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Abstract. It is proved that the free energy per spin in the thermodynamic limit of an
Ising model on a lattice with coordination number z approaches the classical Curie-Weiss
free energy in the limit z->oo. The infinite spacial dimension limit of nearest neighbour
lattice models is a special case of this result.

1. Introduction

It is well known that in a variety of circumstances one obtains the
classical theories of phase transitions for fluid and magnetic systems in the
limit of long range interactions. Such results to date (e.g. Lebowitz and
Penrose [1], Thompson and Silver [2]) have been concerned with
attractive pair potentials

φ(r) = ydυ(y\r\) (1.1)

of Kac type, in fixed spacial dimension d, in the limit y —> 0.
Various expansions for thermodynamic quantities in powers of y

have been obtained [3,4], and resummed in regions close to the critical
point [5]. Prior to Refs. [1-5], Brout [6] obtained high density expan-
sions for spin systems on lattices in inverse powers of the coordination
number z of the lattice, with the classical Curie-Weiss theory as leading
term. On the basis of Brout's work it has often been stated (e.g. [7]) that
critical behaviour for spin systems on d-dimensional lattices (z = 2d for
a regular cubic lattice) should become classical in the limit d-+co.

Our purpose here is to prove that the z->oo limit for an Ising model
on a lattice with coordination number z indeed results in the classical
Curie-Weiss theory. We stress that the lattice does not have to be regular
or tied to a particular spacial dimension. All that is required is that each
of the N points of the lattice be bonded or linked to z other points of the
lattice.

The precise statement is as follows.

Theorem. Let each point p of a lattice with N points and coordination
number z be occupied by a spin μp = +1 and let the spins interact with



256 C. J. Thompson

energy

in a given configuration {μ}, where J^O and H are constants and the
starred sum is over the Nz pairs (p, p') of linked points.

Then the free energy per spin ψz(β, H) defined by (β = (kT)'1)

-βψz(β,H) = lim N'1 \ogZN(β,H) (1.3)

with
ZN(β,H)=Σexp(-βE{μ}) (1.4)

has the limiting form

lim [ — βψz(β, H)"] = Max[ —vm 2 + log2cosh(2vm + B)] (1.5)
z-* oo m

where B = βH and v = βJ.

It will be noted that (1.5) corresponds to the classical Curie-Weiss
theory of magnetism. It should also be noted that the factor 1/z in (1.2)
is needed for the limit (1.5) to exist.

Although dimensionality does not appear explicitly in the statement
of the theorem we have in mind, as a particular case, the nearest neighbour
Ising model on a d-dimensional cubic lattice (for which z = 2d). The
limit z —> oo then corresponds to infinite spacial dimensionality.

We have nothing to say here about the validity of classical critical
behaviour in (fixed) finite integer dimensions larger than three (see [8]
and [9]). In any event it is probably correct to say that the free energy
will have the Curie-Weiss form only in the limit z-+oo (or d-»oo). This
of course does not exclude the possibility of classical critical exponents
for finite d ̂  4.

2. Proof of the Theorem

In the proof of the Theorem we adopt the usual strategy of bounding
the partition function ZN (1.4) above and below and showing that the
two corresponding bounds for the limiting free energy per spin coalesce
in the limit z-»oo.

As shown in [2], the Curie-Weiss partition function is always a
lower bound for ZN, regardless of potential or dimension. In the present
context, elementary manipulation leads to the identity

ZN(β, H)- X exp (- Σ* μpμp. + B^μp
{μ} V z p, p' p

ί v \\

•Σ*<w) t2-1)
p,p' I/ c
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where m is any constant,
σp = μp-m (2.2)

and the average < >c is taken with respect to the distribution function

P{μ} = exp Γ(2vm + B) £ μ J/[2 cosh(2vm + β)]" . (2.3)

In deriving (2.1), which is an identity for all m, we have used the facts
that Σ* = z and Λat as a consequence ]Γ* = zN.

P P,P'

Using Jensen's inequality «expχ> ^exp<χ» we find from (2.1) that

ZN(β, H) ̂  [e-V w 22 cosh(2vm + β)]N exp — £* <σp>c <σp,

- |>Γvm22 cosh(2vw 4-β)]",

provided m is chosen such that

/ _ \ rv /^> r \
<<Vc = 0 (2.5)

i.e. from (2.2) and (2.3)

<μp - m> = tanh(2vm + β) - m = 0 . (2.6)

It follows that

-βψz(β,H)= limJV-MogZ^H)

^ — vm 2 + log2cosh(2vm + β)

where from (2.6) m can be chosen as the solution that maximises the
right hand side of (2.7).

It remains to show that the right hand side becomes an upper bound
for —βψz(β,H) in the limit z->oo.

To obtain an upper bound on ZN(β, H) we begin by expanding the
exponential in (2.1) obtaining

) (2.8)
where

00 / 2v\k 1

"̂̂  \ z I k'

4 = 2-^ Σ\ <("P1 ^-'} (° M <V<) (V <W )>c, (2-10)

and the sum in (2.10) is over linked pairs of points Pf = (pj, p 'X ϊ = 1,. •, fe
The quantity Jk can be expressed in terms of weighted labelled graphs

as follows.
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To each factor σp,σp» in (2.10) we associate a bond on the lattice
connecting the points p' and p". With such an association, every term
in the sum (2.10) can be represented by a graph on the lattice con-
sisting of k bonds. The sum (2.10) then becomes a sum of weighted
labelled graphs. Thus given a graph Gk of k labelled bonds Pl9P2, - ,Pk
(Pt connecting points p ,p") we denote the corresponding weight
<(σpι'σpι") ••• (σPk'σPk")> by W(Gk). If we then restrict the sum over bonds
so that each bond is counted only once, the factor 2k in (2.10) is eliminated
and we can write

4= Σ W(Gk). (2.11)
(Gk)

Now, since W(Gk) is independent of the labelling of Gk and is a
product of weights assigned to each of the disjoint connected parts
making up Gk we can write I(N9 z) Eq. (2.9), as (see for example [10])

,z)] (2.12)
where

and
h= Σ W(Ck) (2.14)

(Ck)

the sum in (2.14) now being over connected labelled graphs Ck of k bonds.
To complete the proof of our theorem we need the following:

Lemma. ik defined by (2.14) satisfies the inequality

-
for all fixed v > 0 and sufficiently large z.

The proof of the lemma is given in the appendix.
Substituting (2.15) in (2.12) and (2.13) we obtain

NA

for z sufficiently large.
It follows then from (2.8) that

-βψz(β, H) ̂  - vm2 + Iog2 cosh(2vm + B) + — - — (2.17)
z(l-A)

and hence from (2.7) that ψz(β,H) in the limit z->oo is given by the
Curie-Weiss free energy (1.5).

The proof of the theorem is then complete.
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Appendix

Our aim here is to prove the result (2.15),

259

(Ck) 2v
(Al)

v fixed, for z sufficiently large.
To estimate the weight of a graph recall definitions (2.10) and (2.11)

and the fact that spins occur independently in the distribution function
(2.3). As a consequence a graph G with mf vertices of degree / has weight

«^»M/ (A2)
i

m> = 0, (A3)

where for example [from (2.6)]

= l -m 2 (A 4)

and so on. The result (A3), which is very important for our purposes,
means that graphs containing points of degree one have zero weight and
can therefore be discarded.

To obtain the required result (A 1) we need to consider vertices of
degree two [and weight (A 4)] separately from vertices of higher degree.
For vertices of degree / ^ 3 the following trivial bound

|<(μ-m)/>|:g(l+mK (A 5)

is sufficient for our needs. (It should be noted that <σ ̂ > φ 0 for odd / ^ 3
unless m = 0.)

Noting now that if a graph has k bonds and mf points of degree / ^ 2
(and none of degree one) k is given by

= έ Σ (A6)

Eqs. (A 2) to (A 5) give

where

It follows that

= (l-m2)m 2(l+m)2 ( / c-m 2 )

= (i-m2)kxk-m2

x - ( l + m ) ( l - m ) - 1 .

Σ
(Ck)

(A7)

(A 8)

(A 9)
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where nk(m2) is the number of labelled graphs of k bonds with w2 vertices
of degree two (and none of degree one) that can be drawn on the lattice.

To get a feel for nk(m2) let us consider the case m2 = fe, i.e. all vertices
are of degree two. Obviously nk(k) is then the number of (self avoiding)
labelled cycles of k bonds that can be drawn on the lattice. If we consider
a cycle as a self avoiding walk beginning and ending at a particular point
P say, it is clear that

nk(k)^Nklsk (A 10)

where sk is the number of (unlabelled) self avoiding closures on P, the
fe ! is the number of ways of labelling the bonds or steps of the walk
[since P can be chosen in any one of k ways, k I could be replaced in
(A 10) by (k — 1) !] and the factor N is the number of possible positions
for P on the lattice.

To bound sfc we note that given any self avoiding closure on a point
P we can construct z — 1 unique walks on the lattice by replacing the
last step by a step in any one of the z — 1 remaining directions. For every
cycle therefore we have z unique random walks (not necessarily self
avoiding) and since there is a total of z* random walks of k steps from P
on a lattice with coordination number z we have

zsk^zk ( A l l )
and hence from (A 10)

nk(k)^Nk\^~l . (A 12)

In the general case we represent graphs on the lattice containing k
bonds as pseudo-graphs of / = k — m2 lines (corresponding to chains of
bonds connecting vertices of degree two) and p = £ mf points (corre-

spending to vertices of degree at least three). Lines will be assigned
/ i \

lengths felJ/c2, •••,&/ Σ k{ = k\ corresponding to the number of bonds
\ ί = l /

making up the associated chains on the lattice.
Now from Euler's theorem, a graph with / lines and p points contains

c = / — p + 1 independent cycles, corresponding as before to self avoiding
closures on the lattice. By breaking each cycle as above we can construct
zc Cayley trees (i.e. pseudo-graphs with no cycles). Hence if Nk{mf} is the
number of graphs of k bonds and mf points of degree /( ̂  2) we obtain
as a straightforward generalization of (A 1 1) and (A 12),

,
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i.e. since c = k — Σ m / + l >

Nk{mf}^Nz^mί~\kJfr\ (A 13)

where TkJ is the number of trees with I lines and k labelled "components"
(corresponding to bonds on the lattice). Using the fact that there are pp~2

trees with p labelled points and noting that a tree with p points has p — 1
lines, we have

ίlλ

l+ϊ)l-*(k-ΐ)\ (A 14)

where the first factor is the number of ways of choosing I labels out of /c,
the second factor is the number of (/-) labelled trees and the third factor
is the number of ways of labelling the k -1 remaining components.

Combining (A 13) and (A 14) and using the fact that pp/p l^ep~l we
then have

Nk{mf}^Nkle?fi\z'**mf~l (A 15)

and hence, since I = k — m2,

nk(m2) = Σ'Nk{mf}

<Nk\(7

 k W~W 2Σ'z'^W / (A 16)
(k-m2)

 }

where the primed sum is over m 3 , . . . , m2k ^0 such that

Σ/m / = 2(k-m2). (A 17)

Making use of (A 17) we can write

Σ wif l Σ wif
jy Zfϊ2 _ ^k-l z-(k-m2) τ£'zf = 3

-1/2 Σ (/-2)m/

= z k ~ 1 Σ ' z ^3 . (A 18)
Now since

1/2 Σ (/-2)m /=l/10

^l/5[ fe-m 2 + Σ mf

we have
-1/2 Σ (f-2)mf oo -1/5 Σ

Σ'z f $ 3 g z-(/c-m 2)/5 y z f>3
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Combining (A 16)-(A 19) we then have

- " - z

hence from (A 9)

Σ
(Ck)

Nk\ (_(i-m2)(i+exz-^)\k

z \ ( i — z

which is (A 1) with A given by

A = 2v(l - m2) (1 +exz~1/5) (1 - z" 1/5)~2 . (A21)

Recalling that m is the positive solution (assuming H > 0) of

and noting that the slope of the curve y = tanh(2vm-h£) is strictly less
than unity where it intersects y = m( > 0), we have for all v and H > 0 that

2v( l-m 2 )<l

and hence from (A21) that A<i for all v and sufficiently large z.
The proof of (A 1) is then complete.
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