of
Nelson's Axiom (A').

We are currently working on the problem of what can be taken as
sufficient in the last axiom. As we mentioned in the Introduction, the
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above scheme is similar in spirit to one proposed by Hegerfeldt [8], for
the situation where OS positivity is defined locally.

VΠI. Concluding Remarks

(i) The role of the differential operator D in the Euclidean action
might be clarified by formally connecting our FKN formula to the
relativistic interaction in the physical space. We expect that to be a
straightforward exercise.

(ii) We stated the properties of the action that we needed for our
heuristic discussion in a global form that is amenable to cutoff; i.e., there
is a way to cut off the positive and negative time parts of the action
separately, while retaining everything except restricted Euclidean
invariance.

(iii) We have of course ignored, at the formal level, any details of
renormalization. Superficially at least, the renormalization problem
would appear to be made worse in the Euclidean space by the presence of
derivatives on the fermi fields in the action. Such difficulties could be
ameliorated in the physical space, where the operator D goes over into
y5 times the Dirac positive energy projection.

(iv) Our free field fits into the functorial scheme of Schrader and
Uhlenbrock [6] if one considers the fields φ* instead of φ | , in the sense
that the second quantization of a minimal Sz.-Nagy semigroup extension
is involved.
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Note Added in Proof. We have subsequently learned that the positivity structure of
the free ED field is richer than we had thought, and that it obeys another, local form of OS
positivity which is preserved under a second, heuristic parametrization of interaction that
has the right intuitive properties for reconstruction of relativistic fields. Concluding
remark (i) above is over-optimistic because we have not succeeded in even an intuitive
reconstruction of relativistic fields (in the interacting case) from the parametrization in
this paper. Although we do not think it clearly impossible that the nonlocal method here
could be made to work, we now prefer the second, manifestly local structure, which has
appeared in preprint as a sequel to this paper.

After submitting the second paper for publication, we received a preprint from J. Frδh-
lich and K. Osterwalder, which casts doubt on the viability of any scheme for interacting
Euclidean fermi fields which attempts to avoid doubling. Their argument is essentially that
the extra growth in momentum space which results from extending the Euclidean Green's
functions to coinciding arguments makes the renormalization problem for the Euclidean
theory unmanageable. This difficulty appears here through the mechanism mentioned in
concluding remark (iii), and it appears in our second method as well, as we have indicated in
the sequel. While we agree that renormalization could well turn out to be fatal for the utility
of either of the methods we propose, we nevertheless think it sensible at this point not to
anticipate the results of a more detailed study of specific models of interaction.




