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Abstract. Strict convexity of the pressure of a quantum lattice gas is demonstrated
in [1] with the help of a trace condition. An interpretation of that condition is given, and,
simultaneously, an extension of the result of [1]. In particular, it is shown that the pressure
is a continuous function of the lattice gas density.

I. Introduction

It has been demonstrated by Griffiths and Ruelle [ 1] that the pressure
P(®) and the time automorphisms t7,(®,), i=1, 2, exist are called
function of the interaction @. One assumption used for the case of a
quantum lattice gas is the following:

Try®(X)=0 forall YCX, allfinite XCZ". (1)

Here, Z" describes the (v-dimensional) lattice, Try denotes the partial
trace. We are concerned with the interpretation of this condition which
is not given in [1].

Definition 1.1. Two interactions @, and &, for which the pressures
P(®,) and the time automorphisms t,(®P;), i=1, 2, exist are called
physically equivalent if P(®,)=P(®,) and 7,(P,)=1,(P,). We then
write @, ~ @,.

In view of Theorem 2.2 below, this definition seems to be a sensible
one. It will turn out that in every class of equivalent interactions with
.vanishing trace, there is a unique interaction with vanishing partial
traces, i.e. satisfying (1), provided a certain temperedness condition is
fulfilled. This allows a generalization of the results of [1]; in particular,
we can show the continuity of the pressure as a function of the lattice gas
density.

II. Notations and Results

We study a quantum lattice system over Z*, with a two-dimensional
Hilbert space #, attached to every xeZ’, #y= X) #,. X,Y,4,...

xeX

* On leave of absence from the Institut fiir Theoretische Physik, Universitdt Gottingen,
Fed. Rep. of Germany.



264 H. Roos

always denote finite subsets of Z*, N(X) is the number of points in X.

If Y C X, # will be identified with J#, ® #y,y; and similarly, we identify

A eB(Hy)and A @1,y € B(Hy),B(HA') = set of bounded operators on H#.

Ael)B(#,) is called strictly local; A= () B(#,) is the algebra of
A A

observables.

The translationally covariant interaction is given by a function
X = d(X) e B(H#y), P(X) self-adjoint. Let f(£) be a real valued function
over R*, f(£)=0, then we define the f-norm of @ by

Iol,= Y X)) f(N(X)). 2
X320
The interactions @ with ||®|| , < co form a Banach space B;.
For A e B(#y), Y CX, Try A € B(Hy,y) denotes the partial trace, and
tI'yA=2_N(Y) TryA . (3)

Writing try,y, we generally mean that Y is a proper subset of X. If a term
tr, occurs in a summation it is meant to be zero.

Lemma 2.1. If Y, Y'C X CZ, A e B(H,), then

trz\x trx\yA = trz\yA (4a)
trx\y trx\yrA = trx\(yh Y')A (4b)
[ty Al = A4l O (40

The proof is trivial.
The Hamiltonian belonging to the interaction @ is

Hy(®)= ) o(X). (5)

Xc4a

The pressure and the time evolution of the system are defined by

P(¢)=/}1_{130N(A)_1 IOng’Ae_HA@), (6)

T(®)A= lim /(@)A1 (®) A= TP de” T, A e B#). (7)
m y

The limits are known to exist [2, 3] if @ € B, (resp. @€ B,), f,(§)=1/¢,
fa=¢€"%, a>0. A— oo means the Van Hove limit (resp. 4 — oo such that
it eventually contains every finite subset of Z).

Our main result is the following

Theorem 2.2. For every interaction ® which satisfies

(a) QDGnyfa(é):eézy
(b) Try®X)=0 forall XCZ’,
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there exists a @ such that

(1) 43€sz, f2(§) = e,
(i) Try®(X)=0 forall YCX, all XCZ,

(1ii) d~d,
(iv) <15 is umque If &, and &, satisfy (a) and (b), then @, ~ @, if and
only if &, =

(v) @, _di2 lmplies P(f®,)=P(p®,) forall f>0,and 9(Ae,) = Q(Aa,z)

for all translationally invariant states g, where Ag= Z P(X)N(X)™ !
Xs0

is the observable of the mean energy per site. []

The equivalence relation 2 is defined in Definition 1.1. The require-
ment (a) can be weakened (compare the proof).
For a potential which does not satisfy (b) we define

tDT(X)=<D(X)—ter>(X)-1 . ®)
Cu(@)= ) try® )
XcA

Then we have

Proposition 2.3. (i) If ®eB,, then ®* € B,
(ii) C (D)= tr,Hy(®P),
(i) if ® € B, ;, then /}im N(A)~! C (@)= n(P) exists and

P(@")=P(®)+n(®), 7,(07)=1(9). O (10)

We can generalize the result of Griffiths and Ruelle for sufficiently
tempered interactions with the help of Theorem 2.2 and Proposition 2.3:

Theorem 2.4. Let us assume that ®,, P, € B, then the pressure P(P)
is strictly convex between ®, and ®, if and only if ®] and ®} are not
physically equivalent. []

Remark 2.5. According to (ii) and (iii) of Proposition 2.3, H,(®")
=H,(®)— tr  H,(P),and /{im N(A)~ ! tr H,(P) exists. In the limit 4 — co,

the “energy per site” is thus changed by a finite amount if we go over
from @ to ®”, independent of the state of the system. One may consider
this as a physically irrelevant renormalization and consider ¢ and ¢”
as equivalent in a wider sense. Then Theorem 2.2 implies, loosely
speaking, strict convexity of the pressure as a function of the extended
equivalence classes.

Let ./, denote the particle number operator in #,; /' (X)= > N,.

Define xeX
pB=P(pP,), @,(X)=d(X)—pud; yx N (X),

0, » = Kronecker symbol .

(11)
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[H,(®,) = H,(®)— pnAN(A) gives rise to the statistical operator of the
grand canonical ensemble.]
It s known [4] that

p®(B, 1) = sup(S(e) — Be(Ag) + Bue(AHp)),

where the supremum is to be taken over all invariant states ¢ over 2,
S(g) denotes the corresponding entropy. Let the supremum be reached
for g,, then g,(.#,) can be considered as the equilibrium density of the
system.

Proposition 2.6. If ® € B ,, then p®(B, p) is a continuous function of the
equilibrium density v2(B, p) = o|(N5). [

This follows from the strict convexity of p®(B, u) with respect to u
which, in turn, is a consequence of Theorem 2.4.

Remark 2.7. The definition of @7 and &7 gives non-trivial results for
classical interactions too. Our conjecture is that, for classical @;, &, = @,
if and only if T ~ @%. This would prove the strict convexity of P(<I>) for
strongly tempered classical interactions by the same method as for
quantum interactions. But since the class of classical interactions con-
sidered in [1] is appreciably larger, it does not seem worth proving that
conjecture.

Remark 2.8. Looking through the proof of Theorem 2.2 one easily
realizes that, for ¢, ®, € B, and Try(®P,(X) — @,(X))=0 for all X, the
equality 7,(®,) = 1,(P,) already implies P(®,) = P(®,). From Ay, = A,
for physically equivalent interactions, it follows that the equilibrium
states ¢2* and 0?2, as defined by the above variational principle, coincide
if@, ~@,.

III. Proofs

If £(&)= f(&) for sufficiently large &, then ¥ € B, implies ¥ € By and
'I’GBmax(fj). ]
Proof of Theorem 2.2. 1t suffices to assume

DeB,,, f(&) i U1(1+<i)) (12)

With the estimate (i) < 2¢ one easily gets

[ S e NP = f3(¢) for large €. (13)

For the sake of convenience, we take o =1 and assume @€ B, fo(¢)
= e f,(). Clearly, P B, if e B,
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Lemma 3.1. If Y €B, ., then ) tryy¥(Z)exists, and

Z:2>X

> xS N NP e -

Z:2>X

This follows from |[|trzx P(Z2)| = | ¥(Z)| and
Y IP@l= Y X IP@INZ) ' =N&X) [¥]1-

Z:2>X xeX Zsx

Due to this Lemma, we can define a sequence of interactions @,

k=0,1,2,..., by
Definition 3.2. @(X)=P(X);
d,_(X) if NX)<k,
O (X)=10,_,(X)+ Z trpx Py - 1(Z) if NX)=k,
Z:Z>X
&, (X)— Z tryy Pp—1(X) i NX)>k.
Y:YCX,N(Y)=k
Because of
D (X)=Dyx)(X) for k=N(X), (14)

the sequence converges in an obvious sense to
P(X) = Dy (X) - (15)

We are going to show that @ has the properties required in Theorem 2.2.
Remark 3.3. 1t is clear from the definition that @, and & are trans-
lationally covariant. If @ is of finite range, or if #(X)=0 for N(X)= No,
the same holds true for @, and &.
(i) Calculation of the norm. For k < N(X), we have

N(X
10X S @, (X + ||¢k_1(X)||=u¢k_1(X>ll(1+( i)))
Y:YCX,N(Y)=k

consequently, because also k — 1 < N(X),

201 £ 1 2X)] p(N(X); k), p(&; k)= T (1 + (i)) - (16)

Insertion of (16) into

@y (X = 1Py ) - (XN + z;x”%m_”(z)”
yields
1@y S 12X pP(NX); NX) = 1)+ 3 12(2)] p(N(Z); N(X)—1),

Z:2>X
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hence
[Dlles= Y [Py’ < Y |O(X)] p(N(X); N(X)— 1)V
X30 X230 (17)
+ZZO @) }Zj 0p(N(Z);N(X)—1)eN<X>,

where the second term is obtained by rearranging the terms of the
original sum Y ) .

X230 Z:ZcX

Note that p(¢; & — 1) e* < fo(&) and

S VN - )W Y epN @) 1)(N(Z))
X:XCZ,X30 ot} v
< folN(2),

therefore, we conclude from (17) that
|B]|x < 2[ ), < 00 .

(i) Vanishing of the partial traces. We have by assumption try @,(X)
=try ®(X)=0. Now suppose that

(T): Tryy®(X)=0 for N(Y)<I,N(Y)<N(X)

holds for all [<k— 1. We then show the validity of (T;). If N(X) <k,
then N(Y)<NX)=k—1, and tryy®(X)=trgy®_,(X)=0. If
N(X)=k, then N(Y)sk—1, and tryy@(X)=tryy P (X)
+ ) tryy P 1(Z)=0, where we used Lemma 2.1. Finally, if N(X) >k,
75X

we get, again applying Lemma 2.1,

tryy Py (X) = tryy Dy 4 (X) — Y tryyny)Pe—1(X). (18)
Y'Y CX,N(Y)=k
For N(Y)<k—1, the r.hs. vanishes because N(YNnY)<k—1. If
N(Y)=k,then N(YNnY)<k—1 unless Y’ =Y, and all terms in the sum
vanish except one which cancels the first term of the r.h.s. of (18). There-
fore, (T,) holds for all k; with k = N(X), we get try@(X)=0 for all Y C X.
(iii) Calculation of P(®) and 7,(®). This is the most laborious part
of the proof. P(®) and t,(®P) are well defined because @ € B,.. We want
to show

P(Bd)=P(BP), 1(D)A=1,(P)4, AcU (19a,b)

by establishing the following Lemmas:

Lemma 3.4. For a special Van Hove-sequence A— o0, to be defined
below, we have

IPA(B®) — P, (BD)| < N(A) ' Bl Hy(B) — Hy(D)]| < Pe if ADAo(e). [
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Lemma 3.5. For the special sequence A— oo of Lemma 3.4, and for
any strictly local A € B(H#,,), we have

I[H,(®), A]™ — [H(®), A]™| <&, m=1,2,...,N,

if 415 A,/(e,N, 4). O

The multiple commutator [B, A]"™ is defined by [B, 4] =4,
[B, A]™ =[B, [B, A]™~V]. The limits lim P,(®) (resp. lim P,(®P),
limt/(®) A, hmr,(cD)A) are 1ndependent of the chosen sequence A o0,

hence Lemma 3.4 implies (19a). t/(®)A (resp. 7($)A) can, for small ¢,
t] <to(P), be approximated by

uniformly in A (see for instance [2], Section 7.6). Therefore, Lemma 3.5
yields 7,(®)A=1,(P)4 for strictly local 4 and sufficiently small ¢,
hence (19b).

We start proving

@, A1 | o

Lemma 3.6.
N(A)

Hy(®)— Hy(D)= ). Y Y ot ®o,(2),  (20)

I=1 X:XCAN(X)=1 Z:XCZ¢A

IHA®)-Hy @)= Y. Y 0@ foN@). O (1)

xed Z:Z¢A,Z>x

Proof. Insertion of Definition 3.2 into

Hy @)= Y &X+ Y &@+ Y X)),

XCA,N(X)>k XcA, N(X) =k XCAN(X) <k
and reordering of the terms gives, for allk=1,2, ...,

Hy(®)=H,(P,- )+ Y Y trzx @ 1(2). (22)

X:XCA,N(X)=k Z:XCZ¢A

Furthermore, due to (14), we have

H,(®)= Z Py x)(X) = Z Py a)(X) = Hg(Py ) - (23)

Iteration of (22) together with (23) yields (20).
By (16), the norm of (20) is bounded by

N(4)

LY YIe@leN@si-n= X X [19@)r4:2)

xed Z:Zsx,Z¢A
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with N(4)
rA;Z)= Y > p(N(Z);1—1)

I=1 X:XCAnZ N(X)=1

N(A) A
- 2 (M),

We have to put (7;) =0if I >n. The estimate

N(Z
"4 2)S Z)(Ngz)

=1

) PN(Z): 1~ 1)< fo(N @)

finally proves (21).

Now let us define a special sequence I}, CZ*. We choose aeZ?,
a=(a',...,a") and Al@)={x€Z’; —d'<x'<d, i=1,...,v} in such a
way that

>
Y el fo(N(X) < - for A> Ala). (24)
X:0eX¢A4
Definition 3.7. Let A+ x denote the set A translated by x;
I =Aa), I,= U (F—qy +X).

xeZVi—a £x*Sat
I, consists of k¥ translates of A(a), hence
N(I) = N(A@)K". (25)
Furthermore, I}, — oo in the sense of Van Hove,and I, > ) (A(a)+x).

xelj -1
This implies, due 10 (24) and the translation covariance of the inter-
action, that

P
Y e fO(N(X))<~2~ forall xel_,. (26)

X:xeX{Ik
Lemma 3.8. Let us assume ACI, and N(ANT, - )/N(A)>1—¢,,

then
€

S S 100l N <N (S alls). O @

xed X:xeX{Ik
Proof. We split the sum = ) + y . To the first

xed xeAnTk-1 xedAdn T\ - 1)
term, we can apply (26), the second one is bounded by N(AN(L N\ - )
NPl 5, £ N(A) &, | Pl 5,, hence (27).
Choose k large, such that N(I},_)/N(I}) = (k — 1/k)" > 1 —¢&/2(|D| ;.
and apply Lemma 3.8 with A =TI}, then

Y 2 eI fo(NX)<N(T)e. (28)

xel, X:xeX¢TIk
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Proof of Lemma 3.4. We note that
P,(B) — PA(BD)| < N(A)~" | H, (D) — H,(BD)]
=N(A)"! B Hy(®)— HyD)] -
Putting A = I, k sufficiently large, and using (21) and (28), we get
\Pr, (B®) — Pp, (BP)| < B

Proof of Lemma 3.5. We use the same sort of estimates as in [2],
Section 7.6, and the fact that

I[HAD) ~ Hy(@). AN EN(A) e i AeBE£), ()
[H4(@), A1 — [HA(®), A]™

m—1

= Y [Ha®), [Hy®) —~ Hy(&), [H (@), ATT) "0

r=0

(30)

(29) is a consequence of Lemma 3.8, because only those ®(X) and d(X)
give a contribution for which X n A, 0. Working out the details is an
awful task, and will be done in the appendix.

(iv) The uniqueness of @ follows from an argument of Griffiths and
Ruelle ([ 1], Section IV). Suppose there exists a ¢ such that Try ®'(X)=0
and r,(tp)_ r,((I))_ 1,(45) then @' = &. By the same argument, ®, ~ P,
implies &, = &,. The inverse is trivial. This completes the proof of
Theorem 2.2.

(v) Due to the uniqueness of P, we have dbl =, if &, ~d,, and,
according to (19a), P(B®,)=P(fd,)=P(fd,)=P(fP,). In the same
way, it follows that, for invariant states ¢, ¢(Ag, ) 0(A,,), provided we
know that o(4g) = 0(As). Define Ag(A)=N()"1Y Y SX)NX)™,
and consider xed Xox

| Ag() — Ag(A)] < | Aa(4) = N(A) ™ Hy(@)] + | Ag(4) = N(O) " H, (D)
+N(A) ™ [Hy(@) — Hy(D)] -

If we choose A =TI, k sufficiently large, the third term on the r.h.s. will
be small due to (21) and (28). Note that we can replace fo(¢) by 1/¢ in
Lemma 3.8 and in (28). Application of (28) to

[46() = N Hy( )] =N ¥ 5~ SON)™|

xed X:xeX¢ A

and to the corresponding expression with & then shows that || 44(4)
— Ag(A)] < 3e, hence |o(Ag(A)) — o(As(A)| < 3¢ with arbitrarily small e.
Due to the invariance of g, we have g(A44(A4))=0(4g), and therefore
0(Ag) = 0(44). This completes the proof of Theorem 2.2.
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Proof of Proposition 2.3. (i) and (i) are simple consequences of
Lemma 2.1. Notice that

Hy(@")=Hy(®) = C4(®) 1,4 (31)
due to (i), P(®) and P(®P7) exist, hence
P(®)~ P(@")= lim N(4)~*(log Trse” " —log Tr e Ha@™)
= lim N(4)™" C4(®)=n(P)
exists. This proves the first part of (10), the second one is a trivial con-
sequence of (31) and the definition of z,.

Proof of Theorem 24. Let us suppose ®;,®P,€ B, 0<a=1, then
?=0ad,+(1-x)P,€ B, and

T =adT +(1 —a) @Y, (32)
CA(P)=0aCy(P)+(1 =) C (D), (33)
ST =T + (1 — ) OT (34)

because all operations involved are linear. Thus we have
P(®)=P(a®] + (1 — ) @) — an(®,) — (1 — o) n(D>)

Pl (1 - ) D)o@~ (@) u(@y).

If @747, then we know from Theorem 2.2 that @?#d;;, hence,
according to [1],
P(ad} + (1 — ) &%) > aP(@]) + (1 — o) P(Y).
Insertion into (35) gives immediately
P(®)>aP(®,)+(1 —a) P(D,).

~. ~.

On the other hand, if #7 ~ &7, then we have &! = &L = & and
P(®)=P(®7) — (@) = aP(®,) + (1 — 0) P(D,).

Proof of Proposition 2.6. We have to show the strict convexity of
P(f®,) with respect to u. @, is given by @,(X)=P(X)— 6, yux N (X).
It follows by a straightforward computation that

‘I)Z(X) = ‘DT(X) - /-Lél,N(X)(‘/V(X) - % lx) >
BT (X) = BT (X) — 61y (N (X) = 15).

~ ~

Hence u, # p, implies &}, + &, and we can apply the previous theorem.
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Appendix: Proof of Lemma 3.5

Let us consider Eq. (30) with 4 € B(#, ). It suffices to show that
each term on the r.h.s. is bounded in norm by C -¢ if A=1, D I; , where
k, is chosen large enough such that

Ay Clhg-n-y - (A1)

The constant C may also depend on N and A,. We insert H,(®)

= Y ®(X), resp. Hy(®)= ), &(Y), resp. the expression of Eq. (20)
XcA Yca

into (30). To shorten the notation, we write (for fixed A):

Y=Y Y =2,

(X, p) p X:XCA,NX)=p Xca
furthermore
N()
Y= Y . Y=Y .%.
D Py, pr=1 (X4, pv) (X1, p1) (Xr, pr)

We put s=m—r— 1, the indices i and j run from 1 to r and from 1 to s,
respectively. Then we get

[H(®), [Hy(®)— Hy(®), [H(®), 41" ]]®
=YYy Y Y Y ¥ [6Y),[..[P(V) [~ tryx®-1(2),
el g, Xiup) (X,1) Z:XCZ¢A (Yjqj)

(DXL [B(X,), A]...]. (A2)

Letusdefine S, = 4,,S;;;,=S;uX,,i=1,..,r—1,8=8S,0X,, T, =SUX,
T,.,=TuY,j=1,...,s— 1. We may restrict the summations to those
X;, X and Y; for which X;nS;#+0, XnS+0, Y;nT,+0. [Notice that
try x D, - 1(Z2) € B(H#Y).] These restricted summations will be denoted by
= Yy .. Y et
(Xi,pi,Si) (X1, p1,81)  (Xr, Pr, Sy)
We estimate the norm of (A 2) by taking the norms of the terms of the

rhs., using |[trx @, (Z)| = [ P(2Z)| 20-DN@) This gives
I[Hy(®),[...[...11]¢|
=TS X H eX)1 Y, Y Y [2@)2¢- V¥ (A3)

pi (Xi,pi,Si) i=1 1 (X,1,S) Z:XcZg¢4

S Y IIem

q; (Y49, T j=1
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We evaluate the sums starting with the g~ and Y-summations. We use
the same arguments as in Section 7.6 of [2], with
N(S)=N(AA)+ Zp;, NE)=N(A)+2p;,
N(T)=NA)+ 2p;+1+ Zq;,

[1 NS (N(A)+ Ep+ 1+ Zq) <sleN U0+ [Ter [T et
j=1

with the result
YOS JLISY) sV e Ter (| D], ) - (Ad)

a4, (Y4, Ty j=1
For s =0, (A4) is to be replaced by 1 < eV ¢! [T P,
The next step is to consider
oXy,...X)=Y Y Y, |@@Z))2t-IN@¢

1 (X,1,8)Z:XcZ¢4

N(A)
<Y Y je@l Yy Y 20vsed Ay
xeS Z:Z¢A,Zsx I1=1 X:XCZ,NX)=1

=Y X 1@l f(N@).

xeS Z:Z¢A,Z3x

Now let us take A =1TI;, with a fixed k = k, [k, as defined in (A 1)], and
try to apply Lemma 3.8 to the r.h.s. of (A6). This is possible for those
X,,....,X,, for which S= 4, U X, u---U X, fulfills

(S): NESNIL,_)/NES)>1—¢/2||D|, .
We define

t if S=AuX,,..., X, satisfies (S),

A6
0 otherwise. (A6)

X(A/;X19 -'-’Xr)={
Then we have by application of Lemma 3.8
o Xy, 0, X) 24 Xy, X)<N(E©S) - e<e¥ W [Te? e (AT

furthermore,
6(X19 "'9Xr)(1 _X(Al;Xls '>Xr))§N(S) ”(p”fo(1 _X(Al ;Xla 7Xr))
e [T e @ (1 — 1413 Xy, -, X)) (A8)

Combining Eqs.(A4) through (A 8) with (A 3), we get
I[HA®), [... [Hs(®), AT"]]N S 01 + 0, (A9)
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a=CnY Y I]lI0x) e e, (A10)

pi (X, pi,8) i=1

62:Cs,m”q)”foz Z H ”Q()(z)” e2p!(1_x(A1;X15""Xr))’ (AII)

P (X, P, 8i) i=1

Cy =512V D] - 2" A4 . (A12)

For r=0 we have to put [] -~ =1, furthermore, y(4,;X;,..., X,) = 1

i=1
because A; C I}, _y_; and (S) is fulfilled, hence o, = 0.
We can estimate g; by the same method as in (A4):

0, S Cy 1V (| D] 5) - 6. (A13)

This equation also holds for r=0.
For r= 1, let us write

0= Cnll Pl 5y 2(r; A1 1) (A14)

with

Tras)=3 Y [lleG)le (1 — X, ..., X)), (AtS)

pi (Xi,pi,8) 1
S,=A, S;=AUX,0-UX,_,, i=2,....r, ACIL,, X,CI,. We shall
show by induction that
2(r; A1)

, ! . A16
<M INUY [T @001 e i Ach,,. A

¢=0
Because of A, C I}, _y-1, Egs. (A9)—(A 16) finally yield
I[H(®), [H4(®) — H(®), [H,(®), A]"]]9) <C -,
C=N13NU 2] p|| a5 ]| D] o) || A

N ~
[T (@)e*N“9(2eN(A)) [|@.s [Pl 1)V 1A,
=0

4

+

which is the desired estimate.
It remains to prove (A 16). Take r=1and A’ C I _,, then y(A"; X;)=1
if X;CI,_,,1e 1—yx(4;X,) is certainly zero unless X; ¢ I}, thus
VI MED) > 1o(X,)] e

P1 Xt:NXO)=pi,X1nA'F+6,X1¢c-1

=Y X leElert .

xed’” Xy:xeXy¢Ik-
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We can apply Lemma 3.8 since A'C I}, _, and e?¢ < f(¢), getting
S(1; A3 L) < N(A)) % <N N(A)e,

i.e. (A 16) holds for r= 1. Let us suppose its validity for r — 1 and assume
A'CI,_,_¢. Notice that y(A"; X,,..., X,)=y(A'VX;X,,...,X,), there-
fore,

IrAsL)=3 Y 19X Zr—1;A40X;:1). (A7)

p1 (X1,p1,81)

We split the X,-summation into two parts: one part with X, CI} _, so
that we can use (A 16) in estimating X(r—1; A’V X, ;[}), and a second
one with X; ¢ I, _, to which we again apply Lemma 3.8 (with I}, replaced
by I, _,) using

Zr— 140X L) S0 — 1)V TNE(| @] )"

(In the first part, the factor N(A'UX,) "' appearing in the bound of
Sr—1;A0X,;I) is to be replaced by (N(A)+ N(X))™*
SNAY '+ NX )y 'SNAY H(r—1)e! TNX)) This gives

r—1
(s A L) S NA) @] -V TENAY =0 ] @D U] ) 7208
0

+ N5 (= D] )

r—1

SN@AY M e =0 T @)@l (1+ e,
0

which is the bound of (A 16) if we replace 1 + 3 by r > 1 + 3. This completes
the proof of Lemma 3.5.
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