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Abstract. We propose a statement of the observable implications of the equivalence
principle that is precise and general rather than allusive and illustrative. This statement is
derived from previously formulated principles of special-relativistic presymmetry. The
substantial identity of our result with Einstein's curved-space formulation is exhibited.

1. Introduction

This paper challenges the traditional view that the equivalence
principle conflicts with special relativity and requires a nonlinear
space-time. The principle of special relativity was stated in an
operationally explicit manner, including external fields, in previous
papers [1—4]. The assumptions, slightly augmented, are used to derive
a result which, we believe, is a more explicit form of Einstein's equivalence
principle.

The idea that many results of Einstein's theory can be obtained within
the framework of Minkowski space M is, of course, not new. The
equivalence principle in its general form has, however, not been among
the results so obtained.

Our approach is inspired by algebraic local quantum field theory.
In addition to the algebra jtf of observables we find it necessary to use
an algebra Θ of observation procedures of which si is a homomorphic
image. The principal difference between these two algebras is the re-
quirement that two local subalgebras Θ(Ri) and &(R2) associated to
nonintersecting space-time regions R^ and R2 have only a trivial (scalar)
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intersection, while ^(R^) and <$#(R2) do not, in general, have this
relation.

The need for this additional structure arises from the study of external
forces and it may be illustrated by classical relativistic mechanics. The
usual statement of the principle of special relativity is: The laws of
motion are the same in all inertial frames. The mathematical counterpart
for particle mechanics [5] is: A solution of the equation of motion is a
family of world lines. An element of the Poincare group has a natural
action in transforming this family of world lines. If the set of all solutions
is closed with respect to the transformations induced by the Poincare
group, then the equations are said to be relativistically covariant.

This definition clearly fails in the presence of external forces because
"there is a privileged frame". Yet, the principle of relativity was first
applied to particles in external fields. Some results of special relativity,
such as the Lorentz contraction of the distance between two particles
and the time dilation of decay, remain valid in the presence of external
magnetic fields, even when the covariance of the equations of motion
fails [2].

Presymmetry [1,2] gives a precise and nontrivial statement of what
may be called residual covariance in the presence of external forces.
Its conclusions are equally relevant to subsystems of free systems that
are under the influence of the forces due to other subsystems. This
clarification requires a rather elaborate structure with two algebras
instead of the usual theory in terms of differential equations, but for this
price one obtains precise statements of such basic principles as local
independence [3, 4] (or, synonymously, finite signal velocity, or Einstein
causality), which are only stated illustratively or allusively in the usual
context, and one obtains Newton's second law as a theorem [2, 4].

The principles of presymmetry, including the postulate of local
acceleration covariance [4], will be used to derive the equivalence
principle as a theorem.

The present paper is substantially selfcontained and starts by
formulating assumptions on nonmathematical objects and procedures.
The mathematical structures are then introduced as fully interpreted
images of the nonmathematical objects. Postulates, obtained by
idealization or extrapolation of experience, are formulated in Sec-
tions 2-5. The equivalence principle is stated in an operationally
verifiable (or at least refutable) form in Section 6. The postulates are
realized in Sections 8 and 9 by concrete mathematical objects. Section 10
gives a summary of assumptions. In the remaining sections, the equiva-
lence principle is derived and discussed.

Our results are in substantial agreement with those of Einstein's
theory, and the relationship is established in Sections 12-15.
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The abstract algebras Θ of observation procedures and si of ob-
servables have representations as algebras of functional on carrier
spaces Ω of functions ψ on M. In the absence of gravitational forces the
natural choice for jtf is a space of functions ψ on Minkowski space, but
gravitational forces make an alternative choice more natural and
convenient: a carrier space of functions on a pseudo-Riemannian
manifold. In this representation, the identity of our result with the usual
curved-space theory (with asymptotic flatness) becomes evident. This
result is a more precise version of the conventionalist concept of the
relationship between geometry and physics.

2. The Collections of Observation—and of State—Preparing Procedures

We consider experiments in laboratories that are not necessarily
isolated or shielded from outside influences. It is assumed that the
experimenter can control external influences so that they are reproducible
for sequences of experiments. The test for a successful control is the
satisfaction of certain causality requirements to be given later.

An experiment consists of two procedures: the preparation of a state
and the performance of an act of observation that results in a dial
reading or printout of a real number. By a slight abuse of language we
identify the physical acts of constructing instruments and using them
under certain conditions with instructions for performing these acts.
It is almost indispensable to assume for the construction of instruments
in accordance with blueprints b that distances and time differences be
understood in a naive manner, i.e. that Euclidean geometry and constant
light velocity be assumed. These conditions may be realized, in the
absence of gravitational fields, by suitably shielding the workshop,
but for the general case it will be assumed that there exists an asymptotic
region where these naive assumptions are justified, and that the instruc-
tions call for construction of instruments in this asymptotic region.

A complete procedure is specified by blueprints b and a set {Pn} of
space-time points at which marks on instruments are to be positioned
for the performance, buttons to be pressed or levers to be thrown.

Since the instruments will be used in gravitational fields, we cannot
assume that these points Pn can be located by the naive use of light rays
or meter sticks. We rather assume that there exists a procedure that
allows to correct for the bending of light rays and to determine uniquely
the positions of points in Minkowski space. The consistency of the theory
requires that such a possibility be proved from the assumptions, and
this will be done in Section 15.

In a single experiment a state-preparing procedure is followed by an
act of observation with a resulting real number s. An infinite repetition
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of the experiment produces a sequence {sn} (n = 1, 2, . . .) which we assume
to be random. An equivalence class s of state-preparing procedures
(bjJF^}) consists of those procedures that have the same mean value
(sj for each observation procedure. An equivalence class α of observa-
tion procedures consists of those procedures that create the same
expectation value {sn} for each state-preparing procedure. We have thus
two nonmathematical collections: the collection y of (equivalence
classes of) state-preparing procedures, with elements s and the collection
Θ of (equivalence classes of) observation procedures α. The mean values
for a given reproducible external field will be designated by /(§,&)
such that

is a map on the cartesian product of the two collections into the reals.
Given a procedure which can be identified with a pair (fc, {Pn})

consisting of blueprints b and a set of points {Pn} in Minkowski space,
an altered instruction (b, {gPn}) can be obtained by changing all points Pn

in accordance with a transformation

of Minkowski space M. In general, such an altered instruction will not
be implementable and will therefore not correspond to an observation
procedure. For some transformations g, however, the altered instruction
corresponds to a feasible procedure and the transformation preserves all
equivalence classes. It induces a permutation Vg of &.

In particular, a time transformation

induces a change of each procedure through (ft, {PM})t->(fe, {gPn}\ such
that a) the altered instruction is again an observation procedure and b)
that each equivalence class of procedures remains an equivalence class
under this change. The existence of such transformations is the basic
fact that makes physics possible. Indeed, physics compares the results
of observations at different instants by the same instrument, and the test
for the "sameness" is the agreement between different instruments of the
same equivalence class. Experimenters spend most of their time in
"checking their instruments", which is a shorthand expression for
verifying the preservation of equivalence classes. Note that this property
is far more general than time-translation invariance of equations of
motion. It is the prime example of presymmetry.
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It will be assumed that all transformations g of the Poincare group P
have the same property. This assumption is just a more precise version
of the observation that measurement instruments can be translated,
rotated and set in uniform motion without being ruined. The test for
their continued proper functioning after the motion is accomplished, is
the continued agreement of different instruments of the same equivalence
class.

The same assumptions for state-preparing procedures are justified
by elementary experience. The elements g of P induce permutations
Wg Of &.

We assume that some observation procedures are affected only by
events in a region R of Minkowski space. It is not necessary that the
instruments be located in R, but only that their result be unaffected by
changes outside R. In addition, we assume that this region R may be a
single point x in M. (This assumption is natural in the context of classical,
but not quantum mechanics.)

A collection 6X of (equivalence classes of) point observation
procedures is stable under that permutation of G which is induced by a
Lorentz transformation that leaves the point x fixed.

In addition to the usual transformations, we consider a family of
groups MX of acceleration transformations g, that leave the points x
fixed, i.e. gεJtx implies gx = x. This group has been introduced in
Reference 4. It is assumed that each equivalence class of procedures in (9X

is preserved under all acceleration transformations induced by accelera-
tions geJίx. Hence, each acceleration group Jίx induces permutations
of the collection &x.

Again, this assumption is just a more precise version of the observation
that "very small" accelerated laboratories with properly functioning
instruments exist - the test for proper functioning being the agreement
of printouts of different accelerated instruments belonging, to the same
equivalence class.

3. The Algebra β of Observation Procedures and the Convex Linear
Set Sf of State-Preparing Procedures

Classical physics assumes that, in the usual language, two observations
can be "performed simultaneously" without disturbing each other.
More precisely, a single sample (the product of a single act of state
preparation) can be subjected to two observation procedures without
interference. The operational meaning of this expression is the equality
of mean values of observation results (i) in a sequence of experiments
where only one procedure is used on one sample and (ii) in a sequence
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with two observation acts used on a single sample, the state-preparing
procedure and the external field being the same in the two sequences.
The most frequently used example refers to two simultaneous observation
acts such as position- and momentum measurements, but an equally
good example is that of two successive position measurements on the
same sample.

Of course, this non-interfering nature of two observations is asserted
only for some (very gentle) observation procedures, such as position
measurements with very soft X rays, but the assumption alleges that
such gentle procedures exist in each equivalence class of observation
procedures. One can then consider the mean value of the sums of indi-
vidual outcomes

J™-^-ΣlX(*) + ̂ )] (3.1)

obtained in such experiments involving two measurements on each
sample and assert that it is the sum of the two mean values

\im-~ Σsn(«)+\im-±-Σsn(β) (3-2)
N-+OO JM i N-+OO IV

obtained in the two sequences involving only one observation (α or β)
on each sample.

This addition of individual outcomes defines operationally a
procedure of the equivalence class (α, β)+ such that

£(s, α) + /(§, β) = /[§, (α, j8)+] . (3.3)

This property of the (not ordered) pair (α, β)+ suggests that addition be
defined. Since it is awkward to add galvanometers and spectrographs,
we define a one-one map Φ:Θ-*(9 of non-mathematical procedures
aeθ to their mathematical images α e 0 and similarly a map Ψ of
non-mathematical state-preparing procedures s e & to their mathemati-
cal images 5 e ̂  such that

/(S9 α) = g(s, α)
where

is a map on the cartesian product Sf x (9 into the reals. By assumption,
the mathematical image of the pair (α, /?)+ is the element α 4- β of a linear
set Θ. By assumption, δ is linear in its second argument, so that Eq. (3.3)
now reads

δ(s, α) + f ( s 9 β) = f [ s 9 (α + β)-] . (3.4)
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The same considerations apply to the multiplication of the terms of two
sequences of outcomes sn(S) and sn(β) of observation procedures α and /?,
if observations are made on the same sample. The products sn(α) sn(β)
are defined to be outcomes of a new procedure designated by the (not
ordered) pair (a,β)Λ. The mathematical counterpart of this procedure
is the commutative product

aβ = β« = Φ(&,β)A. (3.5)

Thus, the set & has the structure of a real Abelian algebra, and each
algebraic operation has a well-defined operational counterpart in 0.

State-preparing procedures can be composed in a well-known
manner [6]. Thereby, the mathematical image £f acquires the structure
of a convex linear set.

Composing two instructions in the way discussed above results in a
new instruction that contains the sets {Pn} of both original instructions.
Motion consists in replacing each point Pn by gPn. Hence, motions
impressed before or after composition have the same effect. For those
motions that preserve equivalence classes, it follows that a motion g
in the non-mathematical collection & induces a transformation Vfly
of the algebra Θ that preserves linearity and multiplication. Hence, these
motions g create automorphisms of &. Similarly, the motions g of the
acceleration group Jίx that preserve equivalence classes in &x induce
automorphisms of the subalgebras Φx C G.

Similarly, an element g of the Poincare group induces an auto-
morphism W of the convex linear set ίf.

4. Fields

In the instruction (b, {Pn}\ the ordered set {PM} of points Pn of Min-
kowski space, (where n is in an index set /), prescribes portions of the
world lines of marks on instruments and also specifies space-directions,
e.g., by orienting arrows marked on surfaces. The point x and various
portions of curves in the neighborhood of x must be included among the
instructions for performance of point observation procedures αe0 x.
A field at the point x belongs to a particular class of point procedures that
specify only families of curves with the same direction at the point x,
so that the set {Pn} can be replaced by {x, tl9..., tm} where ί1?..., tm are
tangent vectors of families of curves at x. The effect of a differentiable
transformation g : M->M of the form

9μ(χι,~ ,χ4) (4.1)
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on a tangent vector t at x is

If g is an element A of that Lorentz transformation which has x as a
fixed point, then the effect of a permutation V on an element
α = (&,x,ί l 5 . . .,ί j is

VΛa = (b,x,Λtlί...,Λtm). (4.3)

Consider as an example the mass density ρ(x). In addition to the
blueprint bρ and the point x e M the instruction specifies the instan-
taneous 4- velocity of a mark on the apparatus. If the velocity vector is
normalized to vμv

μ=i, then the space components are velocities
(dXi/dt)(l— ι;2)~1/2, with i= 1 — 3. The procedures jϊ (x) for observation
of the current density are specified by a blueprint bj and a space-like
vector a that stands for an arrow on the instrument, while the 4- velocity
v of a mark on the apparatus is normal to a:

αχ = 0. (4.4)

The electric field intensity Et(x) is measured by a procedure (bg, x, v, t),
where bg is a blueprint, x a point, v a time-like and t a space-like unit
vectors, respectively, with obvious operational meaning.

Each permutation V on Φx induces an automorphism V on Ox.
The simplest automorphism of &x induced by a Lorentz transformation A
such that Ax = x, namely the permutation

(b, x, ί)H^(fe, x, ί) = (b, x, Λf) , (4.5)

is generated by the linear transformation

Φ(b, x, t)*-*VAΦ(b, x, t) = ΛeΦ(b, x, ί) , (4.6)

where Λ& is a Lorentz transformation in a 4-dimensional subspace of &x.
As a generalization, it is natural to consider the automorphism VΛ in-
duced by

(b9x9tl9...9t^VΛ(b9x9tl9...9t^ = (b9Λtl9...9ΛtJ (4 7)

through

,ί1,...,ίm) (4.8)

where Λ® m is the linear transformation induced by Λ& on a subspace
of a 4w-dimensional tensor space in &x.

Fields belong to the class of point observation procedures that have
these particularly simple transformation properties. In particular, we
assume that a specific field {φt} is a subcollection of observation
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procedures φi(biλ, x, tl9 ..., ίw.) whose images Φφte(9x span an
irreducible representation space of the Lorentz group that is a subspace
of the 4w-dimensional space mentioned before. A number of different
blueprints biλ are always associated to a given field φ{. In the simplest
case of a 4-dimensional representation, we found that two blueprints
are needed, one for the time-like and the other for the space-like vectors
in the representation space, so that λ =1,2. Similarly, the electro-
magnetic field requires two distinct blueprints (1=1,2): one for the
electric and one for the magnetic field. It is assumed naturally that no
two blueprints bί λ and b j μ are equal unless ί=j and μ = λ.

A particular class of observation procedures is called intrinsic or
canonical [1,2] because their expectation values are independent of the
equations of motion and of any external fields. More precisely, let x e h
be a point in a space-like hyperplane hcM, and let &h be that subset of
state-preparing procedures which creates states (objects of measurements)
at the instant specified by h. Then if s e &h and x e h, a canonical observa-
tion procedure α e Gx is required to have the same expectation value
/(s, α) for all / in the collection {/} of expectations. Examples of such
procedures are current density, charge density, and other fields, but not
derivatives of these quantities. In particle physics, position and momen-
tum are canonical, but velocity and acceleration are not. To summarize,
a field is a subcollection φt = {(biλ, x, ̂  , . . . , ίw)} of observation procedures
at a fixed point x and for a fixed i but with variable λ and th and it has the
following properties.

1. A field component depends on the collection {Pn} of events in the
instructions only through tangent vectors t1,...,tm. and the point x,
i.e., φiλ = {(biλ, x, ί1? ..., ίm)}. The collection is closed with respect to the
Lorentz transformations that leave x fixed; i.e.,

VΛ(biλ9x9ti9...9tJ = (biλ9x9Λtl9...9tJeφiλ. (4.9)

2. The images {Φφi} in (9X span a subspace of a 4m-dimensional tensor
space in Θx. A Lorentz transformation A induces the linear transforma-
tion

,..., ίm.)
' (410)

The image Φφt of a field spans an irreducible representation space of the
Lorentz group in Θx.

3. A field is canonical. That is, if x e h and ̂  is the collection of
state-preparing procedures s emitting samples at the instant h, then the
expectation value /(s, φ) is the same for all expectations δ e {/} if s e ̂  .
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5. Causality and Local Subalgebras

Causality requires that the knowledge of all expectation values of
observation procedures at an instant h provide full predictive power.
For each β ε β, there exists a unique procedure α (/) 6 $h such that

/(s,α) = /(s,/?), se^, &eφh, βε&. (5.1)

This version of causality is only apparently different from the more
familiar assertion that the expectation value of any observation procedure
can be calculated from those of the instantaneous procedures at an
instant h. In our definition of procedures, the result of any such calculation
is, in turn, the expectation value of an instant procedure.

In Section 4 we considered canonical procedures that are universal
in the sense that their expectation values are independent of external
forces. The canonical procedures should be sufficient for prediction.
Otherwise, how could one compare the time-development of the same
initial state with different external forces? Hence, we are led to postulate
that causality holds for a restricted set &hcC@h which is the inverse
image Φ~i&hc of a canonical algebra &hc. The stronger version of
causality [2] claims that for each β e & and §E&h9 there exists a procedure
α(/) e &hc such that

(S, α) = (s, β), s E y^ α e hc9 β e , (5.2)

and α is independent of s.
In Section 4 the fields φ(x) were defined as canonical procedures.

Since the experience of classical field theories is that the fields have the
canonical property of providing full predictive power, we assume that
Ghc is the algebra generated (in a sense to be defined presently) by the
fields on a space-like hyperplane ft, i.e.,

Vhc=\JΦφ(x). (5.3)
xeh

The counterpart of causality in 0 is a statement concerning the time-
independence of what may be called a natural law. Suppose that the
equivalence (indistinguishability) of two observation procedures α, β e 0
has been established for a given ε by measuring their expectation values
δ(s, α) and <?(s,/J) with respect to all state-preparing procedures at an
instant ft, i.e., se^h. We postulate that this equivalence is valid for all
states, prepared at any instant. That is, the finding δ(s9γ) = 0 for all
s e £fh with a fixed ft implies δ(r, γ) = 0 for r e ίf.

The algebra Θ of observation procedures has a natural topological
structure: Two elements α and β e & that induce nearby real expectation
values δ(s9 α) and δ(s, β) for all s e ̂  must be considered as nearby in the
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topology. This requirement restricts the class of possible topologies of &,
but the precise choice is made in Section 10 on grounds of mathematical
convenience. Given a subset J£? C 0, the set of all finite polynomials of
elements of &9 together with the topological limits of sequences in this
set, will be called the topological closure & of the subset <g .

From point algebras Θx C (9, we can define local subalgebras &(R)
as the closure

(5.4)
xeR

iϊR is an open set. If R is not open (e.g., if it is a point x or a hyperplane /z),
the local algebra 0(R) is defined as the limit of convergent sequences
(9(Rn\ jRΛ->R, if this limit exists. In particular, &x and Θhc are such
limits, but the canonical subalgebras Ghc are not local algebras. The
requirements of this collection of local algebras are as follows.

1. The intersection Θ(Rl)nΘ(R2) of two local algebras associated to
nonintersecting regions R1 and R2 is trivial: it consists only of multiples
of the unit I. That is,

= { c I } . (5.5)

2. The topological closure Φ(R1)\uβ(R2) of the union of two local
algebras β(R1) and Φ(R2) is the local algebra associated to Ri^jR2.
That is

0(Ri)^jO(R2) = 0(R^R2) . (5.6)

3. The topological closure of the union of all local subalgebras is &.
That is,

U W = 0. (5-7)
RCM

6. Operational Statement of the Equivalence Principle

We are now ready to state the first part of the equivalence principle.
It states that for every expectation /e {/}, every point x in Minkowski
space, and every element g of the acceleration group Jt^ there exists
another expectation δg e {/} such that the effect of acceleration on the
collection &x of point observation procedures is compensated. That is

3 4 1 4(S, α) = /(§, Vg$)9 ae&x,sε. (6.1)

The principle asserts the existence of an external force that (on being
switched on) creates the same effect for any state as the physical act of
accelerating all observation apparatus belonging to (9X.



204 Y. Avishai and H. Ekstein

The equivalence principle is frequently stated as a principle of igno-
rance: It is impossible to find out by local experiments whether a change
from a given situation (expectation) has occured because the external
field has been altered or because an acceleration has induced a relabeling
(permutation) of the instructions for observations. An explicit form of
this principle must refer to all possible observation procedures as does
Eq. (6.1) and not only to distance - and time - delay measurements as
do the usual formulations.

A frequent question in books on relativity concerns the degree dn/dxn

of the derivative of an observable that is meant to be covered by the
equivalence principle - the idea being that the (n + l)th derivative refers
to a somewhat larger laboratory than the nth derivative does. Such
questions are legitimate if the method of measurement uses point
measurements at two nearby points in order to determine a derivative.
This is not the case for our observation procedures. An accelerometer
is an instrument quite different from two velocity meters at nearby
points, although a sequence of observations of the latter type will
approximate the results of the former. Thus the question of smallness does
not have a vexing quality in our scheme. All point procedures are dealt
with on the same level.

A loose paraphrase of our statement is that inertial forces are
equivalent to suitably chosen gravitational forces, but many authors
[7, 8] consider this statement to be empirically incorrect. Coriolis forces,
the argument runs, are inertial forces but cannot be replaced by gravii-
tational forces; in the Newtonian limit, the latter are velocity-independent,
the former are not.

The resolution of the discrepancy lies in the narrowly restricted
choice of acceleration transformations provided by our group Jtx of
meromorphisms. In contrast to the immense group of coordinate trans-
formations used in the usual formulation, our group acts strictly on
observation procedures at one point and does not contain the more
general space-time transformations that induce Coriolis forces.

7. Inferences from Assumptions

Consider the kernel

α e 0 < y ( s , α ) = 0 for all sεS?}.

It is easily seen that K(S) is an ideal.
We now discuss the quotient algebra &/K(f) and show that it is

isomorphic to a subalgebra Θs C &h C &9 where &h is the algebra associated
to a space-like hyperplane h. It follows from the assumption of weak
causality (5.1) that for every β e 0 there is an α e &h such that β—cteK (δ).
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Thus, every element β e (9 can be written in the form

β = a + k, aε&h, keK(δ). (7.1)

By definition, an element γ e β/K(δ) has the form

y = β + K(£), βe&, (7.2)

and by Eq. (7.1), this gives

y = a + K(£), ae&h. (7.3)

We now define a homomorphism on 0/K(δ) into βhί simply by

β/K(δ)B y = α 4- K(δ) i->α e C?Λ . (7.4)

It is easily seen that this map preserves the algebraic structure. On the
other hand, the range of this map is not necessarily the entire algebra Θh9

since weak causality does not imply that we must exhaust all of βh in
order to obtain the ideal K(δ\ Clearly, β/K(δ) is isomorphic to a sub-
algebra Θs C βh, defined simply as the range of the map. It will be shown
now that Φ8 = βhc, where &hc is the canonical subalgebra of βh.

By definition &hcC&h is canonical, if for all pairs δί9δ2^{δ} and

(7.5)

It has been assumed in Section 5 that

<?(s,α) = 0 for all se^h

implies that

<?(r,α) = 0 for all re^. (7.6)

Lemma 1. The only element of Θhc that belongs to K($) is 0.

Proof, α e K($\ and therefore

<f(s,α) = 0 for all se^D^.

But because of the canonicity,

<?(s,α) = 0 for all se^ and all δe{δ}

and by Eq. (7.6) this holds for all
Then, by mutual separation, α = 0.

Lemma 2. Θhc is the minimal subalgebra of &h for which strong
causality is valid. In other words, there is no proper subalgebra (9S C Φhc

satisfying the axioms of strong causality.
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Proof. Assume that the converse is true, and let β£@hc but βφ(9s.
Then there exists an element α ε (9S such that β-a e Kffi. But β-αe 0hc

and by Lemma 1, β — α = 0. Therefore β = α e 0S, contrary to the assump-
tion. Now we can prove

Theorem 1. The quotient (9/K($) is isomorphic to &hc. That is,

β/K(£)*βhc. (7.7)

Proof. By the definition of the quotient algebra, and by strong
causality, every element γ of &/K(S) is expressed as

αe fcc.

From Lemma 2, we have

and hence the map β/K(£)-+βhc defined by α + K(f )*-><* is bijective and
preserves the algebraic structure, i.e., it is an isomorphism.

8. Realization of the Algebra β of Observation Procedures and of
the Algebra si of Observables

In classical mechanics, the algebra of observables is an Abelian
algebra of real-valued functions. By analogy, the algebras G and $4 for
classical fields are naturally realized as algebras of real functionals on
function spaces (carrier spaces) Ω and ω, respectively. If fields φi>x at a
point are to have images in Θ, these must be unbounded elements,
because the physical meaning of a field at a point is incompatible with
a bound. Hence, the algebra β must be a topological algebra but not
a normed one.

While the natural representation of normed Abelian algebras is
obtained by Gelfand's representation theorem by functions on a non-
linear carrier space [9], the natural space of functions is linear, as is the
phase space of classical mechanics. In classical mechanics, the canonical
observables qt and pt are linear functions on phase space. By analogy, the
canonical functionals ΦφitXttί,.,tmi ^ = ^,χ,ίl...ίmι which, by a slight abuse
of language, we also call fields, are assumed to be linear functions on Ω.
We assume that Ω is the linear space spanned by N subspaces of irre-
ducible covariant-tensor- valued functions φ^ί = 1 to N) on Minkowski
space. More explicitly, let

)] (8.1)

vi(x):V*mt-+R', [K®l" 3(ί1,ί2...ίjh>0 j(ί1,ί2...ίmi,x)]. (8.2)
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That is, φi is a map on Minkowski space into the mrdimensional real
linear vector space 7] of co variant tensors υt of rankmt . These are defined
[10] as multilinear forms on the mrfold Cartesian product V®mi of
4-dimensional real vector spaces V. The range of φt is a subspace of TJ,
namely a space irreducible with respect to the representation of the
Lorentz group induced by the Lorentz transformation

of the underlying 4-dimensional vector space V. Alternatively, one can
consider some elements of Ω as functions on the Cartesian product of M
and the vector space FΘmί into the reals, i.e.,

M x F ® m < - » j R ; (8.3)

(x,tl9t2 ... tm)\-»φt(tl9t2 ... ίW ί,x), (8.4)

and the general element of Ω as a real linear combination of these func-
tions, with i = 1, ..., JV. The fields are defined by

Fi)X>tl,t2...tmi(Φj) = δijφj(tίίt2 ... tmj,x). (8.5)

If one introduces an orthonormal basis {lμ} (μ= 1, ... 4) in V9 so that

ί< = V> (8.6)
then

^,X,ίl,ί2...ίnJΦίHΦμ1,μ2,...μWί(ΦμΛ2 - ̂  > (8'7)

where </>μι>μ2...μm are the usual co variant tensor components

For convenience rather than for compelling physical reasons, we
assume the elements <^(ίl5 129 • > 9 t m ) 9 of Ω to be once differentiable (C1)
and bounded. With an orthonormal basis, and components </>μι...μw .(x)9

the tensor fields φt have the usual aspect of classical fields.
For convenience, the topology of Ω is assumed to be given by the

norm

\\Φi\\ = Sup |φ,μι μmi(x)| + Σ Vφi^^xydxjή (8.9)
xeM v j=1

I = 1 and

under which Ω is a Banach space.
The functionals Fe& are assumed to be real and continuous,

equipped with the otopology which has been used and discussed in
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Ref. [3] and [4]. This topology does not exclude unbounded elements.
The canonical subalgebra ΘQc is generated by the representatives FitX

of the fields φitX for the points x : (0, jc). Since the algebra si of observables
is isomorphic to 00c, it can be generally represented as the algebra of
real, continuous functional on the linear space ω of tensor-valued
functions ιpl on R*. The topologies of ω and si are those inherited from Ω
and 0, respectively.

The local algebras (9(R) C Θ and <stf(R) in si can be shown to have the
properties postulated in Sections 2-6. The relevant theorems are found
in Ref. [3] and [4].

9. Realization of Motion-Induced Automorphisms

The algebras & and si have large groups of automorphisms, but our
interest is restricted to the motion-induced subgroup, i.e., those induced
by the permutations

(b,{Pn})^(b,{gPn}) (9.1)

in the hardware collection 0, introduced in Section 2.
By analogy with the change of operating instructions described in

Eqs. (4.1) and (4.2), a differentiable transformation g of Minkowski space
induces a homeomorphism h : Ω-^Ω of the carrier space through

i,... gtmi,gx), (9.2)

where the orthonormal components tμ of the vectors tt transform through

This homeomorphism induces an automorphism Vg : (9 ->> (9 through

(9.4)

The motion-induced automorphisms of & and of (9X will now be induced
through homeomorphisms of Ω. The Poincare group 2P of transforma-
tions of M is mapped into the group Perm (&) of motion-induced permuta-
tions of Φ through Eq. (9.1), and this group is mapped into the group
Aut(0) of the automorphisms of Θ. The same result is obtained by first
mapping ^^ Aut(M) into the group Hom(Ω) of the homeomorphisms
of Ω through Eq. (9.2), and following it by a map of these homeo-
morphisms into Aut(0) through Eq. (9.4). This is illustrated by the
commutative diagram of Fig. 1. For an element (Λ,a) of the Poincare
group, Eq. (9.2) reads

φi(t1,...9tmi,x)t->φi(Λtι,...,Λtmi,Λx + a). (9.5)
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Fig.l

Since φ{ is a multilinear function of the raf vectors th and since it is an
element of an irreducible representation of the Lorentz group, the right-
hand side of Eq. (9.5) has the form

where Sμι μm is an element of an irreducible representation of the
Lorentz group. This is the usual transformation law of relativistic
fields. Thus, the tensor fields of the conventional field theory occur in
our scheme as elements of a carrier space Ω. While this is a natural
choice, it is by no means unique, since a given algebra φ has infinitely
many isomorphic representations by functionals on carrier spaces.
Questions concerning the smoothness or multiplicity of these fields have
in the present scheme no intrinsic standing. The choice is one of mathe-
matical convenience.

We now turn to the realization of automorphisms of the point
algebra (9X associated to the point x, induced by the group Jίx of mero-
morphisms of M. To apply our construction to the acceleration group
Jtx, a convention is necessary. Since the acceleration transformations g
are in general not differentiable on the light cone, and leave the outside
of the light cone fixed, it is natural to require that the derivatives 8g/dxμ

be limits of derivatives taken inside the light cone. Since these motions
in Jίx induce only permutations of ΦX9 the automorphisms induced are
those of &x and not of Φ. In other words, while any transformation g
induces an automorphism of 0 via Hom(Ω), it is only for its restriction
to Φx that the diagram of Fig. 2 is commutative.

Fig. 2
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10. Summary of Assumptions

1. A procedure (or, with some abuse of language, an instruction for
its performance) is a pair (b, {PJ) consisting of a blueprint b and an
ordered set of points Pn in Minkowski space M. Two nonmathematical
collections, & and 6 of equivalence classes of state-preparing and of
observations procedures, respectively, are considered.

2. The results sn(S) of letting observation acts α follow state-preparing
acts s on a given physical system with a given external force, are real
numbers. The set of mean values associated to a given physical system
and external force

/(§,&) = lim -^Σ *»(«)> (3e&,&eff)
N-+CQ TV ]_

is a member of the collection {/}of expectations.
3. There are two bijections

Φ\(9-+(9 and Ψ:&-+^

on the nonmathematical collections of observation and of state-
preparing procedures onto the Abelian topological algebra (9 and onto
the convex linear set £f> respectively, and a collection {<ί} of maps
g : ίf x Θ^R on the Cartesian product ̂  x (9 into the reals, such that
g(S9 α) =$(Ψs, Φα). The map g is linear on if and on 0.

4. The elements g of the Poincare group, acting on points P of M by
Pt->#P, induce permutations

and

Wg:^^^l(

of G and &9 respectively, and these induce automorphisms

V-G-+Θ and W'Sf^yΌ y

of G and 5̂ , respectively, through the natural maps

and
ΨWgs=WgΨs (se&).

5. For each subcollection Gx of point observation procedures
associated to x e M, there is an acceleration group ̂  of transformations
(meromorphisms) of Minkowski space that has x as a fixed point, and
its elements induce permutations Vg of (9X through

α = (b, {PJ)π>F δ = (fc, {^PJ) (α 6 &x) .
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These induce, in turn, automorphisms Vg of the point subalgebra
Φ@x = Θx C &. The acceleration group Jtx is defined in reference 4.

6. A field φitX at a point x is a subcollection of (9X with the following
properties.

a) The set {Pn} of events in the instruction specifies only equivalence
sets of curves with the same tangent vector, so that {Pn} can be replaced
by a finite set tί9 ..., tm of vectors in a 4-dimensional real vector space V9

and the point x. The vectors tt are assumed normalized to \t\ = i in the
Minkowski pseudometric. The field φitX is an equivalence class of
instructions of the form

λ=i,...9ki9

The index A that, along with the field label, labels the blueprint,
depends only on the time- or space-like nature of the tangent vectors tl9

and it is therefore fixed under Lorentz transformations.
b) The collection φitX is closed with respect to those Lorentz trans-

formations A that have x as a fixed point. That is,

only if

(biλ9x9tl9...9tmi)eφitX.

7. The algebra Θ of observation procedures is the algebra of real-
valued continuous functional F on a linear carrier space Ω. This space Ω
is spanned by N irreducible covariant-tensor-valued functions φi

(i= 1, ...,ΛΓ) on Minkowski space. Let

vi(x):V®mί-+R

In other words, let the ̂  M-*!] be multilinear maps on the mrfold
Cartesian product of vector spaces V into the reals. An element A of the
Lorentz group

Λ:V-+V

induces a transformation of 7] through (ίl9 £2, - - , tmi)t-*(Λtί9 Λt29 . . ., viίw.).
The functions φt are bounded and differentiable with respect to x. The
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covariant tensors form a linear vector space, and the set Ti spans an
irreducible subspace.

8. The images F ί f X, ί l t ...ffmι of the field elements are linear functionals.
Specifically,

Φ(biλ9x9tl9...9tm)(φj)

= δijφj(tl9...9tmι9x).

They will, for short, also be called fields.
9. Let {/μ} (μ= 1, ...,4) be an orthonormal basis in V, and

be the tensor components in this basis. With a norm

xeM
iv eV

where |/%| = 1 and \\Σλiφi\\=(Σλf\\φi\\2)ll2

9 the linear space Ω is a
Banach space. The space of functionals F on Ω is equipped with the
otopology [2, 3]. For a space-like hyperplane /ι, the subalgebra generated
by the images Φφ,(x) of the fields in h is called the canonical sub-
algebra (9hc :

where the bar denotes topological closure.
10. The subset &hCSf of state-preparing procedures associated to a

space-like hyperplane h is the set of states (i.e., linear, positive, con-
tinuous and normalized forms) on the subalgebra &ch.

The convex linear closure

^= U K
hcM

of all these subsets 5̂  is the set ̂ .
11. To each expectation $ε{$] there is associated a map

Φ(S): (9-+jtf such that each subalgebra &ch C & is mapped isomorphically
onto «β/. This map induces a map Ψ(S] : ί f ^ S ( < t f } onto the set S(j/) of
states on j/ by the requirement: <?(s, α) = ^(Φα). All expectations with
these properties are members of the collection {β}.

The topology of stf is that inherited from (9. The concrete realization
of the algebra stf of observables is the Abelian topological algebra of
real-valued continuous functionals / on the linear space ω spanned by
covariant tensor-valued C1 functions ψt on Euclidean 3-space. The
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topology of ω is as defined in assumption 9 except for the substitution
of 3-space for M.

12. A differentiate transformation #:M->M of Minkowski space
induces a homeomorphism hg:Ω-^>Ω through the definition

by

This homeomorphism hg induces, in turn, an automorphism Vg : (9
through

The motion-induced (i.e., blueprint-preserving) permutations Vg of 0
induce automorphisms of Φ through this chain.

11. Equations of Motion

Consider the canonical algebras Φtc associated to a family of parallel
space-like hyperplanes with equations t = const. By Section 10, Assump-
tion 11, each morphism Φ(S>): 0->j/ maps each subalgebra Φtc iso-
morphically onto jtf. The automorphism Vt:Φ^>Φ induced by the
Poincare translation (x0, x)-+(x0 + t,x) of Minkowski space induces an
isomorphism 0 ίc^0τ+ί>c in any pair of this family {Φtc}. Hence, the
automorphism Vt9 restricted to the family {Φtc}, is compatible with the
morphism Φ and induces an automorphism Qtτ of (Fig. 3), through

ΦVt* = QttτΦ* (*eΘτc). (11.1)

In general, the automorphisms Qtτ do not form a group. Let α be a field
functional ^i,x,tl,...,ίm., where x = (τ, x). These functional are differ-
entiable, since by Assumption 1 of Section 5, the elements of the carrier
space are differentiable.

By differentiating Eq. (11.1), we obtain

dF
(11.2)

Φ
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According to Theorem 4 of Ref. [4], the observable Φ VtF is a member
of the canonical algebra <stfCtv,τ associated to a sphere V of radius ί and
to the instant τ. As ί goes to zero, this algebra shrinks to the point algebra
j/τ . With the notation

ί,*, (11.3)

Equation (6.2) becomes

= bt, (11.4)
dt

where bt e jtfτtX. Since bt belongs also to the canonical algebra associated
to the hyperplane £ = τ, it can be expressed as a function of the field
images fit x and of their space derivatives.

A Lorentz transformation A with (τ,x) as fixed point carries the
hyperplane τ = const into another hyperplane τ' = const. This trans-
formation A induces a linear transformation of the field images f^x)
and of their partial derivatives. Since the transformed equation of
motion is of first order in the new time derivative, the quantity bt can be
expressed as a function of the field images fi>x and their first space
derivatives, linear with respect to the latter:

To summarize, the equations of motion are of first order in all
directions and linear in the partial derivatives, but in general, nonlinear
in the field images fitX. The equations of motion determine the auto-
morphisms Qt τ of Eq. (11.1) and hence the expectation δ that induces the
map

12. Equivalence Principle (First Part)

The mathematical counterpart of the equivalence principle stated
in operational terms [Eq. (6.1)] is

*) = ββ(s,Vβ*)9 α e t f x . (12.1)

By virtue of Assumption 11 of Section 10, the statement can be written as

3 gg e K) I Ψ ( f ) s [ Φ ( t ) α] = Ψ(fg)s[Φ(gg) Vgv] , (α e (9X) . (12.2)

If this is applied to an element α e &x for which Φ(S] α = 0, the equation
states that all states {Ψ(fg)s} vanish on the functional Φ($g) Vga. Since
the states separate the algebra j/, this functional vanishes. We choose
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the natural inverse image in & of the expression (11.5):

«2 3>
Hence, the equation of motion associated to the altered expectation SQ is

:0. (12.4)

We will show that there exists an expectation δg that satisfies this equa-
tion. Since the expression in brackets is a member of the point algebra &X9

we may choose Vg to be a member of the acceleration group Ji^.
According to Section 7 of Ref. [4], the field images Ft are acceleration

invariant. Hence, the problem reduces to finding the effect of Vg induced
by the acceleration subgroups AΛtn on derivatives dF/dxλ, where F is a
field image. For simplicity, we will derive the result for a vector field Fxt,
where ί is a unit four- vector (|ί| = 1). We recall that for ψ e Ω, one has, for
a canonical point functional at x = 0, the relation

(12.5)

where the tμ are Cartesian components of t. We have

hgψ) ]x=0

where hg is the homeomorphism Ω-+Ω that induces Vg. But according to
Section 4,

a/VivV
Fx,,(

h^ =

and therefore

According to Section 9, we are interested in the limit |x|->0 along the
positive time axis. According to Ref. [4], we have for the acceleration
transformations g

Thus, we obtain



216 Y. Avishai and H. Ekstein

where

|χ|-Ό ϋxλdxv

For later purposes, let us define

d2(qxY dxρ

and observe that

Urn/ft = 4VV (12.9)

Thus, the effect of the automorphism J^ on the functional

is to add the corrective term Γfλιp
v to the first derivative dιpμ/dxλ wherever

it occurs in the argument. Thus, we have shown the existence of an
expectation gg that satisfies Eq. (12.2). The equations of motion that
determine it are to be obtained from those of g by the prescription: add
the term Γ®λψ

v to each partial derivative in the argument. Naturally,
there exists a large family of such expectations gg, because the equation
of motion is only determined at the point x = 0.

Students of the conventional curved-space theory will perceive the
similarity of our prescription with the usual practice of replacing ordinary
by covariant derivatives. However, our space being flat, the similarity
is purely formal at this point.

The values of (gx)μ for a linear acceleration (n = 1) in the x3 direction are,
according to Ref. [4],

(gxf* = x3 coshα|x| + x4 sinh α|x| ,

(gx)4 = χ3 sinh α|x| + x4 coshα|x| .

After some calculation, one finds



Einstein's Equivalence Principle 217

and, in general, for a linear acceleration along xί5

In the case of rotational acceleration, the definition of the acceleration
group in the Ref. [4] gives

)1 = x1 cos0|x| + x2 sin θ\x\ ,

(gx)2= -x1 sin0|x| + x2cosθ|x| ,

= x3,

(gx)4=

and we find

which, in some sense, reflects the point nature of our algebras Φx. While
a linear acceleration of a point observation procedure produces an
effect, a rotational movement (whether accelerated or uniform) does not.
Coriolis forces do not exist for a point algebra.

13. Equivalence Principle (Second Part)

It was shown in Section 12 that there exists an altered equation of
motion (in loose language, a force) that produces the same effect as a
bodily acceleration of measuring instruments. We wish to show that this
"force" deserves the name "gravitational" in that its effect on the motion
of otherwise free particles is independent of their mass - i.e., that it
satisfies the "weak equivalence principle".

The theory of continuously distributed matter is appropriate to our

field theoretical scheme. The equation of motion [11] of a matter field
with invariant mass density μ0 is

The altered equation of motion (due to gravitational force in the usual
language) is obtained from (13.1) by adding to the partial derivative a
term that depends only on the acceleration and not on μ0. It is then clear
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that the flow lines of the mass field are altered by this addition in a
manner independent of μ0. Hence, mass does not affect the motion of
bodies in a gravitational field, in accordance with the weak equivalence
principle.

14. Measurements of Space-Time Distances

It was assumed in Section 2 that observation instruments can be
unambiguously located in Minkowski space by appropriately correcting
for the bending of light rays. Consistency requires that the theory of
observables developed on this basis should provide the means for this
correction, so that observation instruments can be treated as objects of
observation. This consistency requirement is substantially what Traut-
man [12] calls the Principle of Relativity: a theory should not contain
"absolute elements" (in this case, straight lines) without also giving
means for measuring them. It is in accordance with this principle that
Einstein discarded the ether, because its uniform motion relative to an
inertial observer was in principle unobservable.

Consider a particular class of states for which the electromagnetic
energy is nonzero only near the origin x — 0 and the state is vacuumlike
elsewhere at t = 0. Then, observations of the Poynting vector at various
points will define the path of the light signal or signals.

The problem is now the converse: from the paths of light signals,
to determine the locations of points in M. For this purpose, it is convenient
to change the representation of the algebra s/. This will be done in
two steps.

The generating functionals /i>x of si are carried by a time-translation
automorphism Qt:jtf->jtf into

Local subalgebras sί(R) are generated by the topological closure

U /£,* =
xeR

if R is an open set. The map Φ preserves the local structure in the sense
that

but the map is, of course, not one-one: some elements cϋφO(R) are
mapped into j/(K). When si is presented in this manner, as containing
space-time subalgebras, there is a more natural carrier space for it than ω.

Let
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and since the functionals /ί>(JM) generate j/, this transformation
determines the automorphism. We define

and by Theorem (10.6) of Ref. [13] the homeomorphism qt of ω that
induces the transformation

is unique. One can define functions χ on M by

The set of functions χ on M will in general be a nonlinear set. The first
change of representation consists in substituting the carrier space ωM

of functions χ on M. If qt is a group of homeomorphisms induced by a
differential equation, then the space ωM is that of the solutions of the
differential equation. This nonlinear "space of solutions or orbits", is
frequently used in classical mechanics.

Thr next step consists in identifying the three-index symbols Γv

ρ

λ in
Section 12 with affine connections in a pseudo-Riemannian manifold.
More precisely, we consider a homeomorphism h : M-^Jί on Minkowski
space onto a pseudo-Riemannian manifold such that the coefficients Γ
are the affine connections in Cartesian coordinates xμ. Then, the non-
linear space ωM of functions χ on the linear space M is replaced by a
nonlinear space of functions χM on the nonlinear manifold Jί.

The solutions of Maxwell's equations with ordinary derivatives
replaced by covariant derivatives as in Ref. [7] then have characteristics
that are images of null geodesies in Jί.

It was assumed in Section 1 that world lines of test particles were
asymptotically straight. Hence, the pseudo-Riemannian manifold Jl
is asymptotically flat, and all geodesies are asymptotically straight lines.

We now return to the problem of locating physical points in Min-
kowski space. The measurement procedures needed to find the curvature
and affine connection of Jί can be reduced to the use of clocks and light
signals. Having thus determined the affine connection and the location
of a point in Jί, there is a unique homeomorphism that agrees with
observed straight world lines of distant objects. Of course, finding this
homeomorphism requires global and not only local information, in
accordance with what Trautman [12] calls equivalence principle.

The authors gratefully acknowledge stimulating discussions with P. Bergmann,
R. Geroch, R. Haag, P. Havas, and M. A. Melvin.
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