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Abstract. Nelson's free Markoff field on IR/ + 1 is a natural generalization of the Orn-
stein-Uhlenbeck process on 1R1, mapping a class of distributions φ(x, t) on JRι xIR1 to mean
zero Gaussian random variables φ with covariance given by the inner product

d2 V 1 \
— A—J-J-J , I . The random variables φ can be considered functions φ(q}

= J φ(x, t) q(x, t) dxdt on a space of functions q{x, t). In the O.U. case, / = 0, the classical
Wiener theorem asserts that the underlying measure space can be taken as the space of
continuous paths t-+q(t). We find analogues of this, in the cases / >0, which assert that the
underlying measure space of the random variables φ which have support in a bounded
region of IR/ + 1 can be taken as a space of continuous paths t->q( ,t) taking values in
certain Soboleff spaces.

Introduction

The Feynman-Kac formula, which solves the Schrodinger equation
by giving its imaginary time Green's function as an integral over Wiener
space, has an infinite-number-of-degrees-of-freedom analogue which
solves regularized Boson quantum field theories by giving their Schwin-
ger function as integrals over the probability space associated with the
free Markoff field (cf. [1-4]). Detailed structure of the associated
probability space is not needed to obtain the basic formulae; but Wiener's
theorem on the continuity of sample paths is of well known usefulness
in the case of a finite number of degrees of freedom. Here we shall
attempt to find its analogue in the infinite case.

The free Markoff field was introduced by Nelson [5] who used
only an abstract representation of the underlying probability space
but indexed the Gaussian random variables by the elements of the
Hubert space § of real distributions on ]Rι +1 in the norm || (m2 — Δ)~1/2 || 2 ,
where Δ is the Laplacian on 1RZ + 1. That is, each element of the Hubert
space was made a Gaussian random variable of mean zero so that
the covariance of two elements would be their inner product. We will
take the dual point of view and begin with the underlying "probability
space" as the Hubert space C of real functions in the norm ||(m2 — A)1/2 • || 2
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in the isonormal distribution. (Basic facts about the isonormal distribu-
tion will be reviewed in § 1.) An element φ e § is a function on Q taking
the value

Φ<q>= ί Φ(x)q(x)dx (0.1)
1RZ + 1

at g e Q . Under the isonormal distribution on Q, the φeξ> are the
appropriate random variables for the Markoff field. But the measure
defined by the isonormal distribution is countably additive only on
appropriate extensions of the Hubert space Q. For example, if A is a
positive Hilbert-Schmidt operator, it suffices to complete Q in the
norm ||(m2 — Δ)1/2 A | | 2 (cf. [6-8]). In particular, the measure is countably
additive on the space of tempered distributions, which is the representa-
tion used by Dimock and Glimm [9]. Our problem is to find minimal
extensions of Q with natural properties.

The isonormal distribution on an abstract Hubert space has been
studied by Segal, Friedrichs, and others (cf. [10]) and, in particular,
the problem of attaining countable additivity by extension has been
solved by Gross [8] whose results we will review in Theorem 1.5. Gross
defined a measurable norm on the Hubert space to be a norm having
small probability of being large (under the isonormal distribution) on
the orthogonal complement of a finite dimensional subspace and proved
that the isonormal distribution defines a (countably additive) probability
measure on (the Borel field of) the completion of the Hubert space with
respect to a measurable norm. From this point of view, the classical
Wiener theorem asserts that the supremum norm is measurable on the
Hubert space of real functions on [0, Γ], that are zero at the origin,

. u \\d
in the norm —r~ *

\\dt 2

Let & = Rox(0,T) be a rectangle in 1R/+1 and let Q(M) be the
completion of ^{β) in ||(m2 -A)112 | | 2 . Let Ao be the Dirichelet
Laplacian on Ro and let {φa} be an orthogonal basis in £?2{RQ) of
eigenvectors of (m2 — Ao) with corresponding eigenvalues {m2}. Write
qa(t) = j φaq{',ή. Our central result, Theorem 3.1, is that the norms

Ro

sup (Σm-«γp\qAt)\p)1/p

jupJq( 9t)\\Pty = \ (0.2)

if v = oo
t,oc

and

sup \\(m2-A0)~Ύq(.j)\\pl (0.3)
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are measurable on Q ( ^ ) provided 1 ̂  p ^ oo, y > , and 2 ^ p' ^ oo,

1 p

4
/ 1 \ 1

Ϋ>1 1 - -V - 4"- L e t &p'y(^) denote the completion of Q(^) in
P 2

the norm (0.2). The norm (0.3) is dominated by the norm (0.2) with
/ i \-i \

p = 1 -) , / = γ, by the Hausdorff, Young, and F. Riesz theorem;

V P i . . \

so we won't consider it explicitly. If q e Q p ' y (^), then

tt->q(-,t) (0.4)

is a continuous sample path in the norm || | | p > r

So the isonormal distribution on Q(β) defines a probability measure
μ0 on ΏP*y{St). Evaluating φeξ> as in (0.1), {μ o ,£ p ' y (^)} is an under-
lying probability space for the Dίrίchelet free Markoff field, not the free
Markoff field. However, in Proposition 2.1 we prove that the two
Markoff fields are locally equivalent (in the sense of absolute continuity).
Thus we obtain in Corollary 3.3 the following local result for the free
Markoff field: If 0t± is appropriately contained in 01 there is a measure μ
which is absolutely continuous with respect to μ0 so that {μ, ΏP'y{β)}
is an underlying probability space for the free field random variables
φ e § with supp φ<Z_0lγ.

To illustrate the use of {μ, Qp'y(&)}, consider a positive polynomial P
and fix an open rectangle / x (0, ί) c 0tγ with 0ix appropriately contained
in 0t\ let Fκ(ξ) be one or zero for ξ^ K or ξ > K, respectively, and define
qκ(.,t) = Fκ({m2-Δo))q{ ,t) for qeQp>y(0£). Let Fκ<q( ,t)>
= )p{qκ(x,t))dx. Then n

and t
q^->Vκ(κq

s) = j Vκ(q( ,t)y dt (0.6)
o

are continuous functions on &1'7, y>l — \, by the Hausdorff, Young,
and F. Riesz theorem. By the continuity of (0.4), the first converges
pointwise to the second as n->oo. So by the Lebesgue dominated con-
vergence theorem

e x p ί y ±v/q(.,lL)\\Zexp{-vκ(qy} (0.7)

in ^fp(μ,Q 1 > y(^)), 1 ̂ p < o o , as n-^oo. If {μ,Q} is any representation
of the probability space underlying the (global) free Markoff field,
then the convergence (0.7) must also hold in J^fp(μ, Q).

Of course, Vκ in (0.7) can be replaced by the Wick ordered function
:FK:. Then for the case ί = 1, as is well known, we also have the con-

:F:} (0.8)
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in S£p{μ, 5), l ^ p < o o , as K; -• oo. In fact, it is elementary that : Fκ: -•: F:
in S£2 and hence in probability. Therefore we have the convergence
(0.8) in probability. By the Nelson-Glimm semi-boundedness argument
[11] the measures exp {— p: Vκ:} dμ are uniformly absolutely continuous
with respect to dμ and they are equicontinuous from above at the
empty set. Therefore we have the 5£p convergence of (0.8) by a generaliza-
tion of the dominated convergence theorem [12; p. 108]. (The original
argument is due to Rosen [13].) _

Let J^ be the subspace of <£ 2(μ, Q) generated by

I f / e # o and geJ^, then it follows from Nelson's hypercontractivity
theorem [5] that

r = 2(ί+e'm^T1. (0.9)

The time-zero Boson quantum free field Φ(φ) can be identified with multi-
plication by φe&t as an operator in 2Ft@\!Ft [5]. The relevance of
(0.7) and (0.8) for quantum field theory can be seen by setting

p = 11 J and using Holder's inequality with (0.9).

Let
(0.10)

and let Q

^μ(ΛI ψ e & s u p p l e Λ J (0.11)

be the conditional expectation of h with respect to μ and the σ -field
generated by {φe&suppφc^i} , with :V.(q)= j it \ dx:P(q(x, t)):.

Ii /i

So h and hRι depend on the rectangle Ix x/2 We no longer relate the
rectangle lγ x I2 to Stx (earlier we were concerned with the case
ίx x I2 C ̂ ) . But suppose again that 0tx is appropriately contained
in M. We have the result that {hΛiiμ, Qp>y(M)}, with p and y as before,
is a representation of the underlying probability space for the random
variables </>e§ with s u p p ^ C ^ in the expectation \(>)hdμ. That is,

the same continuous sample paths t-+q( ,t) suffice for the non-free
theory with interaction \V\. Furthermore, this is true also in the limit
h x /2->lR2, at least in the case of m sufficiently large. In fact, Newman
[14] has shown that the measures hmidμ converge in this limit, for m
large, to a probability measure which is again absolutely continuous
with respect to μ.

To obtain some idea of the sharpness of our result, consider the

function / γ \2

J \m2-Δ0)
Ύq(x,t)) dx (0.12)

Ro
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for fixed t e(0, T\ γ > - ^ - . It is continuous on Q 2 ' y(^) and it differs

from its Wick ordered version by a constant proportional to

Yjm~ί~2γ<oo. As y-»—-—, the function (0.12) converges to a con-
α ^

2lz±.
tinuous function on Q ' 2 (β\ the Wick ordered version converges

2,—

in j£?2, and their difference diverges to infinity. Therefore, Q ' 2 (β)
has measure zero in {μo,Ώ

p'y(&)}. So the condition y> — is
P 2

sharp in the case p = 2. On the other hand, it doesn't seem to be obviously
natural if p Φ 2.

After preparing this paper we heard the lectures of M.Reed at the
"International School of Mathematical Physics at Erice-Sicily; First
Course on Constructive Quantum Field Theory; 1973" (which will
appear in proceedings, eds. G.Velo and A.S.Wightman, pub. Springer-
Verlag) in which related material was discussed. In particular, we note
a result of 0. Lanford that the paths q are a.s. too rough to be measures
q(x,t)dxdt in some region of IR/ + 1. Therefore the condition p ' ^ 2
for the measurability of the norm (0.3) is necessary in the case / = 1,
i.e. we cannot drop this condition to obtain measurability of

sup ||g( ,£)llp'forp'<2.
We will assume that the mass m is positive. However, this assumption

plays no role in statements that concern the Dirichelet field only. In
particular, Theorem 3.1 and its first corollary hold for m = 0.

§ 1. Notation and Generalities on Gaussian Random Variables [6—10]

Let §, Q denote a dual pair of real seperable Hubert spaces. An
element φ e § as a linear function on Q will be denoted φ< >. Duality
will be notated as in A* φ(q) ==φ(Aqy The Riesz identification of §
and Q will be notated as in S = Q, Q = £, (<M)* = <K<7> = (<M)a
A complex valued function /<•> on Q is called tame if there is a finite
set {φ1,..., φn} of elements of § and a Borel function / o n IRn such that

f<q>=f(Φi<q>,Φ2<q>,. .,Φ,<q», qeQ. (1.1)

If § ! is a subspace of § let «^"(§i) denote the space of tame functions on Q
which can be written in the form (1.1) with all φie9)ι. If Γis a bounded
linear operator on Q which is symmetric, positive and invertible with
T" 1 bounded, we define the normal expectation of fe$~(ξ>) relative to T
a S oo oo - Σ *?•

π - " / 2 J ... f / ( x 1 , . . . , x B ) e >- dXl...dxn (1.2)
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if / a n d φt in (1.1) are chosen so that the φt are orthonormal in the inner
product dual to (T , ) a , namely ( T ~ l 1 \ •)%. More generally, we define
for q1eQ

< Q , T , β l | / > = <Q,T |/ 1 >, / 1 < « > = / < g 1 + «>. (1.3)

If Ώx is a subspace of Q and qx e Q, we define the expectation on έF(ξ>)

>, (1.4)

where P Q l is the orthogonal projection in Ώ to Qx. Note that

That is, the elements of § are Gaussian random variables in the expecta-
tions (1.3) and (1.4) of mean — φ<^i> and respective covariances

If qx-LO1 in Q, then <Q, Q x , ^ | > is the <Q | ^-conditional expecta-
tion relative to the affine subspace q1+Qί. Furthermore, <Q,Q l 9 | />
for fe$~(ξ)) is a tame function on £ ^ and

(We are writing <Q | > for <Q, /1 >, etc.)
An expectation on 3~{ξj) can be represented by a probability measure,

meaning that ^(ξ>) can be represented by measurable functions on a
measure space so that the expectation is given by the integral with
respect to the stated probability measure. If two expectations can be
represented by probability measures on the same measure space with
the same representation of ^{ξ>\ they are called equivalent if the measures
are equivalent in the sense of absolute continuity. Finally, given two
equivalent expectations on ^ ( § ) and a representation of one by a
probability measure, the other is represented by an equivalent probability
measure.

Lemma 1.1 (cf. [6-8]). // T has the properties stated for (1.2) and in
addition (I - T) is Hilbert-Schmίdt in Q, then for qx e Q, <Q j > and
<Q, Tiq1\ } are equivalent.

We will be concerned with the following consequence.

Lemma 1.2. Let 9)x be a subspace of § . The restriction of <Q | > to
^(ξ>i) is equivalent to the restriction of <Q, £^, q11 > to &~(ξ>ι) for any
q1eQ and any subspace Qx ofΌ, such that

P6lPά;P^ Hilbert-Schmidt inξ>.)
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Proof. We can identify SΓ(ξ)^ c 3~(ξ>) with the tame functions on

ξh f<q>=f<P*ιq> Then for feFftά

<Q,O 1 , ί 1 | /> = <Si,(P 4 l P O l Γ
1 ,P4 1 βi |/> (1.8)

provided Pξ>ιP^ί as an operator on ξ^ι has an inverse. To see this, look
at the formulas (1.5). So we are concerned with the equivalence of <§x | >
with <§!, (P^P^)" 1 , P&Ai 1 •)• By the inequality (1.7) there is a constant
o O s o that l lPoί^l lβ^l/l-c 2 for all 0 6 ^ with | |ψ| | a = l;so | |P O l 0 | | Λ

^ c which implies that \\P^1PQIΦ\\Q^C2>0. This implies the desired
invertibility. Now to apply Lemma 1.1, we need to know that, in § l 5

(/-(P^P^)" 1 ) is Hilbert-Schmidt or equivalently that (I-P^P^)
= Pξ>ιP^P%i is Hilbert-Schmidt, which it is, being dual to the operator
considered in (1.7).

Lemma 1.3. Let ξ>γ and £lt be respective subspaces of 9) and Q satisfying
the conditions (1.7). Let § 2 be a subspace of § x and Q 2

 a subspace of O
that contains Q x : § 2 C § i , Q 2 3 &i Ό*ew §2 α ^ ^ 2 satisfy the conditions
(1.7).

Proof. Use the fact that, for φ e § 2 ,

and the fact that an operator A is Hilbert-Schmidt if Σ H^^ ll2 converges
for some orthogonal basis {φι} and only if it converges for every ortho-
normal basis {φi}. I

If Q denotes a locally convex linear space in which Q is dense with
dual 9) dense in §, l e t j Γ d ^ C ^ δ ) denote the tame functions on S:
if/ e^(ξ>) then / e ^ (§) if it can be put in the form (1.1) with the φ{ e §.
An expectation on ^{9)) restricts to an expectation on ^ ( § ) . A cylinder
set in Ώ. or Q is a subset whose characteristic function belongs to &~(ξ>)
or .^"(f)), respectively. Let K(Q) and K(S) denote the respective rings
of cylinder sets. Corresponding to an expectation on ^"($) there is a
probability defined on R(Ώ) and R(Q): Prob{^} is the expectation of
the characteristic function of A. We are concerned with the problem of
choosing Q so that Prob { } defined from <Q | > is countably additive on

Definition (Gross [8,15]). A norm ||| ||| on Q is called measurable
if for every a > 0 there exists a finite dimensional subspace Qa of Q such
that for every finite dimensional orthogonal projection P in £^,

α, (1.9)

where Prob { } is defined from <Q | >.

Lemma 1.4. (Gross [15]). A measurable norm on Q is bounded on the
unit sphere in Q.
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Abstract Wiener Theorem 1.5 (Gross [8]). If Q is the completion
of Q in a measurable norm, then <Q | > defines a countably additive
measure μ on R (Q).

By standard measure theory μ extends to a (countably additive)
probability measure on (the Borel field of) £}. So the elements fe^~(ξ>)
extend trivially to measurable functions / on 5 so that

<a|/>=f/<«>dμ<«>. (1.10)

Since the identification of elements of § as measurable functions on Q
is a densely defined bounded linear mapping from § to jS?2(μ0,Q),
it extends uniquely to all of § . Thus the elements of fe&r(ξ>) also
extend to functions / on 5 so that (1.10) holds.

Remark 1.6. Let Q1 be a subspace of Q and let Q x be the completion
of Q1 in a measurable norm on Q x . Let μ0 be the probability measure
on 5 X defined from <QX | >. Then for f^(ξ)

= J f<qi+q>dμo(q}. (1.11)

Remark 1.7. Suppose § x and Qx satisfy the conditions of Lemma 1.2.
Then there are equivalent measures μ and μqi on Qx which are absolutely
continuous with respect μ0 of (1.1.1) such that, for / ^ " ^ )

i (1.12)
and ^i

<Q,Q 1 , ί 1 | />= J/<g>dμβ l<«>. (1.13)

§ 2. The Free Markoff Field [5]

If ^ is a closed set in 1R/ + 1, let

(2.1)

where Sf1 is the Schwartz space of distributions and A is the Laplacian
on <9ί?/(lRz + 1), m > 0 . §>{β) is a Hubert space in the indicated norm and
it is a subspace of §(IR/ + 1). If 01 has a non-empty interior, let

(2.2)

= {real Hubert space in the norm \\{m2-Δf \\2 generated by ^ ( i ) }

which is equal to @(Δ%) in the norm ||(m2 — A@)*'\\2, where J ^ is the
Dirichelet (or Friedrichs' expansion from ^(βfy Laplacian on <£2{β).

is a subspace of Q(1RZ + 1).
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and Q(1RZ + 1) are a dual pair in an extension by continuity of the
1) inner product:

φ(q)= J φ(x,t)q{x,t)dxdt. (2.3)

The Riesz identification is (m2 - A): Q(IRZ + 1)^§(1RZ + 1). Also, if we treat
and Ώ{&) as respective subspaces,

(2.4)

for 9t open with 9F the complement in 1RZ + 1, Q(9t) = (m2-A)Q(M).
The free Markoff field on 1RZ + 1 is the identity mapping on §(RZ + 1)
which makes each element of the Hubert space into a Gaussian random
variable in the expectation <Q(IR I + 1)| >. We will simply refer to
<Q(IRZ + 1 ) | > as the free field expectation and similarly to <Q(IRZ + 1),

) | > as the Dirίchelet free field expectation for the region 9t.
Let ^c lR / + 1 be open with closure M and boundary d9t. Then

Nelson's Markoff property is

Pi p _ P P _ CΊ Sλ

where P δ l denotes the orthogonal projection in §(IR/ + 1) to the subspace

Si [5]-
By (1.6) and (2.4), if / e ^ ( S ( R z + 1 ) ) and ^ C l R / + 1 is open,

(2.6)

(2.7)

\ϊψeξ)(d9ί) we define Dirichelet free field expectation for the region 01
with boundary condition ψ to be <Q0RI + 1 ) , Q ( « ) , φ | >. So (2.7) gives
the free field expectation as an average over the boundary conditions of
the Dirichelet expectations.

Proposition 2.1. Let 9tx C $2 ClRί + 1 with 2%γ closed, 012 open and d9lγ

and d0t2 separated by a spherical shell Then, restricted to .^(§(^1)) ,
the free field expectation <Q0R/ + 1 ) | > is equivalent to the Dirichelet
free field expectation < Q ( R ί + 1 ) , Q ( ^ 2 ) , φ | > , φ e § ( 5 ^ 2 ) .

Proof We will prove that the conditions (1.7) of Lemma 1.2 are
satisfied with § 1 = § ( ^ 1 ) and Q 1 = Q ( ^ 2 ) . From (2.4) and (2.5) we
have that ±

So we need to prove that this operator is Hilbert-Schmidt with norm
less than one. By Lemma 1.3 and translation invariance it suffices to
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consider the case 91 γ = {r eJRι + 1: \r\ ̂ Rx} a n d &2= r e I R / + 1 :\r\<R2},
Rί<R2. Then we can explicitly diagonalize (2.8) by decomposing
§(IR' + 1) with spherical harmonics. For simplicity we write this out only
for the IR2(/=:1) case. Use polar coordinates eίθrelR2. If 0 e§(IR2),

00

φ(eiθr) = £ einθφn(r) (φn = φ_n since §0R2) is real) has Fourier trans-
— oo

form £ einθ φn(r) where φn(r) = ( - if 2π ] φn(r') JH(rr') r' dr' so
- o o ^ 0

((m2 — A) φ)n(r) = (m2 + r2) φn(r) and in particular

(&>02W>= Σ l^-ΎΦi,-n(r)Φ2,n(r)dr. (2.9)
n = -oo 0 m i '

This gives an orthogonal decomposition of ifjflR2) that reduces the
operators P$(e®t) and P β ( Λ l ) appearing in (2.8). Let m = 1 and let

/ ( e i θ r ) c o s Kg S(r-R). (2.10)
/(J?)K(i?)

Since ]Ύ^ΎJn{Rιr)Jn(R2r)dr = In{Rί)Kn(R2) for ^ ^
0 A ' r

(ΦnuRi, Φn2,

So the φn > Λ ϊ form an orthonormal basis of § ( 3 ^ ) corresponding to the
orthogonal decomposition given by (2.9). If φeξ){^λ\ we can now
compute:

So we need to show that

IJR1)KJR2)
, , , { ^ const. < 1

(2.13)

<00 .
I

This can be seen from the representation

In(R)Kn(S) = — J e~ntJ0({2RScosht-R2-S2}ί)dt (2.14)
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forK,S>0:

In(R1)Kn(R2)

J e-"J0({ }*)dt

j e-»<J0({ Ϋ)dt
(2.15)

which is less than one and exponentially decreasing in n. |

Proposition 2.2. 7/geQ(IRz + 1), then

) (2.16)

is a continuous mapping from 1R to the Hilbert space Q)(Δ*) in ||(m2 — Δ$ \\ 2

norm, where Δι is the Laplacian on JRι. Similarly, if & = RoxlR is an open
rectangle in 1R1 + 1 and if g e Q ( f ) , then (2.16) is also continuous with Δι

replaced by the Dirichelet Laplacian for Ro.

Proof Let q(p, ω) = JJ e^'^^'1 q(x, t) dx dt. Then

1

(2π)!

1

_L
2π

\{e-
iωt-i}q{p,ω)d ω dp

(2.17)

| { β " ι ω ί - l } ^ ( p , ω ) | 2 J ω d p

2(2π)/ + 1 J J V

which goes to zero as ί ̂ 0 by dominated convergence. In the Dirichelet
case one replaces the ^-Fourier transform by an expansion in the eigen-
vectors of the Dirichelet Laplacian. The same inequality and convergence
then applies. (A similar inequality shows that q{ ,t) is finite in

(m
(

— Δt)* II2 norm, etc.)
Remark 2.2. After the preparation of this paper, we received the

preprint of Guerra, Rosen, and Simon [4] in which Proposition 2.1
is proved under the natural condition that dR1 and dR2 be bounded
apart. (We keep the present formulation for the reader's convenience
since the proof is completely elementary and explicit.)

§ 3. Continuous Sample Paths

Let ^ = JR O X(0, T) be a bounded open rectangle in 1RZ+1. Let Δo

be the Dirichelet Laplacian on Ro. Let {φa} be an orthonormal basis of
S£ 2(R0) of eigenvectors of Δo and let {m2} be the eigenvalues of (m2 — Δo):

(m2-Δ0)φa = mlφa. (3.1)



226 J. T. Cannon

**(*)= ί φa(x)q(x,t)dx. (3.2)
Ro

Theorem 3.1. The following norms are measurable on

sup
(3.3)

sup

and

s u p | | ( m 2 — Δo)
 2 q{-,t)\\p,, 2 ^ p / ^ o o , y > / ( l — V I — τ (^.4)

In § 5 we will prove measurability of the norm (3.3). That the norm
(3.4) is also measurable follows because, by the Hausdorff, Young,
and F. Riesz Theorem, the norm (3.4) is dominated by M2/p~1 times

the norm (3.3), where M = sup \φa(x)\ = 2Z |«OΓ*, if — + Λ = ^ F o r

simplicity of notation we shall refer everything that follows in this section
to the norm (3.3); but, because of this domination, there are corresponding
statements for the norm (3.4).

Let
&?>?{&) = {completion of Q ( ^ ) in the norm (3.3)}. (3.5)

We can regard the elements q e Qp'y(&) as sample paths

tt->q{;t) (3.6)

which are continuous from [0, T] in the norm

p'y" [sup|mβ-^0β,.) 2 | , P = °°

for l ^ p ^ o o , y > —. This continuity follows from the fact that
P 2

Woiβ) is dense in &{β) and, by Lemma 1.4 and Theorem 3.1, the
topology of Qp'y(^?) is weaker than that of Q(^) .

By Theorem 1.5 and Remark 1.6, we have the following:

Corollary 3.2. Let l ^ p ^ o o , γ> —. <Q(^) I > defines a
p 2

probability measure μ0 on (the Borel field of) Ώ?'y(@ί). The Dirichelet
free field expectation of fe^'(ξ)(JRf + 1) is given by the integral

(3.8)
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Let 0tγ be closed in 01 such that d0ίγ and d$ are separated by a
spherical shell. Then, by Remark 1.7 and Proposition 2.1, we have the
following:

Corollary 3.3. Let 1 ̂  p ^ oo, γ> —. The free field expectation
P 2

of' f'e &'(ξ>(βi)) is given by an integral

= J f<q}dμ(q).

An equivalent measure exists to give the expectation (3.8) for f e
(By Remark 2.3, it suffices that d0tx and dffl be bounded apart.)

(3.9)

§ 4. Orthogonal Decomposition of Q(R) and the O.U. Process

Let ffl, Ro, Δo, {φa} and {mj be as in § 3. Let

Ώ«(M) = {closed linear span of φa xq(ήe Ώ(@)} (4.1)
and

OH((T1,T2))=\q(t):
dt2 <oo>, (4.2)

and the orthogonal decomposition:

as a Hubert space in the norm indicated, where -r-~- is the Dirichelet
dt

Laplacian on [T l 5 T2]. We have the isomorphism:

(44)

α

with ^α(ί) given by (3.2).
To prove Theorem 3.1, we have to establish the estimate (1.9) for

the norm (3.3). We will do this in § 5, using (4.4) to decompose the path
(2.16) into statistically independent components. In the rest of the
present section we will study the individual components, namely the
O.U. process, for which we need an estimate on exit probabilities.

The O.U. process is the free Markoff field in one dimension, Z = 0;
that is, it is given as the expectation <Qm(R)| >, in the notation (4.2).
Note that the ^-function, δs(t) = δ(t-s), belongs to the dual $m(IR)
= Qm(lR), and more generally that

2 π -o

-iω(t-s) 4

6? dω=J_e-m\t-s\

™2 + ω2 2m
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(Recall that denotes the Riesz identification of §m(IR) with £Γ(IR).)
So by (1.5), the δt are Gaussian random variables of mean zero and

and covariance <Qm(IR)| (5t<5s> = — e ~ m | ί ~ s | . Let {δo}
λ be the subspace

of Qm(IR) of elements orthogonal to δ0 then the elements of £Γ(IR) which
take on the value x at ί = 0 are of the form q + 2mxδ0 for qe{δo}

λ.
The O.U. process, conditional by being tied to the value x at ί = 0 is
given by the expectation, in the notation (1.4),

| . > . (4.6)

By (1.5), the δt are Gaussian in (4.6) with mean

δtQmxδ0} = 2mx(δ0, δt)^ = xe~m^ (4.7)
and covariance

= 2(δt9 δs) - 2(St, ]/2^nδ0) {]/ϊm δθ9 δs)

= J_e-m\t-s\ )_e-m(\t\

m m
In particular, since δt has mean (4.7) and covariance (4.8) with s = ί,
δt has the density in y

Vπ /JL(i_e-
exp- -ψ^ϊ

( e ) J _ ( 1 _ e - 2 « |

Of course, the O.U. process is well known, but we have presented the
calculations (4.5)-(4.9) to illustrate the notation of §1. Denote the

00

Laplace transform of u(t) by ύ(λ) = j e~λtu(t)dt. We will use the same
o

notation for the two sided Laplace transform. Now, (4.9) has the Laplace
transform in the case m = 1 (cf. [16]).

(4.10)

where //_Λ(z) is the Hermite function of degree — λ,

H-A(Z) = I 4 T Γ ί e " ' 2 " 2 " ^ " 1 ^ , (4.11)
v / 0

solving the equation

• | ^ - ^ } H . Λ ( z ) = Afl.a(z). (4.12)

Theorem 3.1 and its corollaries are illustrated in the / = 0 case
(the O.U. process) by the classical Wiener Theorem which says, in the
language of Gross [8], that the norm

sup \q(t)\ (4.13)
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is measurable on Qm([0, T]), giving the result as in (3.6) that the paths
t\->q(t) are continuous, q(0) = 0 = q(T).

Let Prob{ } be defined from <£T([0, T])| •> as in (1.9). We need
an estimate on the probability that the norm (4.13) is greater than a
which is strong in a limit m->oo, α->0, corresponding to the fact that we
need to control infinitely many components in (4.4). Let

V e ( 0 ' T ) (4.14)
0, otherwise. v

We can approximate FaT by tame functions on £Γ([0, T]) by restricting t
in (4.14) to finite sets and using the path continuity; so Fa/Γ has ap-
propriate measurability properties, etc. (by standard methods). By
symmetry,

Prob j sup \q(t)\ ^ a\ £ 2<£Γ((0, T)) \ Fa>τ) . (4.15)

Lemma 4.1. There are positive constants independent of m, a, T so that

<Qm((0, T))|F f l jT> ^ const. [mT+ 1] e~cma\ (4.16)

The square bracket denotes the integral part of m T + 1 ; but this
coefficient is not of significance. The constants will be obtained in (4.26)

and (4.31). The scale transformation q(i)\->mq[—j is a unitary mapping

from Qw((0, T)) to ^((O,mT)\ In particular, <£T((0, T))\Fa Γ>
= <GX ((0, m T)) I iw f l,m Γ>. So (4.16) is equivalent to

( ^ ( ( 0 , T))\Fa,τ) ^ const. [ Γ + 1] e~ca\ (4.17)

For simplicity we will begin with the case of the O.U. process tied only
at the origin, proving the corresponding inequality

(Q1 OR), {δo}
λ I Fα,Γ> ^ [ Γ + 1] e~cal. (4.18)

The general techniques are found in Feller [16].
Proof. If fa(x91) dt is the probability of reaching a for the first time

at time t having started at x at time zero and x < a < y, then (by (4.9)
with m = 1) t

P(x\y;t)=$fa(x;t')P(a\y;t-t')dt'. (4.19)
o

So, under the Laplace transform

z^-Jtίtf. ( 4 ,o,
λ) H ( )
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by (4.10). We observe that H_λ(-z) is the two-sided Laplace transform
of the function

(ή { e - 2 t + 2ze-t}: (4.21)

g^λl λ>0. (4.22)

From (4.20) and (4.22) we have that

g (x, ί) = f /β (x tf) g(a,t-1') dt'. (4.23)
o

Since for all ί, g(0, i) g 1,

ί / α ( ° ; 0 g ( a ^ - 1 ' ) dt! ̂ i . (4.24)
o

Since /α and g are positive functions and since

g{aj)^eca\ - l n α ^ ί ^ l - l n α , (4.25)
with

c = 2e~1-e-2>0. (4.26)

It follows from (4.24) that

] fa(O;ήdt^e~cal {All)
X

for all τ Ξg 0. Since, by the continuity of the paths,

( Q 1 OR), {^o}11 Fa,r> = ί /β(0; 0 dt (4.28)
0

we obtain from (4.27) the inequality (4.18).
Now to prove (4.17), let Ra(x\y;t) dy be the probability of reaching y

at time t, having started at x without having reached a. Then, x, y < a,

P(x\y;T) = Ra(x\y;T)+]fa(x;t)P(a\y;T-t)dt. (4.29)

So °

I P(a 10; T - ί )

I
We obtain (4.17) from (4.27), (4.30) and the inequality

(provided a is bounded away from the origin).
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§ 5. Proof of Measurability

We now prove Theorem 3.1, using the orthogonal decomposition (4.4)
and Lemma 4.1. We have to establish the inequality (1.9) for the norm
(3.3).

In the eigenvalue Eq. (3.1) we can use the index α = (oq,..., αz) e Z+
with i

ml-m2 = const. £ α? . (5.1)
ί = l

So we have the convergence

£ > - ' - * < oo, ε > 0 . (5.2)
(X

Suppose that 1 ̂ p < oo. The condition on y is γ > so we can
choose ε > 0 so that p

β = y-±+±>-\. (5.3)

Given a > 0, as in (1.9), we remove a finite part If of the index set so that
the infinite part J, = Έι+ — If has the following properties:

Π {1 - 2<βm«((0, T)) I ί .g.r)} ^ l / Γ ^ (5.4)

(
\<xeh

That (5.4) is possible follows from Lemma 4.1 and (5.3) while (5.5) is
possible by (5.2).

Let Prob { } be defined on the cylinder sets of Q ( ^ ) from <Q(^) | >
and let Probm { } be defined from <Qm((0, Γ)) | > on the space of contin-
uous paths. Write

Qt = © Q α (^) and Q / = © £ α ( ^ ) . (5.6)
oteli aelf

If Pi is a finite dimensional orthogonal projection in Q ί ? then, in the
notation (3.7),

.,ί)llp, y^-|, all ί6[0,T]J

ael,

I{$£m~~Γ, ίe[O,T]

<xelί

The last two inequalities are just (4.15) and (5.4); the first follows from
(5.5). The second follows via the orthogonal decomposition (4.4) and
the isomorphism (4.3) and the fact that the restriction Pt decreases exit
probabilities. An uninteresting technicality arises because Prob { }
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is only defined on cylinder sets; so to remove Pt in establishing the second
inequality we can introduce finite dimensional projections P/α) in
Qα(^) such that Pt = ]Γ P\a) Pt and use approximations that involve

αeJ,

finite subsets of It. If p = oo, the overall inequality holds by a similar
argument.

On the other hand, we will find a finite dimensional subspace Ώa in
Qf such that

P r o b | | | P / β ( . ,t)\\p,γ£-j9 ί e [ 0 , T ] U j / T = 7 , (5.8)

for all finite dimensional projections Pf in £ίf orthogonal to Ώa. So, if P
is an arbitrary finite dimensional projection in Q(f) = Q / © Q i that is
orthogonal to Qα and Pt and Pf are projections as in (5.7) and (5.8)
such that P = PtP + Pf P,

ίe[0,T]}

( ,0IL^f, ίe[0,T]J(5.9)

This is the desired inequality (1.9) for the norm (3.3).
To complete the proof we have to find Qa in Qf so that (5.8) holds.

It suffices to consider the ocelf components separately. That is, it suffices
to consider sufficiently small δa > 0 and find finite dimensional subspaces
Σζ in Qm«((0, T)) such that, for all orthogonal projections P(α) in
Gm«((0, T)) orthogonal to Σζ,

Prob^{|P<β )

ί β(ί) | S <5α, t e [0, Γ]} ^ (1 - a)2*1* (5.10)

We can set Qa

a = {δt.}, the space spanned by <5ίf for 0 < tι < t2 < <tn<T
with ίf — ίj-i chosen sufficiently small. That this is sufficient follows from
(4.15) and the estimate

| - c o n ' t β 2 T r l , (5.11)

where the constants are independent of m. (5.11) is a well known estimate
on the exit probabilities of the Wiener process, case m = 0 (cf. Ray [17]).
Since the norm in βm((0, 7])) increases as m increases, (5.11) holds for
all m.
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