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Abstract. Strict convexity of the pressure of a quantum lattice gas is demonstrated
in [1] with the help of a trace condition. An interpretation of that condition is given, and,
simultaneously, an extension of the result of [1]. In particular, it is shown that the pressure
is a continuous function of the lattice gas density.

I. Introduction

It has been demonstrated by Griffiths and Ruelle [1] that the pressure
P(Φi) and the time automorphisms τf(4> ), / = 1 , 2 , exist are called
function of the interaction Φ. One assumption used for the case of a
quantum lattice gas is the following:

ΎrγΦ(X) = 0 for all YcX, all finite XcZv. (1)

Here, Zv describes the (v-dimensional) lattice, Try denotes the partial
trace. We are concerned with the interpretation of this condition which
is not given in [1].

Definition ί.l. Two interactions Φγ and Φ2 f°
r which the pressures

P(Φί) and the time automorphisms τf(Φf), i = l , 2, exist are called
physically equivalent if P(Φi) = P(Φ2) and τt(Φl) = τt(Φ2). We then
write Φί^Φ2-

In view of Theorem 2.2 below, this definition seems to be a sensible
one. It will turn out that in every class of equivalent interactions with

• vanishing trace, there is a unique interaction with vanishing partial
traces, i.e. satisfying (1), provided a certain temperedness condition is
fulfilled. This allows a generalization of the results of [1]; in particular,
we can show the continuity of the pressure as a function of the lattice gas
density.

II. Notations and Results

We study a quantum lattice system over Zv, with a two-dimensional
Hubert space j f x attached to every xeZ\ Jjfx= (X) j(fx. X,Y,Λ>...

xeX
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always denote finite subsets of Zv, N(X) is the number of points in X.
If Y C X, ̂ x will be identified with J^y(χ) J^\y and similarly, we identify
A e 93 (Jfy) and A <g) 1 x\γ e 93 (J>fx), 93 (J>f ) = set of bounded operators on 3ίf.

Ae(J<B(J^Λ) is called strictly local; 21= (J®(J^ is the algebra of
A A

observables.
The translationally covariant interaction is given by a function

XH>Φ(X)e93(j^), φ(x) self-adjoint. Let /(ξ) be a real valued function
over ΪR+, /(£) ̂  0, then we define the /-norm of Φ by

The interactions Φ with | |Φ||/ < oo form a Banach space Bf.
For v4 6 95(Jί^), YCX, ΊΐγA E 93(J^\y) denotes the partial trace, and

tryy4 = 2"N ( Y )Tr y^. (3)

Writing trx\y, we generally mean that Y is a proper subset of X. If a term
tr0 occurs in a summation it is meant to be zero.

Lemma 2.1 . // 7, Y ' C X C Z, 4 6

trz\*trχ\γ^ = trzyy,4 (4 a)

tr*\Y tΐχ\γ>A = tΐx\(γny>)A (4b)

D (4c)

The proof is trivial.
The Hamiltonian belonging to the interaction Φ is

HΛ(Φ)= Σ φW (5)
XC/1

The pressure and the time evolution of the system are defined by

P(Φ)= lim N(AΓ1 logΎrΛe-HΛ(φ}, (6)
Λ-+OO

τt(Φ)A= l i m τ f ( Φ ) A , τ f ( Φ ) A = eίtHΛ(φ}Ae-ίtHΛ(φ\Ae(J%(3ί?A). (7)

The limits are known to exist [2, 3] if Φ 6 Bfί (resp. Φ e J3/2), /^Q = l/^,
/2 = eαξ, α > 0. A -> oo means the Van Hove limit (resp. /t -> oo such that
it eventually contains every finite subset of Zv).

Our main result is the following

Theorem 2.2. For every interaction Φ which satisfies

(a)

(b) TrA:Φ(X) = 0 for all XCZ\
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there exists a Φ such that

(i) ΦeB / 2,/2(ξ) = ̂ ,

(ii) ΎrγΦ(X) = Q for all ΎcX, all XtZ\

(iii) Φ ~ Φ ,

(iv) Φ is unique. If Φ± and Φ2 satisfy (a) and (b), then Φί~Φ2if and
only if Φ1 = &2

(v) Φ, ~ Φ2 implies P ( β Φ ί ) = P(βΦ2)for all j5 > 0, and ρ(AΦί) = ρ(Aφ2)
for all translationally invariant states ρ, where Aφ= Σ Φ(X)N(X)~1

XsO

is the observable of the mean energy per site. Π

The equivalence relation ~ is defined in Definition 1.1. The require-
ment (a) can be weakened (compare the proof).

For a potential which does not satisfy (b) we define

Φτ(X) = Φ(X)-trxΦ(X) lx. (8)

CA(Φ)= Σ trxΦ(X). (9)
Then we have XcΛ

Proposition 2.3. (i) // ΦeBf, then ΦτeBf,
(ii) CA(Φ) = trAHA(Φ),

(iii) if Φ<ΞBυ,, then lim N(Λ) l CΛ(Φ) = π(Φ) exists and
/ s ^

(Φ), τt(Φτ) = τt(Φ). D (10)

We can generalize the result of Griffiths and Ruelle for sufficiently
tempered interactions with the help of Theorem 2.2 and Proposition 2.3:

Theorem 2.4. Let us assume that Φ1 ? Φ2 e β/3, ί/zen ί/ze pressure P(Φ)
is strictly convex between Φ1 and Φ2 if and only if Φ\ and ΦΎ

2 are not
physically equivalent. Π

Remark 2.5. According to (ii) and (iii) of Proposition 2.3, HΛ(ΦT)
= HΛ(Φ)-trΛHΛ(Φ),and lim N(A)~ί trΛHΛ(Φ) exists. In the limit Λ-»oo,

Λ-+ oo

the "energy per site" is thus changed by a finite amount if we go over
from Φ to ΦΓ, independent of the state of the system. One may consider
this as a physically irrelevant renormalization and consider Φ and Φτ

as equivalent in a wider sense. Then Theorem 2.2 implies, loosely
speaking, strict convexity of the pressure as a function of the extended
equivalence classes.

Let Jf^ denote the particle number operator in J*fx Λ"(X) = Σ ^χ

<5a fc= Kronecker symbol .
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[HΛ(Φ^ = HΛ(Φ) — μJf(Λ) gives rise to the statistical operator of the
grand canonical ensemble.]

It is known [4] that

pφ(β, μ) = sup(S(ρ) - βρ(Aφ) + βμρ(^0)),

where the supremum is to be taken over all invariant states ρ over *2ί,
S(ρ) denotes the corresponding entropy. Let the supremum be reached
for ρs, then ρs(^V0) can be considered as the equilibrium density of the
system.

Proposition 2.6. // Φ e 5/3, then pφ(β, μ) is a continuous function of the
equilibrium density vφ(β, μ) = ρs(^K0) Π

This follows from the strict convexity of pφ(β,μ) with respect to μ
which, in turn, is a consequence of Theorem 2.4.

Remark 2.7. The definition of Φτ and Φτ gives non-trivial results for
classical interactions too. Our conjecture is that, for classical Φh Φl = Φ2

if and only if Φ\ ~ ΦT

2. This would prove the strict convexity of P(Φ) for
strongly tempered classical interactions by the same method as for
quantum interactions. But since the class of classical interactions con-
sidered in [1] is appreciably larger, it does not seem worth proving that
conjecture.

Remark 2.8. Looking through the proof of Theorem 2.2 one easily
realizes that, for Φ l 9 Φ2 εB h and Ίτx(Φ^(X)- Φ2(X)) = 0 for all X, the
equality τί(Φ1) = τf(Φ2) already implies P(Φ1) = P(Φ2). From AΦi = Aφ2

for physically equivalent interactions, it follows that the equilibrium
states ρfί and ρf2, as defined by the above variational principle, coincide
if Φ1 ~Φ2.

III. Proofs

If f(ξ) ^ f(ξ) for sufficiently large ξ, then ψ ε Bf implies Ψ ε £7 and

Proo/ o/ Theorem 2.2. It suffices to assume

£ — 1 v

v=l μ=ί

With the estimate < 2ξ one easily gets

l n 2 + α ίg^2 = /3(ί) for large ξ. (13)

For the sake of convenience, we take α= 1 and assume ΦeBfo, f0(ξ)
= e^ f4(ξ). Clearly, Φ e Bfo if Φ ε B f 3 .



Strict Convexity of the Pressure 267

Lemma 3.1. If Ψ E Bi/ξ, then £ trz^ Ψ(Z) exists, and
Z .ZDX

I! Σ KΛXΨ(Z)\\^N(X)\\Ψ\\l/ξ.
\\Z:Z3X ||

This follows from ||trzvr«P(Z)|| ^ || Ψ(Z)|| and

Σ \mz)\\=Σ Σ II^IIΛ^Γ^ivwimi^.
Z:ZDX JtsX Za.x

Due to this Lemma, we can define a sequence of interactions Φk,

fc = 0,l,2,. . . ,by
Definition 3.2. Φ0(X) = <

Σ tr^.^Z) if
?:ZDX

Σ tr^Φ^PQ if
I Y:YcX,N(Y)=k

Because of

Φk(X)=ΦN(X)(X) for k^N(X)9 (14)

the sequence converges in an obvious sense to

\ = Φ N ( X ) ( X ) . (15)

We are going to show that Φ has the properties required in Theorem 2.2.
Remark 3.3. It is clear from the definition that Φk and Φ are trans-

\ationally covariant. Iί Φ is of finite range, or if Φ(X) = 0 for N(X) ^ N0,
the same holds true for Φk and Φ.

(i) Calculation of the norm. For k < N(X\ we have

Σ \\φk
Y:YcX,N(Y)=k

consequently, because also k - 1 < N(X),

\\Φk(X)\\^\\Φ(X)\\p(N(X);klp(ξ;k)= Π i + - (16)
μ=ι

Insertion of (16) into

Z .ZDX

yields

l)+ £ ||Φ(Z)|| p(N(Z);N(X)- 1),
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hence

\\*L* = Σ \\ΦN(X)(X)\\eN(X^ Σ \\Φ(X)\\p(N(X)lN(X)-i)eN™
X3θ X3θ

+ Σ ||Φ(Z)|| Σ p(N(Z);N(X)-l)e"(X>,
ZaO X:XcZ,X3θ

where the second term is obtained by rearranging the terms of the
original sum £ £ .

X3θ Z .ZcX

Note that p(ξ;ξ- i)eξ^fQ(ξ) and

N(Z)-ι /NY7V\

l 'V /

therefore, we conclude from (17) that

(ii) Vanishing of the partial traces. We have by assumption tΓγΦ0(J!0
= trxΦ(X) = 0. Now suppose that

(Tt): Tr^yΦz(X) = 0 for N(Y)£l,N(Y)<N(X)

holds for all ί^fc- 1. We then show the validity of (Tk). If N(X)<k,
then N(Y)<N(X)^k-i, and tτx\γΦk(X) = trx\γΦk_1(X) = 0. If
N(X) = k, then N(Y)^k-i, and tτx\γ Φk(X) = trx\γ Φk-ι(X)
+ Σ t rz\y $k -ί(Z) = 0, where we used Lemma 2. 1 . Finally, if N(X) > k,

ZDX
we get, again applying Lemma 2.1,

Y':Y'CX,N(Y') = h

For N(Y)£k-l, the r.h.s. vanishes because N(YnYf)^k- i. If
AΓ(7) - fc, then N(Y n F) g fc - 1 unless Y r = 7, and all terms in the sum
vanish except one which cancels the first term of the r.h.s. of (18). There-
fore, (ΓJ holds for all fc; with k = N(X), we get try Φ(X) = 0 for all Y C X.

(iii) Calculation of P(Φ) and τt(Φ\ This is the most laborious part
of the proof. P(Φ) and τ^Φ) are well defined because ΦeBeξ. We want
to show

, AeVί (19a,b)

by establishing the following Lemmas:

Lemma 3.4. For a special Van Hove-sequence Λ.—>oo, to be defined
below, we have

\PΛ(βΦ)-PΛ(βΦ)\^N(ΛΓ1β\\HΛ(Φ)-HΛ(Φ)\\<βε if ΛiΛ0(e). Ώ
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Lemma 3.5. For the special sequence Λ—>co of Lemma 3.4, and for
any strictly local A e Spf^i)? we have

\\lHA(Φ)9A]M-lHA(Φ)9An<89 m=l929...9N9

ifΛ3Λ0'(ε,N,A). D

The multiple commutator [β,A~\(m] is defined by [B,A](0) = A,
[β,A\(m}=[B,\β,A](m-l}~\. The limits lim PA(Φ) (resp. limPA(Φ),

Λ->oo

limτf(Φ)A, limτt(Φ)A) are independent of the chosen sequence Λ->oo,
hence Lemma 3.4 implies (19a). τf(Φ)A (resp. τf(Φ)A) can, for small ί,
|ί| < £0(Φ)> be approximated by

uniformly in A (see for instance [2], Section 7.6). Therefore, Lemma 3.5
yields τt(Φ)A = τt(Φ)A for strictly local A and sufficiently small ί,
hence (19 b).

We start proving

Lemma 3.6.
N(Λ)

HA(Φ)-HA(Φ)= Σ Σ Σ tr^Φ^^Z), (20)
1=1 X:XcΛ,N(X) = l

\\HΛ(Φ)-HΛ(Φ)\\^Σ Σ \\Φ(Z)\\f0(N(Z)). Π (21)
xeΛ Z:Z<lΛ,Z3x

Proof. Insertion of Definition 3.2 into

HA(ΦJ= Σ φ fcm+ Σ *k(x)+ Σ ^w.
XcΛ,N(X)<k

and reordering of the terms gives, for all k = 1 , 2, . . . ,

HΛ(Φk) = HΛ(Φk_1)+ Σ Σ tr^Φ^^Z). (22)
Λ":.YcΛ,tf(;iO=k Z:XcZ(tyl

Furthermore, due to (14), we have

= Σ ΦWM)W = ̂ (Φί»M)). (23)

Iteration of (22) together with (23) yields (20).
By (16), the norm of (20) is bounded by

N(Λ)

Σ Σ Σ \ \ Φ ( Z ) \ \ p ( N ( Z ) ; l - l ) £ Σ Σ \\Φ(Z)\\r(Λ;Z)
1=1 X . Z'. xeΛ Z:Z3χ,Z(tΛ
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With N(Λ)

r ( A ; Z ) = Σ Σ
l=ί X:XcΛnZ,N(X) = l

= Σ ί \p(N(Z)'J-i).

We have to put I — 0 if / > n. The estimate

N™(N(Z)\

M l )

finally proves (21).
Now let us define a special sequence Γk C Zv. We choose a e Zv,

a = (a1,...,ay) and Λ(a) = {xeZ v; -d ^x* <a\ ί=l, . . . ,v} in such a
way that

Σ HΦ(X)ll/o(W))<T for Λ3Λ(a). (24)
X:OeX<tΛ ^

Definition 3.7. Let A + x denote the set A translated by x;

Γi - A(a\ Γk= {} ( Γ k _ t -f x).J. v / •> Λ \^y \ ft. J. '

Γk consists of kv translates of Λ(d), hence

N(Γk) = N(Λ(a))k\ (25)

Furthermore, Γk -> oo in the sense of Van Hove, and Γk 3 (J (Λ(α) H- x).
xεΓfc-!

This implies, d\ιe to (24) and the translation covariance of the inter-
action, that

Σ \\Φ(X)\\f0(N(X))<-?- for all xeΓ,.,. (26)
X:xeX<tΓk ^

Lemma 3.8. Let us assume ΛcΓk and N(ΛnΓk-ι)/N(Λ)> l—εl9

then

Σ Σ \ \ Φ ( X ) \ \ f o ( N ( X ) ) < N ( Λ ) ί ~ + ε l \ \ Φ \ \ f } . D (27)
xeΛ X:xeX<tΓk \ Z /

Proof. We split the sum Σ = Σ + Σ To the first
xeΛ xeΛr\Γk-ι xeΛ n(Γk\Γk-1)

term, we can apply (26), the second one is bounded by N(An(Γk\Γk_1))
«Φ|l/0^N(Λ)βl))Φ||/0, hence (27).

Choose k large, such that N(Γk^ί)/N(Γk) = (k-i/k)v> 1 -ε/2||Φ||/0,
and apply Lemma 3.8 with Λ = Γk, then

Σ Σ \\Φ(X)\\fo(N(X))<N(Γk)s. (28)
xeΓk X:xeX<tΓk
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Proof of Lemma 3.4. We note that

\PΛ(βΦ) - PA(βΦ)\ ^ N(Λ)~ 1 \\HΛ(βΦ)-HA(βΦ)\\

= N(ΛΓlβ\\HΛ(Φ)-HΛ(Φ)\\.

Putting Λ — Γk,k sufficiently large, and using (21) and (28), we get

\PΓk(βΦ)-PΓk(βΦ)\<βε.

Proof of Lemma 3.5. We use the same sort of estimates as in [2],
Section 7.6, and the fact that

, (29)

Λ , - Λ ,
m-1 ^ '

= Σ [#ι(*). IHΛ(*) ~ HA(Φ\ \βΛ(Φ), AΫW-'-V
r=0

(29) is a consequence of Lemma 3.8, because only those Φ(X) and Φ(X]
give a contribution for which XnΛ^ Φ0. Working out the details is an
awful task, and will be done in the appendix.

(iv) The uniqueness of Φ follows from an argument of Griffiths and
Ruelle ([1], Section IV). Suppose there exists a Φ' such that ΎrγΦ'(X) = 0
and τt(Φt) = τt(Φ) = τt(Φ)9 then Φ' = Φ. By the same argument, Φ j ~ Φ 2

implies ^ = ̂ 2 The inverse is trivial. This completes the proof of
Theorem 2.2.

(v) Due to the uniqueness of Φ, we have Φ1 = Φ2 if Φi - $2* and,
according to (19 a), P(βΦ<L) = P(βΦJ = P(βΦ2) = P(βΦ2)* In the same
way, it follows that, for invariant states ρ, ρ(Aφ) = @(AΦ^ provided we
know that ρ(Aφ) = ρ(Aφ). Define A^(Λ) = N(ΛΓl Σ Σ Φ(X)N(X)'\
and consider xeΛ XBX

\AΦ(Λ)-A*(Λ)\ ^ \AΦ(A)

+ N(ATl\\HΛ(Φ}-HΛ(Φ}\\.

If we choose A = Γk,k sufficiently large, the third term on the r.h.s. will
be small due to (21) and (28). Note that we can replace /0(£) by i/ξ in
Lemma 3.8 and in (28). Application of (28) to

\\AΦ(A)-N(AΓ1HΦ(A)\\=N(AΓ1 Σ
x<=Λ

and to the corresponding expression with Φ then shows that ||^φ(/l)
- Aφ(A)\\ < 3ε, hence \ρ(Aφ(A))-ρ(Aφ(Λ))\ < 3ε with arbitrarily small ε.
Due to the invariance of ρ, we have ρ(Aφ(A)) = ρ(Aφ), and therefore
ρ(Aφ) = ρ(Aφ). This completes the proof of Theorem 2.2.
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Proof of Proposition 2.3. (i) and (ii) are simple consequences of
Lemma 2.1. Notice that

HΛ(Φτ) = HΛ(Φ)-CΛ(Φ).lΛι (31)

due to (i), P(Φ) and P(ΦT) exist, hence

P(Φ)-P(ΦT)= lim N(AΓ1(^ogΎΐΛe-HΛ(φ)-logΊΐΛe-HΛ(φT})
Λ-+CQ

= limN(ΛΓ1CA(Φ} = π(Φ)
Λ— > oo

exists. This proves the first part of (10), the second one is a trivial con-
sequence of (31) and the definition of τr

Proof of Theorem 2.4. Let us suppose Φ l 5 Φ2eB/ 0, O^α^ 1, then
Φ = αΦ1 + (l -α)Φ2eJ5/0 and

ΦT = αΦl + (l-α)ΦΪ, (32)

CΛΦ) = αCΛΦJ + (1 - α) CΛΦ2) , (33)

<F = αφf + (l-α)φf , (34)

because all operations involved are linear. Thus we have

P(φ) = P(αΦT + (1 - α) Φp - απ(Φx) - (1 - α) π(Φ2)

- P(αφt + (1 - α) φf) - απ(ΦJ - (1 - α) π(Φ2) .
>-^/ /^s

If Φ\ φ Φf, then we know from Theorem 2.2 that Φ[ φ Φ2, hence,
according to [1],

P(αΦl + (1 - α) φf ) > αP(Φ[) + (1 - α) F(Φ|) .

Insertion into (35) gives immediately

P(Φ) > αP(Φi) + (1 - α) P(Φ2) .

On the other hand, if Φ[ ̂  Φ2, then we have Φ\ = ΦT

2 = Φτ and

P(φ) = p(φτ) - π(φ) = αP(Φi) + (1 - α) P(Φ2) .

Proof of Proposition 2.6. We have to show the strict convexity of
P(βΦμ) with respect to μ. Φμ is given by Φμ(X) = Φ(X)-δltN(X}Λ

r(X).
It follows by a straightforward computation that

Φl(X) = ΦT(X) - μδ

Φτ

μ(X) = ΦT(X) - μδ

Hence μ^ Φ μ2 implies Φ^ Φ Φ^2, and we can apply the previous theorem.
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Appendix: Proof of Lemma 3.5

Let us consider Eq. (30) with Ae^B(J^Λl). It suffices to show that
each term on the r.h.s. is bounded in norm by C ε if A = Γk D Γfco, where
fe0 is chosen large enough such that

ΛiCΓ^.^. (Al)

The constant C may also depend on N and Λ^. We insert HΛ(Φ)
= Σ Φ(X\ resp. HΛ(Φ)= £ Φ(Y), resp. the expression of Eq. (20)

XCΛ YCΛ

into (30). To shorten the notation, we write (for fixed A):

Σ = Σ Σ = Σ >
(X,p) p X:XcΛ,N(X) = p XtΛ

furthermore

N(A)

Σ= Σ ' Σ = Σ ••• Σ
Pi Pl, , P r = l (Xi.Pτ) (Xl.Pl) (Xr,Pr)

We put s = m — r — 1, the indices i and; run from 1 to r and from 1 to 5,
respectively. Then we get

\HA(Φ\ [HΛ(Φ)~ HΛ(Φ\ [HA(Φ\ Λ]<'>]]<'>

Σ Σ Σ Σ
Xi,Pl) ( X , l ) Z:XcZ<tΛ ( Y j , q j

(A2)

Tj+ ! = 7}u Yp j = 1, . . . , 5 — 1. We may restrict the summations to those
Xh X and 1} for which J^nS ΦO, XnSΦ0, ^ni .φθ. [Notice that
trzyΛ:Φ/_1(Z)e93(jfΛ:).] These restricted summations will be denoted by

Σ = Σ - Σ > etc-
4—^ 1—^ 1—^

We estimate the norm of (A 2) by taking the norms of the terms of the
r.h.s, using lltr^Φ^ίZ)!! ̂  ||Φ(Z)|| 2(l'l]N(Z\ This gives

Σ Σ Πl l*«) l lΣ Σ Σ IIΦ(Z)||2«-™ (A3)
Pi (Xί,pl,Si) i=ί

•Σ Σ Π
^ (y^βj.Γ.y) j = ι
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We evaluate the sums starting with the qy and Ij-summations. We use
the same arguments as in Section 7.6 of [2], with

+ Σpi9

with the result

Σ Σ Π \\Φ(YM^s\eN^elΠe^(\\Φ\\eξ)
s. (A4)

9j (Yj qj Tj) j=ί

For 5 = 0, (A 4) is to be replaced by 1 ̂  eN(Λl}el Πep\
The next step is to consider

)=Σ Σ Σ
I ( X , l , S ) Z : X c Z ξ Λ

N(Λ)

^ Σ Σ IIΦ(Z)II Σ Σ 2< |-1>*<zv (A5)
xeS Z:Z<tΛ,Z3χ 1=1 X X c Z ,

.xeS Z:Z<tΛ,Z3x

Now let us take Λ = Γk, with a fixed k Ξ; fc0 [/c0 as defined in (A 1)], and
try to apply Lemma 3.8 to the r.h.s. of (A 6). This is possible for those
Xι,...,Xr, for which S = AiuX1\j-uXr fulfills

(S): ]V(SnΓk_1)/N(S)> 1 -ε/2\\Φ\\Λ .

We define

1 if S = Λ'vX1,...,Xr satisfies (S) ,
0 otherwise.

Then we have by application of Lemma 3.8

σ(X1,...,Xr)χ(Λ1;X1,...,Xr)<N(S) ε<e*<A*Yle» ε (A 7)
ί -

furthermore,

σ(Xl,...,Xr)(i-χ(Λί;X1,...,Xr))£N(S)\\Φ\\Λ(i-χ(Λ1 ,X1,...,Xr))

£eNM1[le»\\Φ\\Λ(i-χ(Λ1 ,Xί,...,Xr)). (A 8)
/

Combining Eqs. (A4) through (A 8) with (A 3), we get

\\[HΛ(Φ), [... [H^(Φ)M](Γ)]](β)ll ̂  + <τ2 , (A 9)
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*i = C, tm£ Σ Πl|Φ(*i)||e2" e, (A 10)
Pi (Xι,Pi,St) 1=1

Σ Σ Π iiΦWiie^ίi-χ^ X!,...,*,)), (Ai i )
P, (X,,P,,St) i = l

Cs,m = s\e2N^(\\Φ\\eίγ.2mA. (A 12)

r

For r = 0 we have to put f] ••• = !, furthermore, χ(/Li m,Xl9 ..., Jfr) = 1
ί = i

because Λ1cΓk_N_i and (S) is fulfilled, hence σ2 = 0,
We can estimate σ^ by the same method as in (A 4):

σ^CStmrle»(A*\\\Φ\\e3#.ε. (A 13)

This equation also holds for r = 0.
For r^ 1, let us write

Σ(rU1;Γk) (A 14)

with

Σ(r;Λ';Γ k )=Σ Σ fl ll^Wlk2^! ~ χ(Λ';Xl9 . . . 9 X r ) ) , (A 15)
Pί (X^p^SO 1

S^/T, S^/l'uΛiU - uXi.!, i = 2,...,r, /I'CΓ^ ^CΓk. We shall
show by induction that

Σ ( r ' , Λ ' ; Γ k )

β i f Λ ' C Γ . . (A16)

Because of Λ1 C Γk_N- 15 Eqs. (A9)-(A 16) finally yield

Φ), [H,(Φ) - HΛ(Φ), [ff^(Φ), X](Γ)]]«|| ̂  C - e ,

which is the desired estimate.
It remains to prove (A 1 6). Take r = 1 and A C Γk _ 2, then χ(yl/ ZJ = 1

if ATX C Γk_ !, i.e. 1 — χ(yl'; XJ is certainly zero unless X1 $ Γ f c_ 1? thus

^ Σ Σ



276 H. Roos

We can apply Lemma 3.8 since Λf CΓk_2

 and e2ξ^fo(ζ)> getting

i.e. (A 16) holds for r — 1. Let us suppose its validity for r — 1 and assume
Λ'cΓk_r_l. Notice that χ(Λ';Xl9 ...,Xr) = χ(Λ'vXl9X2, • ••, Xr\ there-
fore,

Γk). (Ail)
Pi (Xl,Pl,Sι)

We split the ^-summation into two parts: one part with X^cΓk,r so
that we can use (A 16) in estimating Σ(r— l9Λ'\jXl9Γk)9 and a second
one with Xv ct Γk_r to which we again apply Lemma 3.8 (with Γk replaced
by Γk_,) using

(In the first part, the factor N(Af^>Xi)
r~1 appearing in the bound of

Σ (r - 1 A' u X1 Γk) is to be replaced by (N(A') + N(Xί))r~ 1

N(Xί))r-1^N(Λγ'ί(r-i)\e1+N(Xί}.) This gives

o

M ' ) + r"1(r-l)! Π
o

which is the bound of (A 16) if we replace 1 + \ by r > 1 + £. This completes
the proof of Lemma 3.5.
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