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Abstract. A convex scheme of quantum theory is outlined where the states are not
necessarily the density matrices in a Hubert space. The physical interpretation of the
scheme is given in terms of generalized "impossibility principles". The geometry of the
convex set of all pure and mixed states (called a statistical figure) is conditioned by the
dynamics of the system. This provides a method of constructing the statistical figures for
non-linear variants of quantum mechanics where the superposition principle is no longer
valid. Examples of that construction are given and its possible significance for the inter-
relation between quantum theory and general relativity is discussed.

1. Introduction

In turn of development of quantum theory efforts were made to
present a geometric description of quantum mechanics independent
of "wave functions" and "complex amplitudes". The best known such
description was originated by Birkhoff and von Neumann [2] and
completed by Piron [18]. It explores a partial order relation in a idealized
set of "yes-no measurements" called a "quantum logic". The resulting
approach though mathematically profound is not physically complete.
In the last ten years two other approaches have been developed. One
is the algebraic approach reflecting the physics of operations which can
be performed on statistical ensembles. This aspect has been introduced
to axiomatic quantum field theory by Haag and Kastler [10] and it
reappears as the main motif in the present day quantum statistics. The
other approach, originated already in the fourties (Segal [1]) might be
called "convex". It explores the convex structures of quantum mechanics
with a special attention concentrated on the convex set of all states (pure
and mixed) of a quantum system. The description of quantum mechanics
from that point of view was most systematically explored by Ludwig [14]
and further developed in [3-6,11,15-17,19,21,22]; it now becomes one
of main currents in the foundation of quantum theory. The synthesis of
the convex and the algebraic approaches has been gradually achieved
[3, 5,6,9-11,16,19]. It brought the complete geometrization of quantum
mechanics including the description of the present day formalism of
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Hubert spaces in terms of physically meaningful axioms [9,14,15,19,21],
the general classification of the operation [6, 11], the definition of filters
as endomorphism of a convex cone of beams [3, 16] and finally, the con-
struction of the transition probabilities as affine geometric invariants of a
convex set [16]. As a result of that development a generalized convex
scheme of quantum mechanics has emerged from the point of view of
which the scheme of the present day theory is not unique but is a particular
member of a vast family of "quantum worlds" mathematically admissible.
The conjecture was also rised that the convex set theory might play a
similar role in quantum physics as the Riemannian geometry in general
relativity [16]. The aim or the present paper is to take the next step by
showing that the "convex scheme" is flexible enough to comprise non-
linear versions of quantum mechanics in which a non-linear wave
equation would play the role of the Schrodinger equation. With this aim
the geometric description of quantum mechanics based on the convex
set theory is outlined in § 2. In § 3 and § 4 the geometry of a system is
related with the dynamics which allows the construction of the convex
manifolds of quantum states for systems obeying a generalized wave
mechanics. Some applications of the resulting scheme are indicated in
§ 4 and its relation to other physical theories is discussed in § 5.

2. Convex Scheme (Outline)1

The elements of convex set theory are rooted in primitive concepts of
quantum mechanics. The most fundamental such concept is that of a
quantum state. Given a statistical ensemble of objects of any nature,
the state is the collection of the physical properties of an average ensemble
individual. For the above notion of a state the following concept of a
mixture becomes natural. Given certain ensembles $l9...9δn corre-
sponding to states xl9...9xn and given numbers pί9 ...,£„ §:0, pi-\—
• + pn = 1, one can form a new ensemble δ of which a fraction pj com-
prises randomly chosen objects of δj (j = 1,..., n): the ensemble δ defines
a new state x which will be denoted x = p1xi-\ \-pnxn

 and called
a mixture of x l 5 . . . , xn. The concept of a mixture induces that of a pure
state: a state is called pure if it cannot be represented as a mixture (with
all coefficients non-vanishing) of any physically distinct states. These
definitions suggest that the set of all states of a physical object should
possess the structure of a convex set. Some definitions concerning that
structure are given below.

Definitions. A convex set is a subset of an affine space containing
together with any two points the interval joining them. Here, an affine

This section is a review of essentially known material.
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space is any set E of elements called points with a linear combination
operation assining to each finite system of points x1?...,xMe£ (n= 1,2,...)
and any system of numbers A 1 , . . . ,/ l n elR,>ί, 1 H \-λn=\ a new point
λίxί-i h λnxn the linear operation has properties which allow one to
represent £ as a plane in a real linear space. An affine topological space
is an affine space E with a topology in which the linear operation is
continuous. Given an affine space E and a system of points x l 5..., xMe£,
any linear combination / ? 1 x 1 H r-pκxn with p ί ? ...,pπ^0, pl9 H—
—\-pn= 1 is called a convex combination of x1 ? ...,xn. For E an affine
topological space, a continuous analogue of that operation can be
introduced. Given a subset X C E with the topology induced by that of E
and given a positive measure μ defined on Borel subsets of X such that
μ(X) = 1 (a probability measure on X) the integral j x dμ(x), if it exists,

x
is called a convex integral of points xeX over the measure μ. The convex
combination is a special case of a convex integral obtained by taking the
measure μ to vanish outside of a finite set of points. Given an affine
space E and two points x 1 ? x 2 e£, x 1φx 2, the set of all linear com-
binations E(x l 5x2) = {λίxi + λ2x2:λ^λ2e]R, λl+λ2=i} is called the
straight ine determined by X j and x2 while the set of all convex combina-
tions /(x1 ?x2)= {piXi +p2*2 : Pι>P2^0> P ι + P 2 = l } is called the
straight line interval joining xί and x2. Any point of/(x l 9 x 2 ) different
from the end points xί and x2 is called an internal point of /(x1?x2).
Given a convex set S C E an element x e S is called an extremal point
of S if it cannot be represented as a convex combination with both
coefficients positive of any two distinct points of S. Thus, x is extremal
if it is not an internal point of any interval / C S.

The most general axiom reflecting the phenomenology of mixtures
in quantum mechanics can be now formulated as follows. For any
quantum system the set of all states can be represented as a closed convex
set S in a certain affine topological space E. The convex combinations
in S correspond to the state mixtures while the extremal points ofS represent
the pure states of the system. The topology on S reflects the observable
properties of quantum states.

Here, physical significance may be attributed to the set S alone: the
surroundings affine space E is introduced only as an auxiliary construct2.
For reasons of economy it will be assumed that S spanns E. For quantum
mechanical systems which are the objective of this paper it will be assumed
in addition that S contains a set of extremal points rich enough to
represent any point of S as a convex integral of extremal points. The

2 One could think about an axiomatic approach where the convex set S would be
defined without involving the surrounding space. A step in that direction was recently
taken by Gudder [22].
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convex set S plays a fundamental role in quantum statistics; it will be
further called a statistical figure (see also [16]). Two simple examples
of that structure are given below.

Figure 1 represents the mixtures which can be formed of classical
objects of three types (for example, red, green and blue balls). The
statistical figure here is a triangle in a 2-dimensional affine space: the
vertices are pure states corresponding to one-colour ensembles, while
the remaining points represent the mixed states with one mixed state
(the center) distinguished (completely random mixture). A similar
structure can be obtained by considering mixtures of classical objects
of n possibles types: in that case the statistical figure is a simplex with n
vertices in an (n— l)-dimensional affine space. The case of n=co is
essential for realistic models of classical mechanics. Here, the pure states
correspond to points of a classical phase space P (endowed with a
certain natural topology) and the statistical figure S is the convex set
of all probability measures on P with the topology induced by that of P.
The convex set of all probability measures on a certain topological space
is a generalized simplex whose vertices are all point-concentrated
measures. It is an important property of the simplexes that each point
of a simplex can be uniquely represented as a convex integral of extremal
points. This fact reflects the classical nature of the corresponding objects:
it is a crucial feature of classical objects that their statistical ensembles
can be uniquely decomposed into the pure components. Thus, the
simplexes have to be considered the statistical figures of classical theories.

A different example is shown in Fig. 2, which represents the polariza-
tion states of a photon. Here, the statistical figure is an ellipsoid in a
3-dimensional affine space. The surface of the ellipsoid represents the
pure polarization states: the equator comprises the linear polarizations,
the poles are the circular polarization states and the remaining points
of the surface correspond to the elliptic polarizations. Each two antipodes
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of the ellipsoid correspond to the "opposite" polarizations (for instance,
each two antipodes on the equator represent two mutually orthogonal
linear polarizations). The internal points of the ellipsoid stand for the
mixed states with one mixed state θ (the centre) distinguished (polariza-
tion chaos). For the above statistical figure the decomposition of mixtures
into their pure components is no longer unique: each mixed state can be
represented in many ways as a combination of pure states. Thus, the
chaos state can be represented as θ = ̂ x + ^x' where x and x' are any
two antipodes of the ellipsoid. Physically, this means that having a light
beam in the polarization state θ one cannot say whether the beam has
been prepared by mixing two linearly polarized beams or by mixing two
circularly polarized beams or in any other way. This fact illustrates a
certain general "impotence law" coded in the geometry of S.

Principle of Impossibility

The law which emerges from the example in Fig. 2 might be given the
following form. Having a mixed statistical ensemble of non-classical
objects one cannot determine uniquely its pure components and find out
how the mixture has been prepared. Two mixtures created in two distinct
ways by taking different collections of pure states may be physically
indistinguishable. This statement is one of the most general negative laws
limiting the perception of quantum ensembles: it might be called the
first principle of impossibility of quantum theory and considered the
main manifestation of the non-classical nature of microobjects. The
above law is not exclusive for the orthodox theory but it can be read
from the geometry of any statistical figure S which is not a simplex (see
Fig. 3). A non-simplicial shape of S is a geometric expression of non-
classical character of the corresponding objects.

"First impossibility":

Fig. 3
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Counters

Though it was known for a long time that the shape of S reflects the
physics of the corresponding quanta, it was only recently discovered that
this shape contains the complete information concerning the properties
of quantum states. In reading that information the following concept
of a normal functional is essential.

Definition. Given an affine space £, a functional φ :E-»1R is called
linear if φ(λ1xi H ϊ-λnxn) = λlφx1 H \-λnφxn for any xί9 ...,xne£,
λl9...9λne!R9 λi ] \-λn=\. Given a convex set S in an affine
topological space E, a linear continuous functional (/>:E->1R is called
normal on S if 0^φx^ 1 for every xe S.

The normal functionals admit a simple geometric representation.
Any non-constant linear continuous functional φ in an affine topological
space is completely determined by a pair of closed parallel hyperplanes
on which it takes the value 0 and 1. Now, φ is normal on S if the set S
lies in between the hyperplanes φ = 0 and φ = 1 (see Fig. 4).

If the convex set S is a statistical figure for a certain physical system,
the normal functionals possess a natural physical interpretation. A .
meaningful theory besides physical objects describes also measuring
devices. The typical measuring device of quantum theory is a particle
counter. Given a counter φ and a state xeS the number φx will mean
the average fraction of systems in x-state detected by the counter
φ (O^φx^i). Since counters considered here react only to individual
systems of the ensemble (without taking into account the interrelations
between them), it follows that for any mixed ensemble the total number
of particles (systems) detected is the sum of the corresponding numbers
for all the components of the mixture. This leads to: φ(p1 xi H h pnxn)
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= pίφxί

jι \-pnφxn

 and so> each counter defines a certain normal
functional on the statistical figure S (and thus, on the whole of E). The
question now arises: how rich is the set of all normal functionals which
correspond to certain physical counters? As no counter-example is
known, it will be assumed that each normal functional represents a way
of detecting a property of the system which, at least in principle, could be
realized by constructing an adequate counter. For example, if the
convex set in Fig. 4 were a statistical figure for certain physical particles,
the pair of planes φ = 0 and φ = 1 would represent a counter registering
unmistakenly all particles in state x ("x-particles") and blind to all
y-particles, whereas the planes χ = 0 and χ = 1 would represent a counter
registering all z-particles, 1/2 of the y-particles and blind to x-particles.
Since for the convex set of quite arbitrary shape the non-trivial normal
functionals might not exist, some general assumptions as to the structure
of S are still necessary. What will be assumed below is that the shape of S
allows the existence of a class of normal functionals rich enough to
distinguish the points of S: the convex set with that property is called
bounded.

The assumptions up to now can be summarized as follows. For any
quantum system the set of all states is a closed and bounded convex set S
(called a statistical figure) in an affine topologίcal space E. (The physically
essential structure here is S while the surrounding affine space E is spanned
by S as an auxiliary construct.)

The statistical figure S uniquely determines the class of normal func-
tionals represented by all pairs of parallel hyperplanes enclosing S: every
normal functional corresponds to a quantum mechanical counter which
might be used to test the system properties.

On these assumptions, all the physical information contained in the
geometry of S may be now decoded. One of the most familiar such in-
formation is the "quantum logic" of Birkhoff, von Neumann, and
Piron [2,18,12].

Quantum Logic

In the geometry of convex sets the following concept of a wall is of
importance.

Definition. Given a convex set S, a wall of S is any convex subset
S' C S such that, whenever S' contains an internal point of any straight
line interval / C S, it must also contain the total interval /. Thus, S' is a
wall if the following implications hold: 1) xl9x2eS'9 Pι,p2 = 0>
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= I=>P! xl+p2x2eS'; 2) x 1,x 2eS, p1x1+p2x2eSf with p1 ?p2>0,

The above concept of a wall generalizes that of an extremal point: the
extremal points are simply one-point walls of 5. Geometrically, a wall
can be associated with an intuitive idea of a "maximal plane fragment"
(of any dimensionality) of the boundary of S. Each convex set has at
least two inproper walls: the empty set 0 and whole of S, For any
convex set S the walls form a partially ordered set with the ordering
relation ^ meaning set theoretical inclusion. As is immediately seen, the
common part of any family of walls is again a wall: hence, the walls form
also a lattice (where for any family of walls the intersection of all upper
bounds defines the lowest upper bound). If S is a statistical figure this
lattice admits a natural physical interpretation. It is an old question
whether the formalism of quantum theory is adequate to describe the
properties of single systems. What is verified directly in the most general
quantum experiment are rather the properties of statistical ensembles.
However, the properties of single systems can be introduced by an
abstraction process [12, 16]. One can agree, that a property P of quantum
ensembles defines a property of single systems provided that it is "additive"
and "hereditary"3: if any two ensembles have the property P their
mixtures must have it too. Conversely, if any mixed ensemble has the
property P, so must have each of the mixture components. These con-
ditions mean that the subset of all states with the property P should be a
wall of S. One thus guesses that the lattice of walls of S represents the
set of all possible physical properties of a single system ordered according
to their generality. In axiomatic approaches to quantum mechanics an
important role is attributed to the notion of completely excluding
properties. This notion finds a simple geometric description too. Given
two walls (properties) S l 5 S 2 CS and a normal functional φ9 it will be
said that φ completely separates Si and S2 if either φxi = Q, and φx2 = 1
or φx1 = i and φx2 = 0 for every xί e Sl and x2 e S2 (i.e. if the corre-
sponding counter is completely blind to the particles with one of these
properties and detects all the particles with the other). Now, two
properties (walls) are called excluding or orthogonal (S^ISJ if there
exists at least one counter completely separating them. The set of all
physical properties of a microparticle with the relations of inclusion ^

3 Not every property of an ensemble is of such a nature that it can be attributed
to each single ensemble individual. An example can be obtained by considering a particle
beam and a semi-transparent window: the fact that the average beam particle penetrates
the window with probability 1/2 reflects a certain property of the beam as a whole. This
property does not necessarily concern each single beam particle: for it may happen that
the beam is a mixture of two distinct types of particles one of which is completely trans-
mitted and the other completely absorbed by the window.
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and exclusion 1 is what one traditionally calles a logic of the particle
or quantum logic 4.

Hence, in the present approach the quantum logic is no longer a
fundamental structure but one of the particular aspects of the geometry
ofS.

Second Principle of Impossibility

Besides the structure of the "logic" the geometry of S allows one to
read a numerical relation between pure states generalizing the basic
invariant \(ψ, φ)\2 of the orthodox theory. Let x and y be two extremal
points of a statistical figure S and let Q(y) denote the set of all normal
functionals taking the value 1 at y. If x_Ly, there exists in Q(y) at least
one functional vanishing at x. In general, however, such a functional in
Q(y) may not exist because of the geometry of S. An example of this
situation is shown on Fig. 5.

For the convex set here each point of the arcz^z2 *s orthogonal to
the extremal point y: suitable separating functionals are determined by
all possible pairs of parallel support lines PJ9 P one of which supports S
at y and the other at an arbitrary point of z^z2. A similar separating
functional, however, does not exist for the pair of points x and y as there
is no parallel pair of straight lines supporting S at x and y. As seen on
Fig. 5 the smallest value possible at x for the functionals of the family
Q(y) is 1/2 and is accepted by the functional φ represented by the pair
of lines Pί9P[. Thus, if the convex set in Fig. 5 were a statistical figure for
certain physical quanta, it could be infered that no counter can be con-
structed registering all y-quanta and less than the average fraction 1/2
of x-quanta. This illustrates a certain general impossibility law coded in
the geometry of the statistical figure. In order to formulate it more
precisely the following geometric quantity is needed.

Definition. Given a closed convex set S and a pair of extremal points
x, y e S the ratio x : y is the lower limit at x of all normal functionals

4 The so introduced concept of a logic is wider than in the majority od axiomatic
approaches. The notion of orthogonality employed here is more primitive than the usually
introduced concept of negation. Given the lattice W of walls with the orthogonality _L,
the physically interpretable negation can or cannot be introduced dependingly on the
structure of the relations _L and ^ on W. If for an αe W the family α1 = {xε W: xλ.α}
contains its lowest upper bound, this element can be denoted d and called the "orthogonal
complement" (negative) of α. If not, then no unique negative can be assigned to α. For an
arbitrary convex set the resulting logic W(^, λ.\ in general, does not admitt the con-
struction of the orthocomplementation #->#'.

It is, an open question whether all the walls of S should be considered the physically
essential elements of the "logic" or some regularity requirements should be suplemented
(stating, for instance, that only the closed walls of S correspond to "physically verifiable
properties"). An extensive discussion of an equivalent problem is due to Giles [8].
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taking the value 1 at y:

x: y = inf φ x. (2.1)

For any convex set S the ratios of the extremal points are uniquely
defined by the shape of S and can be determined by an abstract con-
struction employing support planes [16].

If S is a statistical figure of certain physical systems, the non-vanishing
of the quantity (2.1) reflects an inavoidable lack of selectivity of quantum
mechanical measurements. Given two pure states x and y no counter can
be constructed which detects all y-systems and less than a fraction x: y
of x-systems. More generally, every physical process leading to a certain
macroscopic effect for all y systems must inavoidably lead to the same
effect for at least x: y of x-systems. The above statements form one of
essential quantum laws which will be further called the second principle
of impossibility. Because of their role in that principle, the ratios of the
extremal points of any statistical figure will be called the detection ratios
(see also [16]).

A particular form of the "second impossibility" is observed in
orthodox quantum mechanics. Here, the statistical figure is the set of all
density operators in a certain Hubert space ffl\ S^={xe^(J^):x+

= x^0, Ίτx= i}. The extremal points of S# are the simple projection
operators of the form |φ x \p\ where ψ are the unit vectors in ffl. For an
arbitrary pair of extremal points \ψ x ιp\ and \φ x φ\ the detection ratio
has been found in [16]:

(2.2)
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This fact allows one to deepen the statistical interpretation of the
quantities \(ψ, φ)\2 in orthodox theory. According to the traditional
interpretation these quantities possess the following meaning of the
transition probabilities. Given any pure state \φ x φ\ the theory assumes
the existence of a measuring device testing for miscrosystems in that state.
When this device is applied to an ensemble systems in another state
\ψ x ιp\ a fraction |(φ, φ)\2 of them, on average, passes the test with the
result positive. What may be infered now however, is not merely the
existence of this sort of verifying device, but also the basic impossibility
of any more selective apparatus. Given two pure states corresponding
to unit vectors ψ,φ£j4f, no particle absorber is possible transparent to
all φ-systems and transmitting less than a fraction |(ψ, φ)|2 of φ-systems.
Generally, no physical process is possible which tolerates all φ-systems
and less than a fraction |(ψ, φ)\2 of φ-systems. The quantities |(φ, φ)\2

establish an absolute selectivity limit for quantum experiments. The
above facts, though proved analytically [16] possess a simple geometric
meaning. As an illustration consider polarized light beams. If x and y
are the states of the circular and linear polarizations of a photon re-
spectively, there exist a device transparent to linear y-photons and
transmitting ony half of the circular x-photons (the Nicol prism with
its polarization plane coinciding with that of the y-photons). However, no
window can exist more selective than the Nicol prism, that is, transparent
to linearly polarized photons but absotbing more than a fraction 1/2
of circularly polarized photons. The impossibility of such a device follows
immediately from the geometry of the ellipsoid in Fig. 2 (construction
with the support planes), whereas the analytical representation of the
points of that ellipsoid by density operators in a Hubert space is much
less obvious.

It is worth while to notice that the "second impossibility" exhibits an
implicit dynamical contents of the statistical figure. In fact, the assertion
about the impossibility of certain physical processes is a genuine
dynamical statement limiting a priori the class of evolution processes
admissible. This limitation is present on the apparently pre-dynamical
level of the theory, as a necessary condition for the applicability of its
mathematical language. Thus, in supplementing the structure of quantum
states by dynamical equations the precaution must be taken to respect
an "innate" dynamical information contained in the geometry of S. This
seems to be a special case of Haag's general idea about the necessary
consistency between the primitive measurement axioms of quantum
theory and its mature form of a dynamical theory5.

5 The importance of this type of consistency for quantum theory was pointed out to
the author by Professor R. Haag during the winter school in Karpacz, February 1968.
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Problem of Generality

As becomes clear, the convex set theory introduces into quantum
mechanics a flexibility similar to that which the Riemannian geometry
achieves in the space-time physics. Indeed, it is significant that one can
describe the structure of quite an arbitrary convex set in terms of typically
quantum mechanical concepts such as the "detection ratios" and the
"quantum logic". When the set S deviates from the traditional manifold
of "density matrices", those concepts do not loose their sense: they only
change the geometry. This allows a consistent description of generalized
systems where the geometry of the "transition probabilities" and the
structure of "logic" would not be originated by the Hubert space theory.
Thus, one might think about a possibility of non-orthodox "quantum
worlds" where the "logical" axioms of Birkhoff, von Neumann and Piron
[2,18] would be relaxed and the "operational" axioms of Pool [19] and
Gunson [9] would not hold. One might also construct hypothetical
systems with the lattice of "properties" being not orthocomplemented
and the axiom of Ludwig [14] about the "sensitivity increase of effects"
broken. The simplest example embodying all those non-orthodox
features is represented by a hypothetical statistical figure of the form of a
square in a 2-dimensional affine plane:

Fig. 6

Here, the pure states are the vertices x, x', y, y' and the remaining
points of the square are mixed states with one mixed state (the centre)
distinguished as the "total chaos". For any pair of pure states there
exists a separating normal functional (thus, e.g., the pair of support lines
P, F in Fig. 5, defines a normal functional separating x and y from
both x' and /). Hence, the detection ratios vanish and there is no second
impossibility. Still, the first impossibility is present: the mixtures ^x
+ ^x' and %y + %y are indistinguishable as they both define the "total
chaos". The logic of properties forms a Dedekind's lattice (there are
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4 types of walls: the empty set 0, the vertices, the sides, and the whole
square). However, it is not orthocomplemented: for any pure state x,
among the walls orthogonal to x no greatest one exists, and so, no
unique negation in "quantum logic" can be defined.

A question now arises: is it so, that a statistical figure like that on
Fig. 6 could indeed reflect the statistics of some real objects, or it is
bound to represent a kind of science fiction structure in the framework
of axiomatic quantum mechanics? In spite of known arguments [9,18,19]
the answer to that question would be still premature. Instead of looking
for plausible axioms limiting the structure of S to that of the orthodox
theory it is better to analyse first what what the other structures might
bring. A programme for such an investigation has been raised in [16].
In the present paper the "convex scheme" is used in whole generality:
it will be shown that only this unrestricted scheme is wide enough to
describe the possible non-linearities in quantum mechanics.

3. Relation to Non-Linearity

The non-linearity may affect various levels of quantum theory. One
can deal with certain physical quanta which, when propagate in vacuum,
are well described by linear wave equations: nevertheless their dense
clouds (approximately described by onumber fields) obey non-linear
propagation laws6. This kind of non-linearity will be called secondary.
One can also think about more basic type of non-linearity affecting not
only the macroscopic fields but also the isolated quanta: so, that even a
free particle in vacuum would not propagate according to a linear
equation. The non-linearity of that kind might be called primary. A
hypothetical experiment in which such a phenomenon could be detected
can be imagined as follows. Suppose, one has a quantum beam and a pair
of slids like those in Young experiment. The beam intensity is low and an
analogue of Fabricant experiment is performed: the quanta pass the
slids and drop separately onto a screen behind. Suppose now, that the
statistics of quantum hits on the screen reveals the interference fringes.
However, unlikely to the traditional quantum mechanical experiments,
the intensity of the fringes is not a sinusiodal function of the screen
cartesian coordinate: the phenomenon, though typically quantum in
spirit, fails to fit the scheme of the orthodox quantum mechanics. The
question then arises: what sort of quantum mechanics could be con-
structed on the basis of such a hypothetical experiment? An interesting
variant of this question is obtained by assuming that the shape of the
interference fringes can be associated with a certain non-linear wave

6 This happens in quantum electrodynamics where each single photon in vacuum,
although "dressed", propagates according to Maxwell equations, whereas the intense
photon beams exhibit non-linearities because of photon-photon interactions.
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equation. The question then becomes: how can one construct a non-linear
analogue of quantum mechanics with a non-linear wave equation playing
the role of the Schrodinger equation?

To give an answer, one is led back to the origin of quantum mechanics.
The development of that theory involved two basic heuristic steps:
1) the guess of the manifold of the pure states (to be that of Schrodinger's
waves), and 2) the guess of the statistical interpretation (stating that the
transition probabilities are determined by the scalar products). In
attempts of generalizing quantum mechanics the problem of the pure
states is not the main difficulty, because some natural imitations of the
step 1) are possible. The most obvious of them arises if one starts from
a certain generalized "Schrodinger equation" (linear or not) which admits
a certain conserved quantity e(φ) ̂  0, characterizing the solutions φ and
interpreted as a "total wave charge". In that case, one can define the set Φ
of all "normalized" solutions φ with e(φ) = 1: one might assume that the
solutions φeΦ represent the pure states of certain hypothetical quanta.

The choice of the statistical interpretation is much less obvious.
For waves obeying non-linear equations the scalar products, in general,
are not conserved by the time evolution and so, they are not appropriate
to define the transition probabilities. The question thus arises, which
functions of the non-linear waves should substitute the orthodox
quantities |(t/>, φ)\2Ί One of advantages of the convex scheme, is that this
question does not need to be answered a priori. Indeed, in the approach
outlined in §2 the transition probabilities are not fundamental but
secondary: it is enough to have the statistical figure in order to reconstruct
every detail of the statistical interpretation. The problem which becomes
now essential concerns S as a whole: how can one reconstruct the shape
of the statistical figure starting from some minimal physical information?
In particular: how can one find the structure of the mixed states if it is
assumed that the pure states obey a non-linear wave equation? In the
axiomatic approaches the structure of S was usually determined by
some universal regularity arguments always leading to the Hubert space
form of S. A possibility of a more general construction has been noticed
in [16]; it yields S provided that the following two elements are given:

1) A topological manifold Φ of elements φ, ψ,... which are candidates
to represent the pure states of a hypothetical system. The correspondence
between the elements φ e Φ and the pure states needs not to be one-to-
one: each pure state, in general, may be represented by a whole subclass
of elements of Φ7. The topology on Φ should be compatible with the

7 It is also no harm if Φ covers a submanifold of quantum states wider than just the
set of the pure states. This may happen in case of superselection rules, when Φ is taken to
be the unit sphere in a Hubert space, but some elements of Φ, because of the structure of
observables, are a posteriori identified with mixed states of the system. (For an interesting
discussion of that point the author is indebted to Dr. S. Woronowicz.)
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observable properties of the pure states. In what follows Φ is called a
manifold of pure states.

2) A class of real continuous functions on Φ representing the ob-
servational data and called the observables.

The second of the construction elements quoted here differs from the
traditional algebra of observables and deserves a special description.

Observables

The concept of an observable in the present day theory has a complex
status. It stands for both the measurement operation and its numerical
output. The mathematical entities used to unify these two aspects are the
self adjoint operators with their spectral decompositions. Below, this
"conceptual union" will be split. The operator entities will be reserved to
represent the transition processes rather than the observation acts [16].
The idea of observable will be associated with a purely numerical result
of a measurement mathematically represented by a c-number function
of the pure states.

Definition. Given a manifold of pure states Φ an observable or a
statistical quantity is any function /:Φ-»IR whose values f ( φ ) are
interpretable as the statistical averages on various pure states φ e Φ of
a certain quantum mechanical measurement.

Here, the quantum mechanical measurement stands for any ex-
perimental mechanism assigning real numbers to the members of a
quantum ensemble. The limiting assumption is that the mechanism
should be sensitive only to the properties of the single ensemble indi-
viduals and not to their correlations within the ensemble. Since no other
limitations are present, the above introduced concept of observable is
wider than the orthodox one: it stands not only for an average indication
of a "perfect" measuring device composed of ideal filters (as in majority
of papers adopting von Neumann's approach) but can also describe
average effects shown by "imperfect" or "mixed" devices [8] or even by
quite arbitrary macroscopic bodies sensitive to the presence of quanta
and endowed with numerical scales (thus coinciding with a more general
concept of effects introduced by Ludwig [14]). In spite of that generality
it is not at all so that every function on the set of pure states is an
observable. To the contrary, the structure of the present day theory is
precisely due to the fact that the observables form a relatively narrow
subclass of all functions on Φ. Indeed, the manifold Φ here is the unit
sphere in a Hubert space and the statistical averages are all given by the
scalar products (ψ,Aψ) (φeΦ) where A are the self-adjoint operators.
Thus, in the orthodox theory only the quadratic forms are observables:
the other functions of φ, though they can be experimentally determined,
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are not statistical averages of any quantum mechanical experiment.
The above distinction is one of intriguing features of orthodox quantum
mechanics: there is some mystery in the fact that for a microsystem
certain functions of the pure states can and certain cannot be measured
as statistical averages.

Since this is so, it is reasonable to assume that a similar distinction
should also exist in case of a general theory. This fact is so essential
that it might be choosen a new fundamental aspect of quantum theory
competitive to "quantum logic" and "algebra of observables". Given the
set of pure states of a certain hypothetical system, the nature of the system
should be characterized by indicating which functions on the pure states
are the observables. From now on the class of these functions will be
denoted F. Given the pure states, the contents of F may serve to classify
the theories: the richer the class of observables than "more classical" the
theory. Some general statements concerning the structure of F can be
made. Thus, F should be a linear class: given two devices destinated to
measure two observables /i,/2eF, a new device can easily be con-
structed which would measure, as a statistical average, any linear
combination λ1f1 + λ2f2 (A 1 ? A 2 elR). Because of the continuity of the
macroscopic world some assumptions asserting the closed character of F
should also be adopted. It would be too strong to assume that any
point-wise limit of functions from F must also belong to F. This could
lead to the appearence in F of some discontinuous functions of the pure
state corresponding to over-idealized measuring devices inconsistent
with the "physical topology" (see also the discussion by Giles [8]). In
what follows, a weaker property will be only assumed, namely, that F is
closed in the set C(Φ) of all real continuous function on Φ endowed
with the topology of the point-wise convergence. This property will be
called the relative closure of F.

The possibility of describing quantum systems in terms of observables
suggests the following formal definition.

Definition. A quantum system without dynamics is a pair of entities
(Φ, F) where Φ is a manifold of pure states and F is a relatively closed,
linear class of continuous real functions on Φ called "observables".

Before exhibiting the relation with the convex scheme of § 2 it is
worth while to notice that this definition is naturally suited to the
particulae task of constructing non-linear variants of quantum mechanics.
In fact, suppose that the manifold of pure states Φ coincides with a
certain set of "non-linear waves". The most natural next heuristic step
then is not so much to guess the character of quantum logic or the shape
of S but rather to postulate the class of observables F. Here, some
natural hints exist based on the character of the non-linear wave dynamics.
One feels, that a class of functions should be found which would reflect
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the structure of a non-linear wave equation as naturally as the class of
the quadratic forms reflects that of linear equations.

The derivation of the observables from the dynamics of the φ-wave
is to be treated in § 4. Now, it will be shown that the description of a
quantum system in terms of pure states and observables is complete:
given the pair of entities (Φ, F\ the statistical figure of the system can be
uniquely constructed.

Construction of S

Indeed, suppose that Φ and F are known. Then, consider the set Π
of all the probability measures π defined on Borel subsets of Φ for which
the integrals §f(φ)dn(φ\ (/eJF), are convergent. The set Π has an

Φ
innate structure of a convex set: given two probability measures ni,π2eΠ
and two numbers Pι,p2 = 0> P i + P i ^ l ? the linear combination p^n^
+ p2n2 is again a probability measure and it belongs to Π. The elements
of Π have a natural physical interpretation. Every π e 77 is a prescription
for preparing a mixed state: the prescription sais that for any Borel
subset Ω C Φ the fraction of the pure components from Ω taken into the
mixture is π(Ώ). Thus, Π might be used to label the mixed states of the
system. However, the correspondence between the elements π e Π
(prescriptions) and the resulting mixtures is not necessarily one-to-one:
this still depends upon the observable properties of the mixed states.
For any /eF and πeΠ the value of the observable / on the mixed
state prepared according to the prescription π may be defined by the
integral /(π) = \f(φ)dπ(φ). The numbers f ( π ) ( f e F ) represent the

Φ
collection of the observable properties of the mixture π. Now, two
measures π, π' are called equivalent (π = π') iff /(π) = /(π') for every
feF. Any two equivalent measures are interpreted as two prescriptions
for producing mixtures which lead to physically indistinguishable
mixed states. The equivalence relation = is a crucial element of the con-
struction which accounts for the "first impossibility principle". Having
given that relation one now defines a state (pure or mixed) as a class of
equivalent probability measures. Consistently, one constructs the
statistical figure S as the convex set of all equivalence classes S = Π/=.

While Π is a generalized simplex, the quotient set S, in general, has
a distinct structure: its geometry reflects the physics of the hypothetical
quanta. Having given S one can reconstruct the whole rest of the scheme
as described above. This shows that the class of observables F is indeed
the key element of the theory which provides a unique construction of
the generalized quantum scheme. A particular example of this con-
struction accounts for the origin of the orthodox quantum mechanics.
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Orthodox Theory

That theory borrows some essential features from the linear classical
field theory. Its main assumption states that each pure ensemble of
quanta can be described by a complex field ψ (a "wave function") which
obeys a linear wave equation. Since for the linear equations the densities
of the typical conservative quantities are quadratic in the field, it is
natural to assume that one such quadratic density (which will be denoted
by ψ+(x)ψ(x)) represents the average space density of the ensemble and
the corresponding integral (φ, ψ) = f ψ*(x) ψ(x) d3 x is the total expected

oo

number of the ensemble particles. Since the total particle number does
not enter into the description of a state, one can thus label the pure
states by those tp-fields for which (φ, φ) = 1: this leads to the manifold Φ
being the unit sphere in a Hubert space. At this moment certain elements
of the statistical interpretation are already clear: it is decided that the
probability of finding an average ensemble particle in an arbitrary space
domain Ω is given by the quadratic form pΩ(ψ) = f ψ*(x) ψ(x) d3x. This

Ω
assumption will be further called the primitive statistical interpretation
and the forms pΩ will be called the primitive observables. In agreement
with the previous consideration the construction of the statistical figure S
requires the knowledge of the total class of observables F. The main
indication as to the nature of that class follows again from the linearity
of the quantum mechanical evolution equation. As seems reasonable to
assume, the general quantum mechanical measurement upon t/ -wave
can be accomplished in two stages. First, the ψ-wave undergoes a
preliminary evolution process which is mathematically described by a
certain norm conserving operation ψ-^Tψ. Because of the linearity
of the evolution equation, the operation T too is linear. Second, some
primitive observables are measured upon the evolved wave ψ' = Tip.
This is done by capturing the particle in one of disjoint reception domains
Ωί,Ω2,... characterizing the structure of the measuring apparatus.

If the reception domains Ωj are labelled by real numbers λj (the scale
of the apparatus) the statistical quantity measured is f = λίp'Ωί

+ λ2pΩ2-\—, where p'Ω are the "evolved" primitive observables pΩ(ψ)
= pΩ(Tψ). Now, since pΩ are quadratic and T is linear, the evolved p'Ω
are again quadratic and so is the statistical quantity /. This implies
that only the quadratic forms are measured as statistical quantities in
quantum mechanical experiments. A question now arises as to how
large is the set of quadratic forms which are observables? The simplest
assumption is, that each real, continuous quadratic form on Φ is an
observable and can be measured, at least in principle, as a statistical
average of an adequate experiment. (A motivation of that assumption
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will be given in § 4.) With these assumptions made the whole scheme of
the orthodox theory can be uniquely deduced. Indeed, let π be a prob-
ability measure on the unit sphere Φ and let / be an observable. Since /
is quadratic, there exists a linear functional /defined and continuous on
a subset of the tensor product space $?®ffl, such thatj'(ψ)=f(\ψ x ψ\)
(ψeΦ). Hence, /(π) is determined by values of / on

/(π) = ί f(ψ) dπ(ψ) = j /(|tp x ψ\) dπ(ιp) = f ($ \ιp x φ| dπ(ψ)\ . (3.1)

This formula implies that the physically essential properties of the
mixture produced according to the prescription π depend only upon the
following hermitean, positive, unit-trace element of 3C®$C called a
"density matrix" :

*π= ί \ψ*ψ\dπ(ιp). (3.2)
Φ

This is how the orthodox "density matrices" emerge from the division
of Π into equivalence classes. The resulting statistical figure S is iso-
morphic with the convex set of the entities of form (3.2): S = {x e ̂ (Jf ) : x
= x1" ̂  0, Tr x = 1 }. The rest of the orthodox scheme follows. The whole
structure is essentially conditioned by the choice of F: one might define
the orthodox quantum mechanics as a theory of such a c-number wave
for which only the quadratic forms are the observables. If another class
of observables were choosen, different from that of the quadratic forms,
the same mathematical mechanism would produce a distinct statistical
figure corresponding to a different theory. In order to illustrate that
dependence, a sequence of hypothetical schemes will be now discussed.

Higher Order Schemes

Similarly as before, let Φ be the unit sphere in Jf. Now, however,
assume that the class of observables F is not the set of the quadratic forms
like in orthodox theory but the set F2n of all the continuous 2n-th order
forms / given by

f(ψ) = h(ψ,...9ψ 9 ψ , . . . 9 ι p ) , (3.3)

where h(φl9..., φn; ψl9..., tpj are hermitean multiforms in ffl linear in
the variables ψj and antilinear in φ/s. Since (ψ9 ψ) = 1 on Φ, each 2rc-order
form feF2n coincides on Φ with some forms of higher order: f(ψ)
= (ψ,\p)k f(ψ) (k= 1,2,...). Hence, F2CF4CF6 ... and so, the classes of
observables F2n correspond to hypothetical theories with extending
varieties of macroscopic measuring devices. A characteristic property of
such a sequence of theories is a step-wise recess of the "first impossibility":
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the wider the class of observables the more selective the perception of the
mixed ensembles and more kinds of mixture become physically distin-
guishable.

Denote now by S(34f, 2n) the statistical figure constructed for F = F2n.
An analytic description of S(J4f, 2n) is possible similar to that employed
by the orthodox theory. Indeed, suppose that / is a 2n-order form.
Then, there exists a linear, hermitean form /, defined and continuous
on a subset of ̂ ®" ®^®^® •••(g)Jf such that /(v>) = /(v>® > ®V>

n n

(ψ£Φ)> Hence, for any πeΠ:

= \f(ψ)dπ(ψ)=
Φ

- f (I ψ®- ®ψ®ψ® ®ψdπ(ψ)} .

This formula implies that the physical properties of the mixture
prepared according to the prescription π are fully determined by the
following hermitean, positive, unit-trace element of Jf® ®Jf
® $f ® ® ffl which is a natural generalization of the orthodox "density
matrix":

2"π φ

The entity (3.5) might be called a "density tensor". The Spf, In) is
precisely the convex set of all density tensors of form (3.5) (the subset of
all the positive, unit-trace elements of ^F® -®«^® which are
decomposable into convex integrals of the simple multitensors
φ® ®φ®φ® ®φ). One thus arrives here at a new realization of
the old scheme of quantum states, quantum observables and expectation
values: the states are now the decomposable density tensors of an even
order, the observables are arbitrary hermitean tensors of that same
order and the expectation values are given by the tensor contractions.

The generalization introduced by S(J>ίf,2n)9s is formally similar to
that achieved by the introduction of higher order multipole moments to
the description of a density distribution. In fact, what the orthodox
theory amounts to is the description of the probability measures π e Π
in terms of their hermitean quadrupole moments with respect to the
centre of the unit sphere Φ. In case of S(Jf, 2n) (n> 1) higher order
multipole moments of the measures are used. Since for the measures
distributed over the unit sphere the higher order moments determine
the lower order moments, the information contained in the subsequent
"density tensors" is increasingly precise. Consistently, the statistical
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figures Spf, 2n) are "increasingly classical": each next of them represents,
from the point of view of each previous, a kind of a "hidden parameter"
scheme with an increased manifold of the mixed states and recessed
impossibility principles. This leads to a temptating question: is the
impossibility of measuring as statistical average of anything but quadratic
forms of ψ indeed so fundamental as assumed by the present day quantum
mechanics or is it only a technical barriere? Are the higher order forms
of \p basically beyond the reach of quantum statistics or, perhaps they
could be measured if only sufficiently subtle experimental techniques
were employed?

Forbidden Measurements

Though no indications exist about the incompleteness of the present
day theory, it is one of advantages of the "convex" approach that it
exhibits some areas in which that theory, at least in principle, could be
broken. Since the quadratic character of the observables is conditioned
by the linearity of the evolution processes the most obvious such area
consists in hypothetical evolution processes in which the quantum
mechanical wave function would undergo a non-linear change. The
most formal way of introducing such processes would be to assume some
new couplings between the wave function and the external world. Thus,
for instance, having a spinorial wave ψ of Dirac electron one might
assume the existence of a hypothetical external scalar field φ coupled
with ψ according to Lint = G(ϊpιp)φ (G Φ const) and making φ to evolve
according to the non-linear equation

(γ»dμ-im}ψ + φσ(ϊβψ)ψ = Q. (3.6)

The evolution (3.6), though allowed by the general principles of
constructing couplings between onumber fields, would nevertheless
break the consistency of the orthodox quantum mechanics. In fact, if an
external field φ was created catalyzing a non-linear behaviour of ψ,
this field could be used to measure, as statistical averages, some non-
quadratic forms of ψ: in order to do that it would be sufficient to let a
pure electron beam pass an external field φ and then measure, upon the
evolved φ, some conventional quantum mechanical observables. As a
result, the orthodox impossibility principles of quantum mechanics
would be broken and the traditional manifold of the "density matrices"
would become insufficient to represent the enriched set of the mixed
states. Hence, if one assumes the sufficiency of the orthodox scheme,
one must also assume the impossibility of non-linear response processes
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like (3.7). This exhibits a limitation of quantum theory close to Haag's
consistency requirement: the orthodox electron cannot enter into
arbitrary couplings without loosing its identity.

The above example is of rather theoretical merit: it seems not probable
that quantum mechanics will be broken just by inventing new types of
external fields. However, the non-linear processes might arise from less
artificial sources. The partial differential equations of quantum me-
chanics (like those of Schrδdinger or Dirac) concern, in essence, only such
evolution processes in which a microparticle interacts with an infinitely
heavy macroscopic surrounding which is a not affected by the presence
of the particle. The processes of that kind form the proper domain of
quantum mechanics and are well described by the known types external
potentials none of which violates the traditional linearity. The situation
is less obvious if the microparticle interacts with an object which, though
macroscopic, is not infinitely inert but "subtle" and can modify its
properties under the influence of the approaching particle. In that case
one is tempted to consider the possibility of a hypothetical interaction
process in which the wave function of the micro-object would undergo
a non-linear change. The process may be described as follows.

There are two objects participating in the interaction: a micro-
particle and a macroscopic system. The microparticle is described by a
certain wave function whereas the state of the macrosystem is determined
by a set of classical parameters. The state of the whole of micro + macro
system is simply the pair of states of the systems components. At the
beginning of the process the microparticle and the macroscopic medium
do not yet influence each other: the state of the microparticle is given
by a certain wave φ which, at least approximately, evolves according
to a linear wave equation whereas the macrosystem is in a certain
standard initial state. Then the mutual interaction starts: the state of the
macrosystem (which has the "subtle" ability of reacting to the particle
presence) is modified under the influence of the approaching particle.
This, in turn, modifies the way how the particle propagates. Thus, the
wave function of the microparticle interacts with itself by modifying its
own macroscopic environment. At a certain conventionally choosen
final moment the interaction is again insignificant: the microparticle
is now in a new state ψ' which depends upon the initial state ψ: ιpf = A(ψ).
The result of the microparticle self interaction via the macroscopic system
is the non-linearity of the operator A.

Note, that such theoretical schemes find some concrete realizations
in the framework of the existing theory. Thus in the quasi-classical
electrodynamics the electron is represented by a spinorial wave ψ which
is supposed to interact with a classical electromagnetic field. The wave ψ
here is assumed to produce a classical field Aμ which, in turn, influences
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the propagation of the wave:

Aμ(x) = f Δ*«(x - x')jμ(x'} d4x' jμ = eίβyμιp (3.6)

= 0. (3.7)

According to the orthodox quantum mechanics the schemes like the
quasi-classical electrodynamics or the theory of a "self-consistent wave"
cannot describe correctly the propagation of single quanta but can
only provide approximate data concerning the average behaviour of
clouds of many interacting particles. However, attempts are also made to
assign to them an exact meaning [13, 20]. According to that point of
view, the electromagnetic field would be classical in nature and the
quantal effects of electrodynamics would exclusively follow from the
behaviour of fermions involved. Not entering into details of the discussion
it is interesting to notice, however, that the serious assumption about the
classical nature of the electromagnetic field would imply some deep
changes in the quantum mechanics of fermions themselves. Indeed, the
classical electromagnetic field interacting with the electron would be an
example of a "subtle" macroscopic medium leading to a non-linear
behaviour of the electron wave function ψ. This non-linearity, even if
quantitatively small, could be arbitrarily amplified by adequate electron
transmitters employing the classical character of Aμ. One such hypo-
thetical device is represented in Fig. 7.

The device on Fig. 7 is composed of an electromagnet and a sensor
registering the intensity of the electric field at a detection point P. When
the electric field at P is above a certain critical value, the electromagnet
responds connecting its own magnetic field; otherwize it remains
inactive. Obviously, the device reacting in this manner could produce a
strongly non-linear transformation of the electron t/ -wave and so, it
would allow one to get out of the "enchanted circle" of the quadratic
σbservables8. An intriguing question thus returns: are the non-linear
response processes of the quantum mechanical wave function indeed
impossible? Or, perhaps, they could be produced if the experimental
techniques were advanced enough to construct some "subtly reacting"
macroscopic devices as that suggested in Fig. 7?

8 By employing the classical character of Aμ one would be able to construct a large
family of non-orthodox measuring devices based on the detection of the electromagnetic
field. For instance: a counter which clicks only when the value of φ fφ at a certain detection
point is great enough; a counter which may not register the electron at a point A if φ fφ at
another point B is too big, etc.
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Fig. 7

From the point of view of the present day theory the answer is
decisively negative. However, it must be replied that the orthodox theory
should not be used to prove the unphysical character of non-linear
response processes in quantum mechanics. It may not be excluded that
the scheme of the modern theory of coupled systems with its formalism
of tensor products (which is the alternative of non-linearity) plays a
similar role in particle physics as the epicycle structure did in ancient
kinematics. In that case the "forbidden processes" would not be im-
possible but to the contrary, they would form a natural area to look for
new quantum phenomena.

4, Dynamics and Geometry

The scheme of the generalized quantum mechanics begins now to
emerge. As is clear from the second impossibility principle, there is a link
between the dynamics and the geometry of quantum systems (see
discussion in § 2). As follows from the considerations of § 3 an important
element of that link is the class of observables F. Now, the link will be
completed by constructing the class of observables for systems with given
dynamics.

Similarly as in § 3 a hypothetical system will be considered with the
manifold of pure states Φ being the set of all "normalized waves"
ψ = {ψ(x)}, where the values ιp(x) (x e 1R3) belong to a certain finite
dimensional real or complex vector space Ξ and the normalization
condition is given by e(ψ)= j I(ιp(x))d^x= 1, I(ξ) being a positive

00

functional of the vector variable ξ e Ξ. For so normalized waves the
preliminaries of the statistical interpretation will be defined by the
quantities ρΩ(ψ) = f I(ψ(x))d3x which will be called the primitive ob-
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servables and interpreted as the probabilities of localizing the system
in a pure state ψ in various space domains ΏclR3.

Given the primitive observables, the knowledge of dynamics happens
to be the only element necessary to reconstruct the total class of ob-
servables F and so, to determine the shape of the statistical figure.

Dynamics

In classical field theory the dynamics is usually introduced by
postulating an evolution equation which governs the propagation of the
fields. This point of view must be now modified. What, in fact, is the
dynamics is not so much one evolution law but rather a whole family
of such laws, determining the behaviour of the system in various "external
environments". Indeed, what one deals with in case of Schrodinger or
Dirac dynamics are whole families of structurally similar partial
differential evolution equations with arbitrary potentials representing
the "external world": it would be dynamically empty if one knew only
the vacuum versions of the Schrodinger or Dirac equations. This leads
to the following notion of dynamics as a complex entity.

Definition. An evolution law is any law (equation) which allows one
to reconstruct the evolution of a physical system if the initial conditions
are given. The dynamics is a class of evolution laws defining the behaviour
of the system in various external conditions.

The concepts used here are open to further specifications. Thus in
non-relativistic theories the initial conditions define the state of the
system in a certain initial time moment and the knowledge of the evolu-
tion in the knowledge of the system states in all other moments. In the
relativistic case the initial conditions stand for the Cauchy data defining
the properties of the system on a certain space like surface and the
knowledge of the evolution is the possibility of reconstructing the
system behaviour on the whole rest of the space time. It is also open how
rich a variety of data should be substituted for the external conditions.
One might be interested in simplified models of dynamics with relatively
poor classes of external conditions (as, for instance, the dynamics of a
wave diffracting on a rigid, macroscopic body). In practice, more complex
models of dynamics are important with the external reality described
by at least arbitrary potentials. Some examples are listed in Table 19.

9 For the non-linear equations of Table 1 the problem about the precise shape of the
corresponding dynamics is still open. It is to be decided whether the theory should deal
with the singular solutions, which are likely to appear in case of non-linear wave equations,
or, perhaps, it may be restricted to the regular ip-waves at the cost of limiting the external
potentials and the initial conditions involved.
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Potentials

1 V

2 V

3 V,U

4 V

5 V

Dynamics

dip h2

dt 2m

dip h2

ih'~Γ- = --^-Λψ+V\ψ\2ψ
dt 2m

dip h2

ίh = Δψ + Vψ + U\ψ\ ip
dt 2m

dip h2

 2

dt 2m

dt 2m

Normalization

00

oo

oo

\\ψ\4d3x = l
00

00

All the examples of Table 1 are the generalizations of the non-
relativistic Schrodinger's dynamics which occupies the Position 1.
The Example 2 has the vacuum propagation law identical with the
Schrodinger vacuum equation but represents a distinct case of dynamics
because the field ip is coupled distinctly to the external world. The
dynamics of Example 3 is essentially richer than those of Example 1, 2
for it assumes an external reality in which two different types of potentials
are present. In all three Examples 1-3 the quadratic form \ \ψ\2 d3x is

oo

the basic conservative quantity used to define the normalization and
thus suggesting the coice of the primitive observables. It is no longer so
in case of the Examples 4 and 5 which are based on the different vacuum
propagation law:

dt 2m

For that law the 4-th order form f \ψ\4 d3x plays an analogous role
00

as f \ψ\2 d$x in case of the Schrodinger equation. Hence, if Examples 4,
oo

5 reflected the dynamics of a certain quantum wave, the origins of the
statistical interpretation could be based upon |φ|4 as a fundamental
statistical density. Examples of wave dynamics for which the form
\\p\k (fc>0) would be a basic conservative quantity could be as easily
constructed.
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Motion Group

In what follows the decisive role belongs not to the dynamics itself
but rather to a certain superstructure generated by the class of dynamical
laws. In order to define it precisely the relative character of quantum
states must be recalled. It is convenient to agree that the waves ψ con-
sidered here represent the pure states in Schrδdinger's picture. These are
relative entities: by telling that a state of a system is given, one has in
mind the situation which takes place on a certain space-like hyperplane Σ
in Minkowski (or Galileo) space-time as perceived by an inertial observer
for whom Σ is a plane of simultaneous events with the time coordinate
t = 0. Hence, the exact entity to which the concept of a (Schrodinger)
state is refered is a space-like hyperplane endowed with a cartesian-
frame of three space-like coordinates and with the "past" and the "future"
sides distinguished. Each such entity will be further called a framed
hyperplane. In order not to complicate the scheme at this stage, all the
framed hyperplanes considered below will be assumed to determine a
common direction of the future in space-time.

Let now Σ and Σ' be two framed hyperplanes and let the state of a
hypothetical object on Σ be described by a certain wave ψ. Assume,
that the dynamics of the φ-wave is known and that some definite external
conditions in the space-time exist. Then, a definite dynamical law is
valid which determines a new state on Σ' described by a certain wave ψ'.
Given the dynamics, the mapping ψ -> ψ' depends upon the pair of framed
hyperplanes Σ and Σ' and upon the external conditions involved:
ψ' = TΣ,Σ>,Ext.(ιp)w.

The operators TΣtΣ.tExtt:Φ->Φ represent the possible evolutions of
the φ-waves (inbetween various pairs of framed hyperplanes and in
presence of various external conditions) consistent with the dynamics
assumed: they will be further called motions. The dynamical information
essential for the structure of a quantum system can now be synthetized
by introducing the following concept of a motion group which gatheres
the totality of all could be motions of the system.

Definition. Given a manifold of pure state Φ, the motion group M
is the smallest relatively closed group of transformations Φ->Φ con-

1 ° In case of dynamics like those of Table 1 the dependence φ -»• φ' should be determined
by solving the Cauchy problem for a partial differential equation. Given a wave ψ = {ψ(x)}
as an initial condition on the framed hyperplane Σ and given the external potentials in the
partial differential evolution equation one has to find put the unique space-time extra-
polation {φ(jc, ί)} of the initial wave ψ such that ψ(x, Q) = ψ(x) (the coordinates x, t are
induced by the frame on Σ). The values ψ(x, t) at points (jc, t) ε Σ' after being transformed
to the coordinate frame of Σ' (according to their covariant character) determine the required
wave ψ'. For the non-linear wave equations the mapping φ-»φ' may produce singular
solutions on Σ' which might indicate that the theory should be opened toward singular
Cauchy data.
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taining all the operations T^rjExt.. Here, the relative closure of M means
that every homeomorphism Φ-+Φ which is a point-wise limit of trans-
formations belonging to M must also belong to M. Thus, the group M is
closed in the set of homeomorphisms of Φ endowed with its natural
topology.

The above motion group is essentially wider than the sometimes
employed dynamical group of a system. It contains all one-parameter
transformation groups corresponding to all admissible turns of evolution.
Since Σ and Σ' can, in particular, be two distinctly framed versions of the
same geometrical plane, the group M, appart of genuine dynamical
processes, must also contain purely kinematical transformations of Φ
corresponding to isometrics on a fixed hyperplane in the Minkowski
(or Galileo) space-time: it might be said that M reflects the total
"kineto-dynamical mobility" of the system.

The group M provides an essential information concerning the
structure of the obsetvables. Indeed, having any measuring device
destinated to measure a certain statistical average /e F one can produce
more observables by alternating the measurement process. Instead of
measuring straightforwardly the statistical average / on a given wave
\p € Φ one can let ψ undergo first a certain preliminary kineto-dynamical
process TeM and only afterwards measure / on the evolved wave
ψ' = Tιp thus obtaining a new statistical quantity: (fT)(ιp) = f(ψf)
= f(T(ψ)). In this way the existence of "motions" prevents one to assume
too poor a class of observables: having any observable /e JF one must
also assume the existence in F of infinity of other observables of form / T
generated by all possible evolution processes which the system might
perform under the influence of various external forces. This suggests the
following formal assumption:

Assumption. The class F is invariant with respect to the motion
group M.

With that assumption made, there is now only one heuristic step
necessary to complete the generalized quantum scheme.



Generalized Quantum Mechanics 249

Main Assumption

One of simplifications made by the present day theory consists in
attributing an equal status to all the observables. Each self-adjoint
operator in a Hubert space is assumed to represent a physical observable:
each of them is as well measurable as any other. It is a feature of quantum
phenomenology, however, that is fails to reflect this abstract equality:
for what one observes in reality is a distinguished role of the position
measurements. Indeed, the known quantum experiments seem to follow
the same general scheme in which the act of the localization is the
ultimate experimentator's tool to extract the physical data n. The scheme
consists in letting the particle wave function undergo a certain preliminary
evolution process as a "preparatory stage" of the measurement and then
in detecting the particle in one of spatially separated "reception domains".

As already noticed (compare § 3) the statistical quantity measured
in so arranged experiment is a linear combination of the "evolved"
primitive observables / = Σ λ _ / pβjT where pΩ. are the position ob-

j
servables corresponding to the space domains Ωj (pΩ(ψ) means the
probability that a particle in a pure state ψ will be localized in Ω and T
denotes the operator of the preliminary evolution process). This indicates
that an arbitrary observable feF can be either expressed or at least
approached by linear combinations of the quantities p T where p are the
primitive observables and T are the motions of the system. The uni-
versality of this measurement technique does not seem to be conditioned
by the particular character of the orthodox quantum mechanical
evolution equations (like that of Schrodinger or Dirac) but it rather forms
on immanent feature of the macroscopic measuring techniques. Hence,
it is reasonable to believe that the reducibility of the general to the
primitive observables should also exist in a general theory, though the
operators T are no longer linear there. This leads to the following
general assumption which represents the required guess of the ob-
servables for a system with a non-linear dynamics.

Assumption. Given a manifold of pure states Φ, a collection P of
real functions on Φ interpreted as the "primitive observables" and a
motion group M, the complete class of observables F is the smallest linear
and relatively closed class of continuous real functions on Φ containing P
and invariant under the group M.

This assumption is the last heuristic step relating the geometry of
quantum system to the dynamics assumed. Once this step is taken one
has no longer freedom of specifying further the structure of quantum

11 The author appreciates a stimulating discussion of that point with Professor
J. Werle.
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states and the statistical interpretation since those elements are already
determined: having given F one uniquely reconstructs the shape of the
statistical figure and subsequently, all other geometric aspects of the
theory. It is worth while to notice that from the heuristics just completed
a certain abstract description of quantum systems emerges which is not
even restricted to the particular domain of quantum theories based on
wave equations.

Group-Theoretical Model

In fact, for the applicability of the constructions here outlined it is
not essential to assume that the pure states correspond to certain c-
number waves. Instead, one can take Φ to be a topological manifold of
elements φ, ip,... of arbitrary nature. The primitive statistical interpreta-
tion, too, does not need to depend upon the possibility of constructing
positive conservative densities for some wave functions. Instead, one
might just pick up a certain class P of real functions on Φ and decrete them
to be the "primitive observables" (the problem whether the elements
p e P represent localization experiments and, eventually, how are they
related to the space domains ΩciR3 is to be resolved on the level of
concrete theories). Finally, in order to fix the "dynamics" one has to
choose a certain group M of transformations Φ->Φ and decrete it to
cover the totality of the kineto-dynamical processes which the system
can undergo in various physical circumstances. This leads to the
following group theoretical model of a quantum system.

Definition. A quantum system with dynamics is a set of five entities
(Φ,M,P,F,S) where:

1) Φ is a topological manifold of points ψ, φ,... covering the pure
states of a hypothetical physical system (the correspondence between
the pure states and the elements φ e Φ, in general, is not one-to-one).

2) M is a relatively closed subgroup of homeomorphisms Φ-+Φ
called the motion group and representing the dynamics of the system.
(There is a generating subset of elements in M which can be identified
with the evolutions of the system in various external conditions.)

3) P is a class of continuous functions on Φ which are called the
primitive observables and interpreted as statistical averages of some
"elementary measurements" which can be performed upon the system.

4) F is the total class of observables constructed as the smallest linear
and relatively closed class of real continuous functions on Φ which
contains P and is invariant under the transformation group M.

5) S is the statistical figure constructed according to the prescrip-
tion of § 3.
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The intrinsic structure of quantum mechanics described by this
definition might be represented in the following scheme.

One of the most traditional realizations of that scheme is the non-
relativistic quantum mechanics of one particle.

One-Particle Orthodox Quantum Mechanics

For simplicity, a non-relativistic particle in one space dimension
will be considered. The pure states then are represented by complex

+ 00

waves ψ = {ψ(x)} (x e IR1) with the normalization f \ψ\2 dx = 1 and the
— oo

manifold Φ is the unit sphere in the complex Hubert space ffl
= L2(— oo, +00). The dynamical laws are of Schrόdinger's form

ih
dip h2 d2ψ

2m dx2 + V(x)ψ (4.2)

where V are arbitrary potentials. The quantity \ψ\2 is a positive con-
servative density of the evolution laws (4.2); one thus guesses that it has
the meaning of the probability density for the localization experiments
(Born) and consistently, one chooses the primitive observables in the
form:

(4.3)

The motion group of the system is now to be determined. This group
should contain all the unitary one-parameter subgroups of form

- i f f τ

U = e (τ e IR1) where are the Hamiltonians with all possible external
h2 d2

potentials: H= — — r—Γ + V. The further considerations form only
2m dx2

an outline and have to be completed by exact proofs. Since the group M
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is relatively closed, hence, together with any two families of operators
eτA, eτB (where A and B are imaginary operators in 2tf ) it should also
contain any operator of the form e"

A + βB. This may be seen by applying
the Trotter's formula:

/ xA βB \n

eaA + βB= \im\e " en } . (4.4)
n->oo

Similarly, if eτA, eτBeM (τelR1), the group M should contain the
unitary subgroup of the form eτ[A>B] (provided that the commutator
\_A, E] = AB - BA is well defined). This may be shown by employing the
following approximation formula

e[A,B] = Um <eA/neB/ne-A/ne-B/nγi ^

n-»oo

These facts imply that the set of the imaginary operators K for which
eτK E M for all τ e IR1 forms a Lie algebra with respect to the commutation
[A, B~] = AB — BA. This algebra can be justly called the "Lie algebra"
of the generalized "Lie group" M and denoted adM. Now, taking

h2 d2 h2 d2

A = — -- ---- — =- and B = — — ---- — -~- + F, where V is an arbitrary
2m dx2 2m dx2

potential, one infers that V = B-AeadM. Similarly, the operator

KI = - - f(x) + f(x) - ~ = tA> β] e adM> where / = ~ - V' is an

ox ox 2m
arbitrary function. The K^ happens to be the most general operator of

form K — k(x, p) which is linear in p = — ίh — — . In turn, by commuting
(J X

d2

— -y and K1 one shows that K2 e adM, where K2 is the most general

imaginary function k(x, p) quadratic in p. By induction one shows that
adM contains any imaginary operator /φc, p) which is analytic in p.
Since M is relatively closed, this indicates that adM coincides with the
set of all imaginary operators in 3? and so, M coincides with the unitary
group acting on the unit sphere Φ. The reconstruction of the class of
observables F now becomes the problem of the representation theory:
the required F is the smallest linear and relatively closed class of continu-
ous real functions on Φ invariant under the unitary group and containing
the quadratic forms pΩ. The known facts of the representation theory of
the finite-dimensional unitary groups indicate that this class is just the
set of all bounded quadratic forms on Φ. The rest of the "genezis" of the
orthodox theory was already described in § 3.

Note, that the construction presented above exhibits some new con-
sistency relations between the known elements of the orthodox quantum
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mechanics. Indeed, in the traditional presentation of that theory some
essential elements of the statistical interpretation (such as the general
expression for the transition probabilities by \(ψ, φ)|2) are introduced in
form of separate assumptions apparently independent of the primitive
facts of the theory. This is not so in the group theoretical model just out-
lined. Here, once it is assumed that the wave ψ obeys the Schrodinger's
dynamics and once the Horn's interpretation is accepted of |ιp(x)|2 as the
probability density, the whole rest of the scheme, together with the
general expression for the transition probabilities, uniquely follows via
construction of S. Thus, the group theoretical model yields a deepened
insight into the "anatomy" of orthodox quantum mechanics.

General Programme

The possibility of more general realizations of the scheme is now
open. An obvious thing to do would be to consider the known examples
of classical non-linear wave dynamics with some naturally choosen
"primitive observables" and then, to use the group theoretical model in
order to see, to what kind of quantum systems do they lead. Mathe-
matically, this involves a wide programme of structural investigations
of non-linear field theories centered around two problems.

• One has to find out the motion groups for non-linear theories.
This task, though it does not present a fundamental difficulty, is non-
trivial as far as the effective knowledge of the motion group is concerned.
As is already clear, for some non-linear versions of the Schrodinger's
dynamics (like Examples 2, 3 in Table 1) the resulting motion group is
significantly richer than the unitary group12. An essential question
arises, as to, when M coincides with the group of all homeomorphisms of
the wave manifold Φ? The theory in which this happens would lead to the
class of observables F coinciding with the set of all continuous real
functions on Φ and so, the resulting statistical figure would be a
generalized simplex. It would be interesting to know what kind of non-
linearities in the quantum mechanical wave equation imply, in this way,
the return to a classical theory.

• Given a motion group M acting on a wave manifold Φ and
given a class of primitive observables P one has to reconstruct the
total class of observables F. Mathematically, this ammounts to looking
for a class of continuous real functions on Φ which would be a minimal
representation subspace of the group M containing P. The effective
solution of that problem requires the development of the representation
theory of infinite dimensional Lie groups and the theory of special

12 Authors notes. Unpublished.



254 B. Mielnik

functions on infinite dimensional differential manifolds. Those branches
are already taking their first steps (see e.g. [7]); they form a natural area
to look for the way out of the 50 years old formalism of Hubert spaces
in quantum physics.

5. Consistency Problems

Though the question about the practical use of the generalized
quantum scheme is still open, this scheme already exhibits some essential
consistency relations between quantum mechanics and other physical
theories. This can be seen by applying consistency ideas of Haag's type
to interacting physical systems.

Suppose, there are two generalized quantum systems A and B. The
phenomenology shows that the structure of A can be described by a
manifold of pure states ΦA and a class of observables FA. Similarly, B
can be described by a manifold of pure states ΦB and a class of observables
FB. Suppose now, that a theory is formulated which tells, how A interact
with B. In this moment the problem of consistency arises. Indeed, when A
is assumed to interact with B a certain new technique of measuring the
statistical averages upon ^4-states is created. The techniques consists in
letting the members of an ensemble of ^-systems interact with replicas
of B and then in measuring some statistical quantities on the evolved B
instead of A.

Obviously, with the help of such a techniques any observable
of FB induces a certain statistical average to be measured on the states
of A. The question is: are these induced quantities already included in FA1
If so, the theory of interaction is consistent with the originally assumed
structure of A. If not, the scheme is inconsistent and must be modified
in at least one of three directions. Either one can interpret such a meas-
urement as a sort of "subtle device" which yields a deeper insight into
the real structure of A and consistently, requires an extension of FA.
Or, one can infer that the assumptions concerning the structure of B were
premature and the consistency must be repaired by removing from FB

some functions which are not indeed observables. Or, finally, one can
suspect that there is something to be changed in the assumed interaction
mechanism. A typical example of an inconsistent interaction scheme is
that of quasi-classical electrodynamics described in § 3. It seems, that there
is no way how the classical electromagnetic field could be coupled with
the orthodox electron without introducing too rich a class of observables,
inconsistent with the orthodox structure of the electron states. This
causes no difficulty in the present day electrodynamics where the
mechanism of the inconsistency is removed by quantizing the electro-
magnetic field. The situation is much less obvious as far as the interaction
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between the microparticles and the gravitational field is concerned.
Though some schemes with quantized gravitation are already emerging,
the opinions also exist that the gravitation is an immanently classical
phenomenon, even on the micro-level. If that was so, the consequences
of that fact for quantum mechanics would be much deeper than generally
recognized. Indeed, the classical gravitational field interacting with the
electron would be a "subtly reacting medium" as described in § 3 and the
measuring devices based upon gravity detection would provide a
method of measuring non-quadratic observables against one of funda-
mental prohibitions of the present day quantum mechanics. This might
indicate, that we are facing the following alternative: either the gravitation
is not classical or quantum mechanics is not orthodox. It is possible (though
there is no mathematical proof at the moment) that, under the assump-
tion about the classical nature of gravitation, the detectors of the gravi-
tational field of a microparticle would allow one to measure, as a statistical
average, any continuous functional of the microparticle pure state.
This would lead to even stronger alternative: either the gravity is quantum
or the electron is classical. These alternatives exhibit a somewhat peculiar
situation of the present day theories: though it may be very difficult to
quantize the gravitation, it is even more difficult not to do it. The in-
completeness of the present day science at this point is, perhaps, one more
reason why the scheme of quantum mechanics should not be prematurely
closed.
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