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Abstract. A matrix moment problem is considered in connection with any
.x2m(m = 2, 3,4,...) anharmonic oscillator as well as the (:φ2m(x):g(,x))2 {m = 2,3) field
theory models, whose Rayleigh-Schrodinger perturbation expansions for the ground state
eigenvalue are known to diverge. The approximants related to such a problem are proven
to converge to the eigenvalue, when applied to an expansion of the Brillouin-Wigner type.
These approximants, whose construction involves only matrix elements occurring in the
Rayleigh-Schrodinger expansion, are the approximants of a J-type matrix continued
fraction, i.e. the [JV— l,iV] matrix Pade approximants. The explicit analytical expression
of matrix continued fraction is found in the anharmonic oscillators case.

I. Introduction

The approximation problem for the ground state eigenvalue and
eigenvector of a class of perturbation problems has been recently treated
by McClary [1]. This class includes the #(: φ2m(x): g(x))2 (m = 2, 3) field
theory models as well as the x2m(m = 2, 3) anharmonic oscillators. In
both cases the Rayleigh-Schrodinger (R-S) perturbation expansion for
the ground state eigenvalue E(g) is known to be divergent as fast as
((m— ί)ή)\, this last result being valid for arbitrary finite m [2]. For any
model in the class mentioned above but the (: φ6{x): g(x))2 it has been
proven that the divergent R-S perturbation expansion is Borel summable
to the exact solution [3,4]; in addition, for the m = 2,3 anharmonic
oscillators the expansion is also Stieltjes summable [5]. This last result
provides a strong approximation statement, since the Stieltjes method is
equivalent to the convergence of the Method of Moments (i.e. Pade)
approximants.

No rigorous approximation statement directly generated by a
summation method was however known for any field theoretical model,
nor for the x2m anharmonic oscillators with m > 3.

Now it has been shown in Ref. [1] that a mono tonic sequence of
approximants converging to E(g) for g real and positive may be obtained,
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for any model belonging to the class defined above, through the Method
of Moments approximants applied to an expansion of the Brillouin-
Wigner type.

The convergence proof rests on a characterization [6] of semi-
bounded self-adjoint operators in Hubert space obtained, through the
inclusion of the power moment problem into the theory of self-adjoint
operators with simple spectrum (7), from the Carleman determination
criterion for the Stieltjes moment problem.

This method, as it will clearly appear later on, does not allow a
direct generalization of the result to any (: φ2m(x): g(x))2 field theory
model nor to any x2m anharmonic oscillators, m > 3 .

Purpose of this paper is to show that, if an approximation scheme of
essentially the same nature is considered, i.e. the Matrix Method of
Moments approximants, it is possible to obtain a convergence proof
valid not only for the class of models treated by McClary, but also for
any anharmonic oscillator x2 m, m = 2, 3,4 . . . .

In complete analogy with (1), for the field theoretical models the
proof rests on the above mentioned self-adjointness criterion and, as it
will be seen later on, the extension to any one-dimensional anharmonic
oscillator is possible because in this last case the vectors occurring in the
R-S expansion needed to build the matrix approximants span the whole
Hubert space. This fact, in addition, enables us to get an explicit expression
of all the coefficients of the matrix continued fraction which generates the
approximants.

Throughout the present paper we will closely follow the presentation
and notation of (1), beginning in the next section with the definition of
our problem and the list of the known properties needed in the sub-
sequent discussion. We shall also make explicit use of some results
proven in (1) in Section III, where we prove the validity conditions of
our approximation statement. In Section IV the matrix approximants
will be shortly reviewed, and in Section V they will be applied to the
problems under discussion.

II. Class of Problems under Consideration

Our considerations apply to the perturbed Hamiltonian

where
i) in the (: φ2m(x): h(x))2 m = 2, 3 models φ{x) is a relativistic quantum

field in a two dimensional space-time, with Ho = j a+(k) a(k) (kl + m 2 ) 1 / 2 dk
and V = J : φ2m(x): h(x) dx, m = 2, 3,... is an interaction space cut-off by
a smooth function h(x) equal to 1 for small |x| and to 0 for large |x|.
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ii) in the quantum mechanical anharmonic oscillator case

2\dx2

The following statements hold in both cases (see Glimm and Jaffe [9]
and Hδegh-Krohn and Simon [10] for the: φ2m(x): models; Simon [11]
for the anharmonic oscillators):

A) Ho is a self-adjoint operator in a Hubert space F (the Fock space
for the :φ2m(x):h(x) models, L2( — oo, +oo) for the anharmonic os-
cillators), ΐt has non-degenerate isolated least (ground state) eigenvalue 0,
and eigenvector Ω. V is a symmetric operator, and (Ω, VΩ) = 0. Ho + gV
is a self-adjoint operator with domain D(H) = D(H0)r\D(V); it has a
ground state eigenvalue E(g) with eigenvector Ψ{g).

H0Ω = 0 (1.1)

(Ho + gV-E(g))Ψ(g) = 0.

We assume the normalization ||Ω|| = 1, Ψ(g) = Ω+Ψ1(g), with

(Ω,ΨL{g)) = 0. (1.2)

B) A "number" operator N may be defined as a self-adjoint operator
in F9 with eigenvalues 0,1,. . . and eigenvectors ψn, called rc-particle
vectors. For the anharmonic osciljtors, N = H0 and the ψn are the
harmonic oscillator eigenstates. D(V) contains all π-particle vectors.

00

Let now F + , F~ be the Hubert spaces defined by: F+ = ( | ) F2n,

F~ = ® F 2 π _ 1 ? where Fn is the n-particle subspace.
n = 1

We have: F = F+ φF~ ®Ω = F1@Ω, with F1 = F+ ®F~. If P1 is the
orthogonal projection onto F 1 , P+ onto F + , and P~ onto F~, and 4̂
an operator in F, let A1, A + , A~ the operators in F 1 , F+, F~ defined by
P- - ^ P 1 , P+AP+, P~AP~, respectively. We have:

C) (#o + 0K) 1 i s a self-adjoint operator in F 1 [1]. Since F + , F~ are
left invariant by (Ho + gV)L = H\ it follows that H+ = P+(H0 + gV)P+

and H~ =P~(H0 + gV)P~ are self-adjoint operators in F + , F " ,
respectively. HQ is a strictly positive self-adjoint operator in F + , pos-
sessing therefore a self-adjoint square root, a bounded self-adjoint
inverse and a bounded self-adjoint inverse square-root, denoted re-
spectively by h1/2, h~ \ hΓ1/2.

D) H0 + gV is essentially self-adjoint on the domain of n-particle
vectors in D(H0). As in C), it follows that (H0 + gV)+, {H0 + gV)~,
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(HQ + gV)L are essentially self-adjoint on the domains D + , D~, D1 of
respectively, In, 2n—ί, n(n=ί,...) particle vectors in D(H0)nF+,
D(H0)nF~9 D(H0)nFλ. The sets of vectors hί/2D+, h1/2D~, hί/2D+ are
dense in F 1 , F~, F+ respectively.

III. Essential Self-Adjointness, Finite Multiplicity, and
Matrix Moment Problem

Let us proceed as in Ref. [1] in order to derive an implicit equation
of the Brillouin-Wigner (B-W) type for the eigenvalue E(g).

We write:

Hg)(g)-(g) (3.1)
where:

Ψ+(g)eF+; Ψ-(g)eF~ and of course (Ψ+, Ψ~) = 0;

Taking in (1.1) the scalar product with Ω and applying P+ we get the
following system of two equations for E(g) and Ψ+(g):(VΩe F+)

0

= (gVΩ,Ψ+(g)).

By elimination of Ψ+(g) we get:

= f(E(g)9g) (3.3)
where:

f{E(glg)=-(gVΩ,l(H0 + gV)+-EΓxgVΩ). (3.4)

Now exactly as in (1) one proves that the self-adjoint operator
(H0 + gV)+ has lower bound G{g)>E(g\ This implies that f(E,g)
exists as a negative, monotonically decreasing function of E in the
interval — oo < E < G(g\ so that the eigenvalue E(g) is the only solution
of (3.3) in this interval.

To prove our approximation statement we need the following
results:

Theorem 1. Let the operator A in F be defined as:

Λ = h-1/2(gV-E)+h-ί/2. (3.5)

The there is a C{g)>E(g) such that if E<C then:
(i) A + 1 is a strictly positive operator, and

(ii) A is essentially self-adjoint on any dense domain D of In-particle
vectors.
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Note. This theorem is the generalization of Theorem II of Ref. [1],
to which the reader is referred for the proof of (i), and of (ii) for the field
theoretical case. We provide an alternative proof of (ii) valid for any m
in the quantum mechanical case, since that of (1) rests on the self-
adjointness criterion applicable only for m = 2, 3. If, indeed, the symmetric
operator A satisfies condition (i), its essential self-adjointness is ensured

when it has a dense set of Stieltjes vectors [6]. A Stieltjes vector for an

00

operator B is any vector φ e f] D(Bn) = C°°(β), such that
n=ί

y \\Bnφf^=oo).

Now, χ being any finite particle vector, (i.e. a finite sum of rc-particle
vectors) there exists a d such that

\\(h~ll2Vh'1/2)nχ\\^(dn)im~ί)n (3.6)

for any x2m as well as any (: φ2m(x): h(x))2 model [1, 10, 11].
It follows that the identification of the 2rc-particle vectors as Stieltjes

ones for A is possible only for m = 2, 3.
Proof of (ii). Since (i) holds, and A + 1 is trivially symmetric, to prove

its essential self-adjointness we need only to show that its range R(A + 1)
is dense in F+.

Suppose there exists a vector φe F+ orthogonal to R(A + 1)

Since h~ljl is a bounded, self-adjoint and strictly positive operator
in F+ it is easily seen that the above orthogonality is equivalent to

Since, by C), (H0 + gV)+ is essentially self-adjoint on D with lower
bound G > E [1], and any element of D is eigenvector of h~1/2, we must
have h~1/2φ = O, i.e. φ = 0.

Thus A+ί, and hence A, is essentially self-adjoint. Consider again
the quantum mechanical case, F=2~ m ((2m— 1 !)~1 / 2H2 m(x)), a n d l e t A
be defined as above. We have:

Theorem 2. The multiplicity of the spectrum of A is not greater than m.

Proof. By the well known characterization of self-adjoint operators
with spectrum of finite multiplicity [8], it is enough to identify in D(A)m
linearly independent vectors gt (m-dimensional generating basis) such
that the set of vectors E(A)gh i = 1,... m, is dense in F+. Here E(t) stands
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for the resolution of the identity corresponding to A = A*, and Δ runs
through the set of all intervals on [ - 1, oo].

Let now gfί = (π 1 / 2 (20 !)" 1 / 2 2~ ί e 2 H2i(x), i= 1,... m.
As it is proven in Appendix, an orthogonalization procedure of the

Gram-Schmidt type applied to the sequence of linearly independent
vectors Anghn = 0,1,... ; i = 1,... m; yields the sequence of the normalized
harmonic oscillator eigenstates e2m, m= 1,2,..., i.e. the set of vectors
Angt; n = 0, 1 ... i= 1,... m is dense in F+. This implies that the set
E(Δ)gh i= 1,... m, is also dense, since the integral representation:

(Angi9h)= ] tnd(E(t)ghh), i = l , . . . m
- l + ε

clearly shows the non existence of a vector /zφO orthogonal to E(t)gi9

for any t and any i = 1,... m. Given the m-dimensional generating basis
gh ι = l , . . . m defined abαve, let us introduce the following mxm
Hermitian matrix:

We have:

For the proof see (1).
With E(t) as above, we can put the matrix M under the form of a

matrix Stieltjes transform [13]:

M= ί

where the matrix distribution function T(ί) is defined by:

Γ ( ί ) = Tik(t) = (flf,, E(t)gk), i,k=U...m,

its moments being of course the mxm matrices:

m^= ϊ t"dT(t)=-(ghA
ngk), i,k=U...m. (3.7)

- l + ε

We recall that a matrix distribution function T(t) is a Hermitian
matrix function T(t)=Tik(t) such that:

1) ^ being arbitrary complex numbers, the quadratic forms:

m

Σ [^Π*(O ~ ^ί*(O] ̂ ίffc a r e semidefinite positive when t" > t'
i,k=l

2) T( - oo) - 0 (the null matrix). T(t - 0) = T(ί).
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Formula (3.7) defines a matrix moment problem of the Hamburger
type. The uniqueness of the matrix distribution function (i.e. the determi-
nation of the matrix moment problem) follows from a result of Krein [14],
which allows the extension to the matrix case of a well-known result of
Stone [7] valid for the classical Hamburger moment problem.

Theorem 3. Let A be a self-adjoint operator in a Hilbert space H
with multiplicity not greater than m, E(t) its resolution of the identity, and
gγ ... gm a m-dimensional generating basis belonging to C^iA) such that
the linear hull of the vectors Angh i = 1,... m, n = 0, 1, 2,... is a core for A.

Then the matrix sequence:

Sn = (ghA
ngk)= ϊ fdT(t) (3.8)

- l+ε

T(t) being the matrix distribution function T(t) = (gh E(t)gk\ is a determined
Hamburger moment sequence.

Proof. Let us apply the orthogonalization procedure described in
Appendix to the sequence of vectors gt ... gm, A gx ... A gm,...
Angί ... Angm .... We end up with a sequence of orthonormal vectors ek,
k= 1,2,..., satisfying a 2m+ 1-term recurrence relation:

where
akJ = alk bk>0J,k>0 akJ = bk = 0,j,k^O. (3.9)

If we arrange the orthonormal set ek, /c = 0,1,.. . into m-component
column vectors Ek defined in the following way:

it is easily seen that operator A is defined on the unit column vectors Ek

by a three-term matrix recurrence relation:

(3.10)

where:

A _ A+ _ akm+ί,km+ί '" akm+l,km-\
Λk,k~ Λk,k~\

\akm + m,km+ 1 ••• akm + m,km-\

bkm+10...0.
Π \

(3.12)
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It follows that on the basis ek9 k = 0, 1,... the matrix of the operator A
is a Jm one having the form:

i.e. a Jm matrix, generalization of the ordinary Jacobi one, is an infinite
Hermitian matrix having the form ||A\J> U k = 0, 1,2..., where Aik

are m-matrices (i.e. square matrices with m rows and m columns), with
AiJ±ι non singular and Aik = 0 for \i — k\ > 1.

Since the set of vectors ek is a core for A, the minimal closed operator
generated by Jm on the basis ek coincides with the self-adjoint operator A,
i.e. A is represented by the matrix Jm: hence the corresponding operator
in I 2 generated by the infinite matrix Jm is self-adjoint. The theorem is
then proved by a direct application of the Krein result [14], which states
that T(t) = (gt, E(t)gk), i9 k = 1,... m is the unique normed solution of the
moment problem (3.8) if and only if the deficiency indices of the operator
generated by Jm in I 2 are (0,0).

If we now indicate with A = A* the closure of the essentially self-
adjoint operator A defined by (3.5), Theorems 1 and 2 show that the
conditions of Theorem 3 are satisfied as far as the matrix moment
problem (3.7) for the quantum mechanical case is concerned: this is
because, as it is shown in Appendix, in the present case the basis en turns
out to coincide with that of the harmonic oscillator eigenstates, which is
by Theorem 1 a core for A. The above procedure does not carry over
directly to the field theoretical models, because it is clearly impossible in
that case to find a finite dimensional generating basis. However, if we
limit ourselves as in (1) to the models (: φ2m(x):h{x))2, m = 2, 3, it is
possible to obtain analogous results through the above mentioned
essential self-adjointness criterion. Let now V = g J : φ2m(x): h(x)dx,
m = 2, 3, and A be defined by (3.5).

By Theorem 2, A is essentially self-adjoint on any dense domain of
2rc-particle vectors. Let E(t) the resolution of the identity corresponding
to A, and consider the following m linearly independent and orthogonal
vectors of C°°(y4):

gm = cmh-χf2VΩ; g i = Cih-1/2f2i, i = l , . . . m - l , 11̂ 11 = 1 (3.13)

2m

where f2i is the 2/-particle vector defined by: Vh~ίVΩ= Σf2i.
i — 1

As before, let us define the matrix:
M = (gh(ί + A)~2gk) i,k=ί,... m; and the matrix distribution

function T(t) through: (ghE{ήgk)=T(t); i,k=ί,... m.
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(3.14)

is a determined matrix moment sequence.

Proof. Consider the vectors Angh n = 0, 1,2...; i= 1,... m. Let HG

the Hubert space spanned by these vectors and let B the restriction of A
to HG. As a restriction of the essentially self-adjoint operator 4̂, 5 will
be a symmetric operator in HG, with J5 + 1 strictly positive. The bound
(3.6) shows that any finite particle vector is a Stieltjes vector for A.

Since V connects only vectors whose particle number differs by
no more than six, any vector Angh n = 0,1, ... i= 1,... m is a finite
particle and thus a Stieltjes one; hence B has a dense set of Stieltjes
vectors and by the above mentioned criterion [6] is essentially self-
adjoint on the domain Angh i= 1,... m; n = 0, 1,2,... in HG. Our
assertion is thus proved applying Theorem 3 to B.

It is now possible, for the class of problems under consideration,
to approximate the matrix M and hence / ( £ , g) through the method to
be briefly described in the next section, which consists in the generaliza-
tion to the matrix case of the classical theory of Jacobi matrices, ortho-
gonal polynomials, and continued fractions.

IV. Matrix Orthogonal Polynomials and Approximants

Let Sn be a sequence of hermitian m-matrices with complex elements
and T(x) a matrix distribution function, solution (not necessarily unique)
of the following Hamburger matrix moment problem:

Sn= f x"dT(x). (4.1)
— oo

Consider the class Cm of all matrix polynomials whose coefficients
n m

are m-matrices. Given two polynomials P(x) = £ ckx
k, Q(x) = ]Γ dkx

k

k = 0 k = 0

belonging to Cm, let us define a matrix "scalar product" (P, Q) through
the following properties:

ii) (CP, Q) = C{P, 0 , (P, CQ) = (P, Q)C+ where C is a m-matrix
independent of x;

iii) (Ix\ Ixj) = Si+j where / is the unit m-matrix.



244 S. Graffi and V. Grecchi

It is easy to see that the above defined "scalar product" may be
written under the form:

T x). (4.2)
— oo

Hence it follows that

(P,P)=7P(x)dT(x)P+(x)= £ CiSi+kc+
- o o i,k=l

is a positive definite m-matrix.
It is therefore possible to define a sequence of matrix polynomials

Pk(x) of degree k, orthonormal with respect to the scalar product defined
above, i.e. (Pk9Pj) = δkjI9 and satisfying a three-recurrence relation:

^ f e = A , k - Γ fc- 1 + Λ , f e n + Λ (fe+ P k+ 1» k= 1,2 ... (4.3)

where:

Pk), k = 0,1,2,...

Λkk+1 being non-singular m-matrices.
For the case of a moment problem generated by a self-adjoint

operator they coincide with the coefficients of the Jm matrix of the
operator itself (see Appendix).

The recurrence relations (4.3), together with the initial conditions
P0 = L P\= AQ\{X — Aoo\ yield an equivalent definition of the Pfc,
and with the initial conditions Qo = 0, Qι = AQ\ give rise to a sequence
of polynomials Qk, of degree k — 1, which are easily verified to satisfy the
relation:

It is convenient to introduce also the matrix polynomials Yk{x),
Zk(x), defined in the following way:

Pk(x) = Ck Yk(x) Qk(x) = CkZkix), k = 0, 1,2 ...

where

Cjk = ^fc-i>fc^4fc-i,k-2^fc-3,fc-2 ^ o , u ^ odd; C o = / .

For these polynomials we get then the recurrence relations:

n)Zn(x)-Zn_ί(x), n=ί,2,...

Zn(x)-Zn-1(x), n = l , 2 , . . . (4.5)
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where:

An = Af=CfCn is positive definite, and Bn = Bf =-Cf AΛtnCn.

Suppose now that the integrations in (4.1) are bounded from below by
- M, M > 0, i.e. T(x) constant for x < - M:

Sn= J xndT(x). (4.6)
-M

From the orthogonality of the matrix polynomials Pk(x) it follow that
the poles of Pfc~

1(x) are simple and lie all inside the interval [ —M, oo].
In addition, the coefficient of the highest power in Pk(x) is positive
definite, as it is implied by the recurrence relations with the given initial
conditions. We can thus conclude that (— l)fc Pκ(x), as well as (— l)k Yk(x),
is positive definite for x < — M.

Through formulae of the Christoffel-Darboux and Liouville-Ostro-
gradsky type associated with the difference systems (4.5), i.e.: [15]

we

i.e.,

get:

for λ

Yn~

" = X

In+l\X) In\X)

γ+ (γ\ γ ίΎ\

\x)Zn(x)-Yn+\(x)

Y-\x)Zn(x)="\
2

Y:
Y:

Σ
= 0

(x)

(X)

Yr~+

Yn+
ι(x) = 0

i(*)=-

-Y.ΓHX]

(Yr

+(χ))-
1 .

(4.7)

(4.8)

This shows that the ratio Yr

#I"
1(x)Zπ(x) = Pπ"1(x)QII(x) is negative

and monotonically decreasing (as a function of ή) for any x < — M.
From the known properties of the matrix orthogonal polynomials

one easily obtains, in complete analogy with the scalar case, the de-
composition:

P-\x)Qn{x)= Σix-XuΓ1/?, nSjSmn (4.9)

xk> — M being the simple poles of P^""1^), and y(

k

n) Hermitian positive
semidefinite m-matrices. Furthermore, the usual quadrature formula
may be easily generalized, i.e., R2n-i(x) being a matrix polynomial of
degree not greater than In — 1 one has:

t
/ c = l

and this implies:
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We can write P~1 Qn in spectral form:

p-ί(x)Qn(*)= 1 {x-yYιdTn{y) (4.10)
-M

with:

Tn(-M) = 0; Tn(xk + 0)-Tn(xJ = yΐ\ fc = 1,2,... j ; Tn(x) const

everywhere else.
An immediate consequence of the decomposition (4.9) is the following

expansion of P~ 1(x) Qn(x) in descending powers of x:

Pn-
1(x)Qn(x)= 2 Σ \ * ~ f c - 1 + 0(χ-2'1) (4.11)

and from the representation (4.10) we see that Tn(x) is a solution of the
finite moment problem:

00

S k = f x k d T n ( x ) , fe = 0 , 1 , . . . 2 n - l .
-M

The sequence of matrix distribution functions Tn(x\ with total
00

variation given by So = j dTn(x\ fulfills the conditions of the Helly
-M

theorem in matrix form [16]: it exists therefore a matrix distribution
function T^{x) and a subsequence Tn{x) such that, in any point of con-
tinuity of Tx(x):

hmTΛι(x)=T1(x).

In addition, it is easily seen that T^x) is a solution of the full matrix
moment problem (4.6). If (4.6) is determined, i.e. its solution is unique,
we must have T^x) = T(x).

Taking into account the monotonicity property of P~ * Qn as a
function of n, when the matrix moment problem is determined we can
conclude:

limPΛ-1(x)βπ(x)= f (x-yΓ'dTiy), x<-M.

Furthermore, in complete analogy with the classical theory of
Jacobi matrices and continued fractions, it is possible to definite a matrix
continued fraction of J type [17], given by the formula:

) ^ )
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It easy to see that its n-th order approximants:

) ) ^

coincide with Pn

 1(x)Qn(x).
Since the n-ih order approximants to J type continued are also

called [n, n- 1] Pade approximants, the approximants P'1 Qn are also
called [π, n— 1] matrix Pade approximants.

V. Approximation of the Eigenvalue

Let us apply now the results exposed in the former Section to our
case of the moment problems (3.7) and (3.14).

Consider the operator A defined by (3.5) and the two generating
basis gh i= 1,... m, defined in Section III. As we have seen given the
matrix moments: mn(E,g) = (ghA

ngk\ i , fc=l,. . . m; n = 0, 1,2,... it is
possible to build the sequence of matrix rational functions Pn(— i)~ι

• Qn(— 1). This sequence is, in matrix sense, positive and monotonically
decreasing for E < C{g\ with:

ϋmP # i (- lΓ 1 ρ ι I (- l )=- ]
0 0 - 1 +

and T(x), Mik as in Section III. Let us consider now the sequence:

i.e. the sequence of the last diagonal elements of the matrices P~1Qn.
This last sequence is negative and monotonically decreasing, as it

follows from the monotonicity of the matrix sequence. Therefore, if
we define En(g) as the least solution of the equation E = fn(E, g\ we get
a sequence of solutions En(g) monotonically decreasing to E(g) asu^cc.

This result represents the generalization of that of Ref. [1].
As far as the relationship with the R-S expansion for the ground state

eigenvalue is concerned, we have the same result of (1), i.e. the approxi-
mants to E(g) require roughly the same information needed to compute
the corresponding R-S series coefficients. This fact can be proven by
remarking that McClary's argument is still applicable in the present
more general case.
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As we have seen in Section IV, the approximants P~1 Qn are uniquely
determined by the knowledge of the first 2n— 1 moments:

p = 0

= Σ (-
p = 0

Let us remember the definition of the generating basis for the field
theoretical case:

Qm = cjΓ^VQ; g^φ-^fn, i=ϊ,...m-ί,
with:

Vh-1VΩ=Σf2i; \\g,\\ = ί, i=\,...m. (5.1)

It is trivially seen that (5.1) holds also in the quantum mechanical
case.

Consider any matrix element of the type {gι,Angk\ i,fc=l,... m.
We have that any matrix element (gm, Angm) contains only terms of the
type (Ω,gVh~aigV...gVh~akgVΩ) with a1 + -~ +ak = n+ 1, and that
any element (gm9 A

ng^ i φ m, contains only terms of the type

which by (5.1) are in turn contained in the former matrix elements with
fli H \-ak+1==n + 2. The matrix elements (gh A

ngj), ijφ m, contain
only terms of the type (f2i,h~aigV... gVh~akf2j), which are always
contained in the terms of the first type with aί H 1- ak + 2 = n + 3.

Since the terms of the first type with a1-\ \-ak = n+i are contained
in the terms of the R-S expansion up to the rc-th order [1], it follows that
any matrix element {ghA

ng^ ij=ί,... m, is constructed only starting
from matrix elements of the R-S expansion up to the order n + 2.

Consider now in particular the anharmonic oscillators case, in which
we know that the orthonormal vectors en coincide with the harmonic
oscillator eigenstates (see Appendix), i.e. en = 2~n(π1/2(2n)\)~1/2

' H2n(x)e~1/2 x2, n = 1,.... It is thus possible to give the explicit expression
for the coefficients AkΛ and AkΛ+ι of the matrix continued fraction (4.10),
whose approximants are Pk

ιQk. By (3.11) and (3.12) we have:

akm+l,km+l ••• akm+ l,km +

+ m,km+l ••• akm + m,km +

1 0 0 0 0 0 0 0 0
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and any easy computation yields (remember that V= 2~m((2m — 1) !)" 1 / 2

•H2m(x)

3 |/2m(2m)!i//

Appendix

Let A be a self-adjoint operator in a Hubert space H and let the m
non-zero orthogonal vectors gί9... gm belong to C°°(A). Consider the
sequence of vectors Angh i = 1,... m; π = 0, 1,2 ..., which will be assumed
to be linearly independent. Through an orthogonalization procedure of
the Gram-Schmidt type, it is possible to obtain from the above sequence a
system of orthonormal vectors satisfying, a 2m+1-term recurrence
relation.

Putting indeed g. = fi9i=i9... m, let us define:

f —(A Π λf D f . . . _ Π f
Jm+l~\/i Ul,l)Jl U1,2J2 ul,mJm

f — Π f -\-(A T) \ f ... Π f
Jm + 2— ~u2,lJl ^~\/i~-u2,2)J2 ~ U2,m+I J m+1

/ -> 1 —— LJ 1 1 / 1 * * ' ( -/JL 1 / 1 1 ) / 1 Un, 1 Λ r a M r a -)

Ztn — l tn — l , w l v m — i,τn — i / J vn i m — ί,ztn J ztn z

— Dkk)fk— - — Dkk+m_ifk+m_1

k = m,m+ l,
where:

It is easy to check the orthogonality (//,/fc) = 0, i + k.
Defining ek = Wk~

x fk, we get a sequence of orthonormal vectors ek

satisfying the following 2m + 1-term recurrence relation:

where:

-m = w; wkjm,
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Consider in particular the anharmonic oscillator case: let
g1 = cίH2(x)e~χ2/2,... gm = cmH2me~χ2/2, ct being normalization con-
stants, and let the operator A be defined by (3.5).

Since we have

i + m

AH2i{x)e-χ2/2 = Σ djH2J(x)e-χ2'2

j = max (i-m, 1)

it is easily seen that the above orthogonalization procedure applied to the
vectors Angi9 i=ί,...m; n = 0, 1,... yields the harmonic oscillator
eigenstates, i.e.

H e~χ2'2

βm= 2 w j /π 1 / 2 (2m)! ' m = ί > 2 >

Consider now, in general, the orthonormal vectors ek obtained
through the above described orthogonalization procedure. If we arrange
them into m-component column vectors

E,=

we get a three-term mxm matrix recurrence relation:

AEk = Ak ^ _ 1 £ k _ 1 + Ak>kEk-{- Ak>k+ίEι

where:

A _ A+ _ lakm+l,km+ί ••• akm+l,km + m

\^km + m,km+ 1 ^km + m,km

lbkm+ί...00000

\ k tn + ϊti, k m + m Λ~ 1 kwt'f'

Given now any two m-component vectors F, G, let us define as their
"scalar product" the following m-matrix:

where (/f, gβ is the scalar product between ft and gj in H.
In this notation, the matrix moments Sn — (eh Anβj), i,j= 1,... m take

the simple form:
Sn = (E0,A

nE0). (A.2)
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It is straightforward to check that this matrix "scalar product"
satisfies properties analogous to those of the usual one, i.e.:

a) (F,G) = (G,F) + .
b) (F, F) is a positive semidefϊnite matrix; in addition (F, F) = 0 if

and only if F = 0, and its rank is m if and only if the components of F
are linearly independent.

c) C1 and C 2 being arbitrary constant matrices, one has:

a) and c) yield:

(F, Ct Gx + C 2 G 2 ) = (F, GJCΪ +(F, G2)C2

+ .

Of course F and G will be orthonormal with respect to the "scalar
product" (A.I) if and only if their components are orthonormal with
respect to the scalar product in H. It follows that the set of m-vectors Ek,
k = 0,1,2,... is orthonormal with respect to (A.I), i.e. (Ei9Ek) = δikL

Consider now the m-vectors

R = P(A)E0= £ CkA
kE0, S = Q(A)E0= £ DkA

kE0,
k=0 k=0

where P(A) and Q(A) are matrix polynomials in A.
Their matrix "scalar product" is:

(R,S) = (P(A)E0,Q(A)E0)= £ f C f cSk + JD/ = {P(x),Q(x)},
fc = 0 j = 0

where use of (A.2) has been made, and {P(x), Q(x)} is the matrix "scalar
product" defined in Section 4 in the space of the m-matrices.

This shows that the "scalar product" (in the sense of this appendix)
between the above vectors coincides with the one defined in the space
of the matrix polynomials. We can thus write: Ek = Pk(A)E0, and these
vectors satisfy, if we replace X with A9 the same recurrence relations (4.3)
valid for Pk(x\ where the Pk(x) are the matrix polynomials orthonormal
with respect to the matrix distribution function T(x).
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