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Abstract. For a local amplitude we prove a one-to-one correspondence between
properly defined scaling, the leading light-cone singularity and the asymptotic behaviour
of the corresponding Jost-Lehmann spectral function in the sense of distribution theory.
The cases of canonical and non-canonical scaling are considered.

1. Introduction

The experimental discovery of Bjorken scaling in deep inelastic
lepton-nucleon scattering at SLAC and DESY is nowadays part of the
folklore in present elementary particle physics.

Most of the theoretical attempts to understand scaling phenomena
start from an asymptotic expansion of causal commutators near the
light cone [1]. But the authors of Ref. [1] only show, that an inverse
power behaviour near the light cone of the form1

V(x,p) * Θ ( x 2 ) ( x 2 γ - 2 f ( χ - p ) (1)
x2-» 0

leads for β > 0 to Bjorken scaling in momentum space with a power v~β.
The non-leading terms in the LC-expansion (1), which are in general not
power-behaved, have been analysed by several other people [2-4] by
means of the Riemann-Lebesgue theorem. The results of Ref. [2, 3] show,
that a one-to-one correspondence between scaling and the LC-limit
demands for additional mathematical assumptions if scaling is under-
stood as a convergence of a sequence of functions. This difficulty remains
if one defines scaling as the regularization2 of the distribution X(q,p)
taken at infinity along a light-like direction [4]. Only for a restricted

1 Our notation is the usual one [2]: For the process yv i r t + N -»JV+" any thing" we
denote by q and p the momenta of the virtual photon and nucleon respectively. We define
the Bjorken (scaling) limit by v—>oo (v:= q p) for q2/v fixed.

2 Regularization of a distribution is defined as its convolution product with a test
function.
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class of distributions this difficulty has been overcome quite recently by
taking into account locality [5].

Other attempts for explaining scaling start with the Jost-Lehmann
(JL) or the Deser-Gilbert-Sudarshan integral representation for matrix
elements of causal commutators by assuming from the beginning a
nice asymptotic behaviour of the corresponding spectral function
[2, 6-8]. In this way the usually assumed light-cone dominance could
be derived too.

Quite recently it has been shown by Zavialov [9], that an asymptotic
power behaviour of the JL-spectral function is even necessary for the
usual LC-behaviour, if both limits are understood in the sense of distribu-
tion theory. In this way Zavialov was the first, who derived rather
rigorously scaling from a given LC-behaviour. But it has been an open
problem up to now, whether the assumed asymptotic behaviour of
spectral functions is a necessary condition for explaining scaling.

In this paper we will prove, that there is a one-to-one correspondence
between scaling, light-cone dominance and asymptotic power behaviour
of the JL-spectral function, if all these limits are understood as limits of
sequences of distributions with respect to all variables.

The paper is organized as follows: In Section 2 we formulate scaling,
LC-behaviour and JL-asymptotic in the sense of distribution theory.
The equivalence of scaling and LC-behaviour will be shown in Section 3.
Some additional comments on the equivalence of LC-behaviour and JL-
asymptotic are given in Section 4. Finally, we will draw some conclusions
from the present results.

2. Formulation of Scaling, LC-Behaviour and JL- Asymptotic

The Fourier transform of the one-particle matrix element of the
electromagnetic current commutator Wμσ(q, p) is expressed in a Lorentz
co variant and gauge invariant way in terms of two invariant amplitudes

\ i= 1, 2 which are free of kinematical singularities and zeros [10]

Wμσ(q,P)

v2} V2(q,p) (2)

It can be shown, that both Vt are Fourier transforms of local distributions
[7,11].

In the following we study an amplitude V(q9p) as a representative
for any of the two V{. Let us start by listing the properties of V(q9p)9

which follow from the usual axioms of quantum field theory [12].
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Condition A. A distribution V(q, p) defined for p2 = 1 satisfies
condition A, if

(Aj) V(Λq, Λp) = V(q, p) \M e Lr

+ Lorentz ίnvariance

(A2) V(-q,p)=- V(q, p) Crossing

(A3) V(q,p) = Q for g2 + 2|v|<0 Spectrum

(A4)
3 V(x,p) = Q for x2<0, Mp Locality

(A5)
4 F(g,p)e^'(lR4) for fixed p Temperedness .

Due to condition (A^, V is a O + (3)-in variant tempered distribution
in the rest system p = (1, 0). We define

K(«):=K(«,(1,0)). (3)

Hence V(q) e ̂  (1R4, 0 + (3)).
Due to the topological isomorphism between 5 '̂(IR3, 0 + (3)) and

^?/(IR+) we may define uniquely a tempered distribution Vγ of the
0 + (3)-in variants only :

ρ)> = <V(q),f(q)y V/6 (̂1R4) (4)

with

Ψ/teo^^πΓ1 ί
N =

We have [13]

and therefore

There exists a unique extension of Vί to a distribution F2 e y(IR2)_ 5 :

w)> = / F^ήfo, ρ), — p- φ(ή[0, ]/ρ)\ (5)

and
F , w ) = 0 on

3 Here and in the following we denote by f the Fourier transform of a distribution T.
4 In the usual axiomatic framework temperedness of matrix elements of field operators

holds if these are taken with respect to proper (wave packet) states. For reasons of simplicity
we restrict ourselves to improper (plane wave) states.

5 By y(lRM)_ we denote the space consisting of test functions from ^(IR") which are
antisymmetric in all variables.



140 E. Brϋning and P. Sticheί

Crossing symmetry (A2), which has already been used in (5), leads to the
representation

V2(q0,w)=V2

+(q0,w)-V2

+(-q0,w) (6 a)
with

supp V? = supp V2 n {(<?0, w) | qQ ̂  0} .

From (6 a) we conclude, that V2 is only unique up to a tempered
distribution T which is symmetric in q0 and has support at the point
#0 — 0 only. Hence

T(β0,w)= Σ *v

For the following it is advantageous to define a tempered distribution
F(u, v) by means of the relation

(7)

From the antisymmetry of V2 with respect to W we obtain the symmetry
relation

F(u,v)=-F(v,u). (8)

The support of F follows immediately from the definition of F and the
spectrum condition (A3)

—, —^v£
U (9)

1 1
, y , —

We are now prepared to state the scaling condition in two alternative
forms.

Definition 1 (Strong scaling).
V(q) shows strong scaling of degree β, if there exists a real constant β,

such that 6

lim λβ"1F(λu9v)3 = Fβ(u9v) in ^(1R2),
λ— > + oo

Fβή=0 if F Φ O .

From Definition 1 and the support of F we conclude, that Fβ(u, v)
is a homogeneous distribution of degree i—β on (0,oo) with respect
to u9 i.e. [13]

Fβ(u9v) = u*-'Fp(v)

on 02

+, where O2

+ := {(u, t;)|u>0, ϋ>0} .

This limit is just the naively expected result.
6 This definition reduces the freedom in (6b) for β > 2.
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It is well known, that strong scaling is violated for renormalizable
interactions by logarithmic terms in finite order of perturbation theory.
A formulation which is adapted to this situation has been given in the
related case of the short-distaώce behaviour by Steinmann [14].

Lemma 1 (Weak scaling). There exists a real constant β, such that
(i) lim λβ'-iF(λu,v)3 = Q in &"(l

λ-> + 00

(ii) # lim λβ'-*F(λu,v) in ^'(R2), βf>β.
λ-> +00

Such a behaviour of F we call weak scaling of degree β.

For the proof of Lemma 1 we refer to the proof of Lemma 5.1 in
Steinmann's paper [14].

Weak scaling of degree β is a consequence of strong scaling of
degree β, but not vice versa. In order to illustrate this by means of an
example consider a distribution ί\ which satisfies relation (8) and shows
strong scaling of degree β. Then we define a distribution F2

}F,(u,v) (11)

which shows weak scaling of degree β but not strong scaling.
Our formulation of strong scaling is, in the case of pointwise con-

vergent sequences of functions, equal to the usual form of Bjorken
scaling with ω:= —q2/2v v^+ 0 0> i — 2v and u->v.

Similarly we treat the leading LC-behaviour in the following.
We define a distribution V1 of the 0 + (3)-invariants x0 and x2 by

means of the chain of relations (V/e ^(IR4))

<K1(x0, σ), Φf(xQ, σ)> = <F(*o> *),/(x0, *)>

= (2π)4 <K(40, q),f(q0, «)> = (2π)4 <Fi(9o, ί), Φf(qQ, β)> .

In exactly the same way as in case of V^ (q0, ρ) we extend Vl(x0, σ) to a
distribution V 2 e ^'(IR2)_. By means of Eqs. \5\ (6), and (12) we obtain

F2(x0, κ) = - 4πi J dq0 J dw sinq0x0 sinwκ F2

+ (qθ9 w) . (13)

Due to crossing (A2) and locality (A4) we may define a distribution

). (14)

7 The formal relation (14) has to be understood as follows: For a given V2 we obtain V
by means of _

x

and for a given V we obtain F2 by means of
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Two alternative forms of leading LC-behaviour are defined in terms
of V now.

Definition 2 (Strong LC-behaviour)8.
V(η, κ) shows strong LC-behaviour of degree y, if there exists a real

constant y, such that

lim λy-2V(η/λ,κ)l=Vy(η,κ) in (^(IRi)®^^1)-)'
A^ +oo

F y Φθ if F Φ O .

Definition 2 implies, that Vγ(η,κ) is a homogeneous distribution of
degree 7 - 2 on [0, oo) with respect to η, i.e. [13]

' y v M - v Γ^__ ^ »yvv

This result is equal to the usually assumed form of the leading LC-
singularity.

With the same arguments as in the case of scaling we introduce
another formulation which is adapted to the situation in perturbation
theory.

Lemma 2 (Weak LC-behaviour). There exists a real constant y,
such that

(i) lim
_ in

(ii) 2 lim V'-2V(η/λ,κ)
λ^+co

Such a behaviour of V we call weak LC-behaviour of degree y.

The proof of Lemma 2 is just the Fourier analogue of the proof of
Lemma 1.

Again weak LC-behaviour of degree y is a consequence of strong
LC-behaviour of degree y.

As an immediate consequence of condition A the 0 + (3)-in variant
tempered distribution V(q) satisfies a JL-representation.

Lemma 3 (Jost-Lehmann [15]). A distribution V(q) satisfies con-
ditions (A2)-(A5), if and only if there exists a 0 + (3)-invariant tempered
distribution Ψ(s, u) with

supp Ψ ς {(5, M) 1 1 ιι| ̂  1 , s ̂  50(ιι) - ( 1 - I/I - u2)2}
such that

<V(q),f(q)> = <Ψ(s, «), Tf(s, ιι)> V/e (̂1R4) (16)
with

Tf(s, «):= J d*qf(q) ε(q0) δ(q2

0 -(q- u)2 - s) .

Compare Ref. [9].
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By means of the Fourier transform of Ψ with respect to u we introduce
a distribution Ψ1 e^/(IR+) of the 0 + (3)-in variants only

<!P ΛS, σ ) 9 φ f ( s , σ)> = (2π)3 <!P(s, ιι),/(s, »)> (17)

together with its odd extension Ψ2(s9 K]

<<F2(s, x), flf(s, κ)> = (^(s, σ), σ~ 1/20(s, σ1/2))

Vflfe^ORiJO^OR 1 ) .

With that and the definition of V we obtain as an alternative form of the
JL-representation

, κ), 0fo, κ)> = <<F2(s, κ), φ,(s, κ)> (19)

where the mapping
00 Q

g ( s , κ ) : = i(2π)2 J dη J0(]/^~s)--g(η,κ) (20)

is a topological isomorphism of ^(1R+) x
In terms of Ψ2 we may formulate the JL-asymptotic now.
Definitions (Strong JL-asymptotic)9.
Ψ2(s, κ) shows strong JL-asymptotic of degree δ, if there exists a real

constant δ, such that

lim λΛΨ2(λs,κ)3=Ψό(s9x) in
-> +00

, if
Definition 3 implies that ,5(5,%) is a homogeneous distribution of
degree —δ on [0,oo) with respect to 5, i.e. [13]

Again a weak form of JL-asymptotic is obtained from the following
lemma.

Lemma 4 (Weak JL-asymptotic). There exists a real constant δ,
such that

(i) lim
n

Such a behaviour we call weak JL-asymptotic of degree δ.

Compare Ref. [9].
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The proof of Lemma 4 is the same as that of Lemma 1. _
Now we give a general representation formula for a distribution V

satisfying strong LC-behaviour.

Lemma 5. A distribution V(η,κ) which satisfies condition A shows
strong LC-behaviour of degree y if and only if there exists a natural
number n with n + y — 2 ̂  0, such that

V(η,κ) = Dn

ηη
n+y~2V0(η,κ) (22)

where V°(η, κ) exhibits the following properties:
(i) it is continuous and polynomially bounded in (η, κ) e IR+ x IR1,

(ii) it is an odd entire function of exponential Type 1 in κ e <C, Mη e IR+,
η fixed.

By means of Lebesgue's bounded convergence criterium it is easy
to show, that the representation Eq. (22) is sufficient for strong LC-
behaviour of degree y. The proof that (22) is even necessary for strong
LC-behaviour will be given in Appendix A, just as the proof of the
following.

Corollary. Sufficient for the validity of (22) is strong LC-behaviour
of degree y of V(η,κ) on IR*, Vε>0,

!Rβ

1:={κ| |κ|>fi>0} .

3. Equivalence of Scaling and Leading LC-Behaviour

The equivalence of scaling and leading LC-behaviour is stated in
our following main Theorem 1 by means of Definitions 1 and 2 given in
Section 2.

Theorem 1. For a distribution V(q), which satisfies condition A, we have
(a) Strong scaling of degree β implies strong LC-behaviour of degree

β VβelR1.
(b) Strong LC-behaviour of degree β>0 implies strong scaling of

degree β.

First we derive statement (a) of Theorem 1. We have to ask, whether

Iλ:=λ'-2<V(η/λ,κ)9g(η9κ» (23)

has a finite limit for λ-^ + oo for every ge^(]R+)0^(]R1)^ supposed
strong scaling of degree β holds.

By means of Eqs. (14), (13), and (7) we obtain10

h= 8πi^'1 <eix°F(x0 - κ, x0 + κ), x0g((x2

0 - κ2)λ, κ)> . (24)
10 By reasons of symmetry the non-unique part T of F gives no contribution to (24).
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If we introduce in (24) the new variables

i/i — / i Y T/l Yl — V —I— I/rj-—Λ<VΛO ^) > '/+ — Λo i ^

we obtain

/λ=ι 2πiλβ~2 ( F i—~-,η+ I, φλ(η_,η+)\ (25)

with

In Appendix B we show, that {φλ(η^,η+)}λ_+oΰ converges in the topology
of (̂1R2), V0 £ cS^ORi)® ̂ (IRl), V ε > 0. As strong scaling of degree β is
equivalent to

lim λ β - 2 , η l i n ^(1R2).
λ^+oo \ A I

lim /λ exists due to a convergence criterium of distribution theory [16]
λ-> +00

V0 6 ^(IRi)® ί^ORg1), Vε > 0. By means of the corollary to Lemma 5 we
conclude that V(η, κ) satisfies the representation Eq. (22). Hence, due to
Lemma 5, V(η, κ) shows strong LC-behaviour of degree β.

In order to derive statement (b) of Theorem 1 we start with the
quantity

Jλ:= λ*-\F(λu, v\ g(u9 1;)> , β> 0 (26)

and ask for the existence of lim Jλ V# e ̂ (IR2) supposed strong LC-
λ ̂  +oo

behaviour of degree β holds. By means of Eqs. (7) and (13) we obtain
for Jλ

\hλ(η^ (27)

with

f(a,b):=e-lbg(a,b). (29)

According to Lemma 5, F satisfies the representation Eq. (22). Therefore,
JA is given by the integral

oo . / M \ i

— ΛAfo,κ) (30)
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where V°(a,b) is a polynomially bounded continuous function for
(α,6)eIR2

+.
In Appendix C we show for the integrand in Eq. (30):
(i) it may be majorized for /?>0 by a Λ-independent absolute

integrable function on IR+ x IR1.
(ii) it converges for λ -> +00 almost everywhere on IR+ x IR1.
Therefore, Lebesgue's bounded convergence criteria may be used for

the evaluation of lim Jλ leading to
λ-» +00

with

lim
A-»+oo

o (31)

•Re

With this result we have proved strong scaling starting with strong
LC-behaviour. In addition we may derive some interesting properties
of the distributions Fβ(v) and gβ(κ) which occur in the asymptotic forms
of F and V [Eqs. (10), (15)] respectively.

Lemma 6. The distribution gβ(κ) defined by means of Eq. (15) is an odd
entire function of exponential Type 1 which is polynomially bounded for
Imκ = 0.

Lemma 6 is an immediate consequence of the representation Eq. (22)
for V.

Lemma 711. The distribution Fβ(v) [Eq. (10)7 and gβ(κ) are related to
each other according to (β > 0)

00 Γ I

Fβ(v)= -iπ"1 J dκgβ(κ)κ~1(2κ)β~1cos\(2v-i)κ+—-(jB-1) . (32)

For the proof of (32) we observe, that

gl--,2κe &>(&., J, κ φ O .

Therefore, with Eqs. (31), (22), and (15) we obtain

— ί
e-"g -±-,2κ . (33)

1' Compare Gatto, Menotti Ref. [1] and - Ref. [17].
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Eq. (33) has to be compared with the asymptotic form of Eq. (26), which
due to Eq. (10) takes the form

J00 = <u1-βFβ(v)9g(u9v)y. (34)

By means of well-known results on the Fourier cosine and sine trans-
forms of (η)β+~2 the supposition (32) follows.

From the spectrum condition we know suppFβC(Q,oo). On the
other hand the r.h.s. of Eq. (32) is symmetric (anti-symmetric) under the
substitution v-+ 1 — v, if β is equal to an odd (even) integer. Therefore,
we obtain from Eq. (32) the well-known fact, that the scaling function Fβ

has bounded support for integer β = n

supple (0,1).

Our Theorem 1 may be extended immediately to the cases of weak
scaling and weak LC-behaviour respectively.

Corollary 1. For a distribution V(q\ which satisfies condition A,
we have:

(a) Weak scaling of degree β^O implies weak LC-behaviour of
degree β.

(b) Weak LC-behaviour of degree β>0 implies weak scaling of
degree β.

For the proof of statement (a) we start with weak scaling of degree
β ̂  0. The weak scaling condition (i) in Lemma 1 implies via Theorem 1 a
the weak LC-condition (i) in Lemma 2. Now suppose we would have

lim λβ'-2V(η/λ9κ)3 in (^(^\)®^(^}-}f for β'>β
λ-* +00

then, due to Theorem 1 b, we conclude

lim λβ'-*F(λu9υ)l in '̂(1R2) for βf>β
λ-> + 00

in contradiction to our assumption of weak scaling [Lemma 1, (ii)].
Therefore the weak LC-condition (ii), Lemma 2, is fulfilled.

In a similar fashion we may prove statement (b).

4. On the Equivalence of Leading LC-Behaviour and JL-Asymptotic

The equivalence of strong LC-behaviour and strong JL-asymptotic
of degree β respectively has already been shown very recently in Ref. [9]
by similar methods. For reasons of completeness and further reference
we repeat the result.
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Theorem 2 (Zavialov [9]). Suppose V(q) satisfies condition A. Then
V(x2,κ) shows strong LC-behaviour of degree β if and only if ψ2(

s>κ)
[defined by Lemma 3 and Eq. (18)7 shows strong JL-asymptotic of degree β,

VjSeIR 1 .

For the proof of Theorem 2 (compare [9]) we use the JL-representa-
tion in the form of Eq. (19) and obtain

λs, κ), φg(s, κ)> (35)

where- due to Eq. (20) - the mapping g^φϋ is a topological isomorphism
of ^(lR+)®ί5^(lR1)_. Thus the stated result follows.

With the same arguments as given in Section 3 for Corollary 1 we
may extend immediately Theorem 2 to the cases of weak LC-behaviour
and weak JL-asymptotic respectively.

Corollary 2. Suppose V(q) satisfies condition A. Then F(x2, κ) shows
weak LC-behaviour of degree β if and only if Ψ2(s,κ) shows weak JL-
asymptotic of degree β, V β e IR1.

Furthermore, we obtain from Eq. (35) proportionality between the
functions φβ(κ) and gβ(κ), which occur in the asymptotic forms of Ψ2

ana V respectively [9]:

Therefore, according to Lemma 6, φβ(κ) is an odd entire function which
is polynomially bounded for lmκ = 0 (this statement can be obtained
from the JL-representation directly).

5. Conclusions

The combination of Theorems 1 and 2 leads to the supposed
equivalence between scaling, leading LC-behaviour and JL-asymptotic
in a region β>0 which contains the physical relevant interval i^β^2.
Compared with Zavialov's work [9], we were able to derive leading
LC-behaviour from scaling. In addition we extended the proof of
equivalence to the cases of weak scaling, weak LC-behaviour and weak
JL-asymptotic respectively.

Furthermore we conclude

(i) Singularities in the interior of the light cone don't contribute to the
scaling limit [9].

In order to show that we define in agreement with Ref. [9]

) (36)
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with χ e ̂  (IR}.),

χ(η)=i for η>b>a>0, χ W ^ O for

As can be shown easily

in the topology of y(lR+), Mg e 5^(1R+), and every real number α.
Therefore,

lim λy~2\
A-++OO

in
(^(IR+)(x)y?(lR1)_)/ V y real,

i.e. we say Vχ shows strong scaling of degree oo. Theorem 1 b implies,
that the corresponding distribution Fχ(u,v) shows strong scaling of
degree oo. Th£ same result has been obtained in Ref. [18] for special
distributions V having singularities of the type δ(k)(x2 — α), α > 0, only.
In particular the authors of Ref. [18] pointed out the difference in the
results for the scaling limit in the cases where V(q) has been considered
as a distribution or a point function.

(ii) Even for integer values of β the leading LC-contribution, i.e. gβ(κ),
is in general not determined from measured values of the scaling function
Fβ(v) in the physical region q2^0 alone (compare Ref. [4]): consider in
agreement with Lemma 6 a polynomial Ansatz for gn(κ)9 then the
corresponding Fn(v) is a distribution with point support at v= 1/2.

(iii) The connection between leading LC-behaviour and equal-time
commutation, supposed by many authors12, can be put on a rigorous
mathematical basis.

Let us consider the most important example, the so-called "Schwinger
term sum rule". By means of the representation Eq. (22) and Lebesgue's
bounded convergence criteria one easily proves the following lemma:

Lemma 8. Suppose V(x2,κ) shows strong LC-behaviour of degree 1,
then

P / V \ SI («Λ

δ(x) in ^'(IR4).liiii κo r i Λ ? •*• I —'

λ->+co dx0 \ λ I κ

Inverting Eq. (32) we obtain the desired sum rule

i
= -2i$dvFi(υ)

--o b
12 Compare the first two papers of Ref. [1], Ref. [2,4] and the second paper of Ref. [8].
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where the integral on the r.h.s. has to be understood as a regularized one
if necessary.

By the same method other equal-time sum rules, including their
generalization for β Φ 1 may be derived.

Acknowledgement. We are very grateful to B. I. Zavialov for communicating his
results prior to publication.

We acknowledge some important remarks by H. J. Borchers.

Appendix A

In this appendix we give a proof of Lemma 5 and the following
corollary.

In order to show, that the representation Eq. (22) is necessary for
strong LC-behaviour of degree y we proceed in four steps:

1. Denote by V(η, u) the Fourier transform of V with respect to κ.
From Lemma 3 we infer

^-i^u^i}, V(η,u)= -V(η, -u). (Al)

Strong LC-behaviour of degree y is therefore equivalent to the statement

lira λ»-2F -pw }3 = V,(η,u) in
A->+oo \λ I

ί>φO if FφO

where Vγ exhibits the properties given by (A 1).

2. As a tempered distribution F(f^, u) is of finite order [16], 3peN
such that convergence of λγ~2V(η/λ, u) in (e^(IR+)(x)(f(lR1)_)/ means
convergence in (e^(lR+)®^(lR1)_)' [16] where

):=ίφe%p(ΊRi)\\\φ\\p:=sup{(i + η)p\Dqφ(η)\}<oo\.

3. For a fixed n with n ̂  p + 1 and n + y — 2^0 we define

71(ί/ /,κ):=<K(ιj,M),θ I I_1(ί/-ιj /)®sinκu> (A 2)
with

V.H— 1

Because of the support properties of V(η',u) and Θn^^(η — η') with
respect to η', Θn-1(η — ηr) may be modified to give a test function in

+) without changing the l.h.s. in (A2) [19].
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From that and the preceding results we conclude:
(i) V1 is continuous and polynomially bounded in

(η, κ) eIR+ x 1R1,

(ii) F1 is an odd entire function of exponential Type 1 in

κ , V f f e I R } _ , η fixed [20] ,

(iii) Dΐ1V
1(η,κ)=V(η,κ) in ^'flR1^) (A3)

V κ e I R 1 , κ fixed,

(iv) Jim λn+γ-2Vίl— ,κ\3=Vγ

1(η,κ) (A4)

V κ e I R 1 , κ fixed

where Vj-(η,κ)= (Vγ(η'9u)9 Θn.^(η — η')®smκu) exhibits the properties
(i) and (ii).

4. From the preceding relations we conclude, that the function

V°(η9 κ):= η~n~y+2Vΐ(η,κ) (A5)

exhibits the supposed properties (i) and (ii) given in Lemma 5. We obtain
finally

For the proof of the corollary we proceed again in four steps:
1. Due to the preceding results strong LC-behaviour of degree 7 on

1R* is equivalent to1 3:

3pjE^:V°(η,κ)-^^VQ(κ) in (̂IR,1) (A6)

i.e. [21] for the p-th primitive V$(η, κ) of V°(η, κ) we have

sug(l + κ2Γl \V§(η,κ)- F0°(%)|-^^0 (A 7)

and
V°(κ) = D?VS(κ) in (̂IR,1) . (A 8)

In particular we conclude from (A 7)

0 ] (A 9)

2. We infer from (Al), (A 2), (A5), and (A 6) that V*(η,κ) is an odd
entire function of exponential Type 1 in κ Mη e (0,?/0], η fixed.
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Defme F°M:=(^)2'f°M (A10)

with

Fj0 is an entire function of exponential Type 1 + 2/<5<π.
According to (A 9) and (A 10) we have

\V?(η9κ)\£Kl9 V f f ε ( 0 , f j 0 ] , VκelR,1, K^K^K.δ). (Al l )

For a sufficiently small ε > 0 and the choice

xn=i + n, w = 0, ±1, ±2, +•••

the suppositions of Theorem 10.5.3 in Ref. [22] are fulfilled14. Hence
3M< oo with M independent o f f/ , such that

\V?(η,κ)\£MKl9 Vηe(0,ηo]9 V κ e R 1 . (A 12)

With the choice of ε e ( 0, — -I we have
V 20

sinδκ

δκ

2

π
— ε,ε]

and therefore due to (A 10) and (A 12)

|F0%κ)|Wy) MK19 Vι/6(0,iί0], Vκ6[-ε,ε]. (A 13)

Finally we obtain due to (A 7), (A 9), and (A 13)

\V§(η9κ)\£K2'(i + κ2)l

9 V^6(0^0], VκelR 1 (A14a)
and _ _

vS(n^)^vS(κ) iml (Ai4b)
Wlth K2 = K2(p,l,8,δ)<ao.

3. Let G C Cχ be a sufficiently large domain of compact closure with
GnlRgΦO. As F0

00/,%) is an entire function of exponential Type 1 for
all ηe(Q9η0~]9 (A14a) tells us that the restriction of {F0°(fy, κ)}ηe(0tηo] on
G are a uniformly bounded family of holomorphic functions, which
according to (A 14b) converges uniformly for η-*Q on each compact set
/ C l R ^ n G c G . Hence (Theorem 51 a (Vitali) in Ref. [23])

VS(η,*) => VS(κ) UG
η-+(J

thus F0°(κ) and - due to (A 8) - F°(κ) are holomorphic on G.
14 We are grateful to H. J. Borchers to the hint at this theorem.
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4. As G can be chosen arbitrarily large, V°(κ) is an odd entire function
and- due to the preceding results - of exponential Type 1.

Appendix B

In this appendix we want to show, that the sequence

(B
\ Z \ Λ / /

converges for /l-> -f oo in the topology of

)-. V β > 0 .

Proof. From (B 1) we conclude

(i) φAe^°°(lR2) V / l ^ l .

(ii) On each compact set KclR2φλ converges uniformly together
with all its derivatives to

i

φ00(η-,η+) = η+e2η+g(η_ η + ̂ η+}. (B2)

(iii) The Schwartz-norms of φλ
n

\\ψλL,m= sup {(i+η2

++η2^\D^φλ(η_9η+)\} (B3)
\μ\£m

(η + ,η-)elR2

possess A-independent upper bounds for λ ̂  1,

In order to show that, it suffices to derive A-independent upper
bounds for

(B4)
ΪR2 Z \ A /

Combining properties (i)-(iii), we obtain, due to a well-known con-
vergence criterium for sequences of test functions [13], the desired
result.

Appendix C

In this appendix we want to show, that for the evaluation of the
integral lim Jλ defined by Eq. (30) the limit may be interchanged with

λ-» +00

the integration, i.e. Lebesgue's bounded convergence criterium is
applicable.
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After we have performed the differentiations in the integrand, we
introduce the substitution

x = λ(]/η/λ + κ2 — κ), y = ]/η/λ-\-κ2

and obtain

V V M n >.L L °ι

with
2π jfo ptΌ

— 00 — oo

/<">(!): = J dx J
— oo

•(x jf

A H \ A

•Re
i / x \

,τ(y~τ)

(Cl)

-ϊ -2"+ί

.2\ ' ' A /
__L(y_4) / x

(

, _ p 2^ λt f(p,l-p}\lVί

(C2)

where / e 5^(IR2), β -h n - 2 ̂  0 and F° being continuous and polynomially
bounded in both variables.

For the expression in the square bracket in (C2) we may write

(C3)

For the following it suffices to consider the most singular term of
(C 3) in connection with (C 2), i.e.

oo oo

(C4)

Now we have to distinguish three cases:
a) n = 0 (and therefore β ̂  2).
In that case the term proportional to /(x, y) in the integrand of (C2)

has for Λ ̂  1 the /l-independent absolutely integrable upper bound
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.X
After the substitution λy-+x, — — >y we obtain a similar estimate for

Λ

the 2nd term in (C2). Furthermore, for y φ O the integrand in (C2) con-
verges to

b) 1^/^n.
The term proportional to f(pj~p\x,y) in the integrand of (C2) has

for λ Ξ> 1 and β > 0 the A-independent absolutely integrable upper bound

The second term in (C 2) may be treated similarly. Again the pointwise
convergence of the integrand is obvious for y Φ 0.

In that case we consider the integrand in (C4). We have the λ-
independent estimate

(integrand (C4)| ̂  C'3(l + \x - y\)n* [1 + \ \y + x|]m3

-ρ) (C5)

with N eN arbitrary. By means of a convenient choice of N the expression
on the r.h.s. of (C 5) is absolutely integrable on 1R2 for β > 0.

Again the pointwise convergence of the integrand is obvious for y Φ 0.
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Note added in proof. In order to avoid the difficulties with the distribution splitting in
Eq. (6a) we should have defined F via (Eq. (7))

F(u, v}\ = V2(u + v-i,u-v).

This leads to simple and obvious modifications of Eq.'s (8), (9), (1 1), (13, (28), (31), (33), (C2)
and (C4). The distribution Fβ (Eq. (10)) has now the form [13]

for β φ 2, 3, 4 . . . , which may be continued into the points β = n = 2,3,4... by means of
locality (Eq. (32)) leading to

Fn(u,v) = u1-nFn(v) on IR2 .

Eq. (34) now reads J^ = (Fβ(u, v), g(u, u)>.




