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Abstract. The forward direction singularity of the non-relativistic Coulomb S-matrix
is examined and discussed. The relativistic Coulomb S-matrix to order α is shown to have
a similar singularity.

I. Introduction

It is well known that for short range forces, the S-matrix describing
the scattering of a (spinless) particle from a potential can be usefully split
up into two pieces,

S(kl9k2) = δ(k1-k2) + t(k1,k2). (1)

This decomposition is useful and natural because after removal of an
energy conserving delta function, t(kl9k2) is a smooth (indeed, often
analytic) function of its arguments. The "no scattering" part of S, δ(kί— ft2),
is called the "disconnected part" while ί(fcl5 fc2) *s the "connected part".

In Section II we calculate the explicit form of the Coulomb S-matrix,
Sc(fcl5fc2), and show that the decomposition (1) is far from natural.
Indeed, in a sense to be defined more precisely, there is no delta-function
component in Sc, and thus Sc is "totally connected". However, Sc(kl9k2)
does not have the structure of a connected part associated with a short
range interaction. In fact as we will show, Sc is more singular than

<5(fci-fc2)!
In Section III we discuss the one photon exchange diagram for

relativistic Coulomb scattering and show that the S-matrix to order α
has a similar singularity in the forward direction.

II. Forward Direction Singularity in the Coulomb Amplitude

Although the explicit form of the Coulomb scattering amplitude
has long been known, it was only in 1964 that Dollard [1] gave the
correct time dependent description of the scattering process. We briefly
state his results:
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With
H = H0 + V(x), H0 = p2/2, V(x) = φ\ (2)

define
H'0(p9 t) = H0+ V(pt) Θ(4H0 \t\ - 1) (3)

(4)

Dollard proves the following:

(i) lim eιHt U0(t) = Ω± exist (in the sense of strong convergence).

f->± 00

(ii) If f(x) = $e?k'xf(k)dk, then

l* (5)
Here the ψ£ (x) are the usual stationary scattering eigenfunctions of H
(see for example Schiff [2]).

Note that from (5) the S-operator

c — i / + i ^ _ {0)

can be calculated explicitly, for example from the expression

Sc(kuk2) = lim J<ΓeW v>+ (JC) % 2 W dx (7)

which is valid in the sense of distributions. Since the integrals involved
can be expressed in terms of known functions, it is reasonably straight-
forward to show from (7) that for kx φ k2

Sc(ku k2) = (yβπikj e 2 i ^ δ(k2 - k2) I*"*1'*2) " (8)

where here

γ = a/k,, e2ίσoiki) = Γ{ί + iy)/Γ(ί - iγ), et = kjkt,

and thus we recover the usual Coulomb scattering amplitude. The result
(8) has been derived by other authors using different techniques (see for
example [3,4] and references cited there). Note that the restriction to
k1 + k2 is not trivial because the distribution (1 —e1 e2)~1~ιy is undefined
as it stands (it is not an integrable function). Furthermore, any extension is
unique only up to a distribution with support at eί=e2. Of course,
Eq. (7) is sufficient to calculate Sc for all kuk2 but we prefer another
method which we feel is more instructive. It is based on the following
proposition.

1 While some sort of t — 0 cutoff is necessary in Eq. (4) to insure convergence, the

particular choice Θ(4H0\t\ — 1) guarantees that the S-matrix will have the usual energy

dependent phase and thus the standard singularity structure in the complex energy plane.
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Proposition 1. Suppose there exist two unitary operators, Sί and S2

which for each pair of C00 functions f and g with disjoint and compact
support (in k space) satisfy

(f,S1g) = (f,S2g) = (f,Scg)9 (9)

then S1=S2. Stated more simply: there is at most one unitary extension of
(8) to all k1 and k2.

The proof of Proposition 1 is given in an appendix. We now simply
write down the Coulomb S-operator. Its action on a continuously
differentiable (and square integrable) function / is

(SJ)(ft) = Hm(y/2πi fc)^ ^ ^ f{k'). (10)

Note that such / are dense in L2(1R3). We see that the correct extension
of (1 - ^ e 2 ) " 1 " i y is just lim (1 -eγ e2y

1+E~iy.

To show that Sc is unitary, let f(k) =Y™(e)g(h). Making use of rota-
tional invariance one easily derives

(Scf)(k) = Cι(k)f(k)

where

ί) limj dx^-^-j ' ^Pt(x)

= Γ(l + 1 + iγ)/Γ(l + 1 - iy) = e2iσι(k).

That is, we have the expected result

2i (12)

proving that Sc is unitary. To arrive at Eq. (11) we have used a table of
integrals [5] and some gamma-function identities.

We mention for future reference another representation of Sc which
follows easily from Eq. (10):

(SJ) (k) = e2iσoik) lf(k) + {y/2nik)\dk'

(13)

While at first glance Eq. (10) seems to imply lim(/, Scg) = 0, we see at
α—*0

once from either Eq. (12) or Eq. (13) that as expected

]im{f,Scg) = (f,g). (14)
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(The apparent paradox arises only if one interchanges the limits α-»0
and ε-»0.)

We would now like to discuss the singularity structure of Sc at
ki = k2. If B is any bounded operator on L2(1R3), there always exists a
unique tempered distribution T on ^(IR6) such that T(f®g) = {f,Bg)
[6]. In particular since Sc is unitary

lψ^j '+' '" (15)

is a tempered distribution, and it is as such that we will investigate its
Singularity structure.

As we mentioned in the introduction there are two different properties
which are usually associated with a connected part: absence of delta
functions and smoothness. Let us consider the first property first and ask
whether Sc(kί,k2) has any delta function component. Because, as it will
turn out, Sc is a very singular object, this question is quite delicate and
therefore we want to be precise. Thus we make the following definition:

Definition ί. A tempered distribution T(kί,k2) is said to have "no
component concentrated at kt — k2" if for any h in C f̂lR3) (C00 functions
of compact support) with h(k1 -k2)=ί in a neighborhood of kx = k2,
the distributions Tλ(ku k2) = h(λ(k1 - k2)) T(kl9k2) satisfy

limTA(/) = 0 (16)
λ-+oo

for each fe £f.
We feel this to be a natural definition because hλ(kί — k2) = h(λ(ki—k2))

is (for large λ) equal to one in a very small neighborhood of kί = k2 and
rapidly goes to zero elsewhere. If T(kuk2) is a sum of derivatives of
δ(kί-k2) then of course Tλ=T while if T is an integrable function
lim Tλ = 0 2.

λ->oo

It is now a straightforward matter to verify that Sc has no component
concentrated at kx = k2. Rather than giving a direct proof of this statement
we instead want to show how it follows from a more commonly used
criterion, namely a spatial cluster property.

Proposition 2. Let B be a bounded operator on L2(1R3) and T(a) the
spatial translation operator ((T(a)f(k) = e~ikaf(k)). Suppose for each

lim (T(α)/,B T(α) βf) = O. (17)
|α|->oo

2 However, as the following example shows, given a distribution T{x) this definition
cannot be used to single out a unique component T0(x) with support at x = 0: If T{x) = P.V. ί/x
then lim h(λx) T{x) = δ(x) T(h).

λ->oo
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Then the tempered distribution B(k1,k2) associated with B has no com-
ponent concentrated at kί = k2.

Proof. The statement (17) just means that the operators
Ba=T( — a)B T(a) converge weakly to zero, or in terms of the correspond-
ing tempered distributions Ba(f®g)^0 all f,ge£f. But since ||Bβ | | = \\B\\,
the tempered distributions Ba satisfy

\B.(f)\£c\f\H all a (18)

for some semi-norm | |M, where c and n are independent of a. From this
and the fact that finite sums Σf^gi are dense in £f, it follows that

£«(/)-• 0 for each fsSf. (19)

Now define
ί{k>-k2)af). (20)

g(a) is infinitely differentiable and #(α)->0 as \a\-* oo. Thus, if h e CQ(JR3),
we have with hλ(k) = h(λk)

\ g(a) hλ{a) da = B(h{λ{kγ - k2)) f) = Bλ(f)

where h is the fourier transform of h. By a change of variable

Bλ(f) = $g(λa)fι(a)da (21)

which has limit zero (as λ-^oo) because of Lebesgue's dominated con-
vergence theorem. This completes the proof.

To complete the discussion of the support properties of Sc we quote
a result of Ross [7]: In the sense of weak operator convergence

T(-α)S cT(α)->0 as |α|->oo. (22)

Thus in the sense of our definition Sc has no component concentrated
at kί=k2. We remark that although the relation (22) may at first glance
appear strange, it can be explained with reference to the classical theory.
This is discussed elsewhere [8].

A word of caution is in order concerning the absence of a delta func-
tion in Sc. If instead of considering Sc(k1,k2) as a distribution in two
variables, we fix kx = k0 and examine

as a distribution in one variable we get very different results: Suppose
h is as in Definition 1. Let

hλ(k2) = h(λ(k0-k2)); then for ko + 0,
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Here μ is a constant depending on k0 and the function h. Thus as a
distribution in the variable k2,Sc(k0/k2) is not without a component
concentrated at k2 = k0. Note that the rapid oscillations in (23) are
responsible for the fact that Sc(hλf)-^O.

We now go on to consider the singularity structure of Sc. Because we
are not interested in the behavior of Sc{kί9k2) for large kl9k2 we restrict
our test functions to have support in some fixed compact set Λ. Thus
we consider Sc as a distribution on @t(Λ), the set of C00 functions with
support in A. We take for A the sphere {k e 1R6 : k2 g a2}.

Define the seminorms

1/1,= sup \Dsf(k)\ (24)
keΛ

\s\=n

where Ds = dlsl/dk1

Sί ...dk6

S6. The order of a distribution T on
is then defined [9] as the smallest integer N for which

£ Cπ|/|π (25)
n = 0

for some set of Ck and all /. We will use the order of a distribution as an
index of its singularity.

Definition 2. A distribution T2 (on @{Λ)) is called "more singular"
than a distribution 7\ (on ®(Λ)) if the order of T2 is larger than the order
of 7^

We consider this definition reasonable because a distribution T
of order N on S(/L) can be uniquely extended to the larger class of func-
tions CN(A% i.e. those functions with support in A which are only N
times continuously differentiable, and T remains continuous on CN{A).
Thus a distribution which is less singular than another is defined and
continuous on a larger (and rougher) class of functions.

The next proposition shows that Sc{k1,k2) is more singular than

Proposition 3. For any δ>0 there exists cδ such that

{sΛfUczifio + δifi: (26)

The constant δ cannot be set equal to zero, and thus Sc has order 1.

Proof. The estimate (26) is proved simply after the integration region
has been split up into the region (1 —ei- e2)^λ and its complement.
We find that |SC( f )| S C(]/λ\ f 11 4- (1 + ί/λ) | f\0) and thus taking λ = (δ/C)2,
(26) follows.
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To show that δ cannot be taken equal to zero, let 1 ̂  λ > 0 and

Then gfΛ is a continuous function of e1 and e2 but

.. .dΩ1 dΩ2 »

= i/y — l n λ .

Thus if for example fλ(kuk2) = gλ(eue2)e-2iσo{kl)hi 1 + A with

h e CJOR) and supp/z Q [α2/4, a2β\ then fe C°{Λ) and

Sc(f) = 4π f dk k2(l + iy In A) h{k2). (28)

oo

Because \fλ\0 = sup|ft(x)| is independent of λ, if f dk2h(k2) + O then for

small enough λ

\Sc(fJ\ZClnλ-ι\fλ\0. (29)

Since λ can be made as small as desired, the proof is complete.
To summarize the results of this section, we have shown that Sc

has no delta function component although it is in fact more singular
than a delta function. Although Sc does not satisfy the smoothness
criterion usually satisfied by a connected part arising from a short range
interaction, we feel that it nevertheless deserves the adjective "connected".

III. Relativistic Coulomb Scattering to Order

The purpose of this section is to clarify an apparent discrepancy
between the non-relativistic and the relativistic 5-matrix for Coulomb
scattering, the latter being given by the usual Feynman-Dyson expansion.
To simplify matters we consider the scattering of 2 different spinless
charged particles of equal mass. We consider the 5-matrix as a limit of a
massive photon theory where the photon propagator is replaced by

gjk2-λ2 + iε
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and /l->0. Then to first order in α we have the two Feynman diagrams
in Fig. 1

P 2

Pi <li

which give

(3°)

With A φ 0, this distribution has of course the structure of a short range
interaction S-matrix, but we should expect that with λ-+0 we will obtain
something more like the non-relativistic result for Coulomb scattering.
(This statement should not be true to higher orders in α where one is
forced to include the effects of soft photon radiation3.) The discrepancy
we are talking about is the apparent presence of an "identity piece" (the
first diagram in Fig. 1) even when Λ,-»0. In what follows we first take the
limit λ->0 in Eq. (3) and remove an infinite "Coulomb phase". We then
show that the result (in the non-relativistic limit) agrees with Eq. (13)
for Sc up to a phase (again of course up to order α).

Thus consider the limiting form of

(Sxf)(Pi, q2) = ίdPi , <ii\P\Λ\) f(Pu ίi) (31)

when λ->0. (Since it is not necessary to smear out in (p2, q2) we do not
do so.) With

s = (p2 + q2)\ β2 = λ2/s-4m2 (32)

it is straightforward to show that if / is continuously differentiable

(33)

3 See, however, Zwanziger [10] where a redefinition of the S-matrix in Q.E.D. allows
consideration of "Coulomb scattering" alone. Zwanziger makes plausible the statement
that the full amplitude contains only a connected part.
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where

Thus to first order in a

ia
Inj8 (35)

where υ(p, q) = (1 — m4/(p q)2Y2 and

Qil PiiQi) - (36)

Eq. (35) is to be interpreted in the following way. When both sides are
applied to smooth wavefunctions and the result expanded to first order
in α, their difference tends to zero. The connisseur will recognize the phase
in Eq. (35) as the Coulomb phase [11,12], which we have dropped to
get the infrared divergence free S-matrix of Eq. (36).

We now take the non-relativistic limit of (36) and go to "relative"
coordinates in order to compare our result with potential scattering.
We skip the details and just give the result: The operator S goes over to
an operator Sr(fc, k') where

(SJ)(k)=f(k) + (γ/2πίk)$dk'δ (k2 - kf2) f 1 " * ' * ) (/(*') - f(k)). (37)

Eq. (37) is to be compared with Eq. (13). After removal of e2iσo{k) they
are identical to first order in α. We remark that one should expect
agreement of Eqs. (37) and (13) only up to a phase because the "Coulomb
phase" is ambiguous up to anything which is finite. This is the reason
why the factor e2iσo must be removed before (37) and (13) agree.

To conclude our discussion we remark that it is impossible to identify
a component of Sr with support at kY = k2. That is the limit of h(X(kx — k2))
•Sr(kl9k2) as λ-^co does not exist and thus it is meaningless to talk
about whether or not Sr contains a delta function.
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Appendix: Proof of Proposition I

We first show that B = Sx — S2 is given by

k2) = δ(ki-k2)b(k2) (Al)

with b an L00 function. (Here we use the same letter to denote both the
operator B and the associated tempered distribution.)

Thus let D = {(fcl5 ft2)
: ^1 = ^2} a n d suppose

fe ^(IR6), s u p p / n D = φ . (A 2)

We want to show that the condition (A 2) implies £ ( / ) = 0. By constructing
a suitable partition of unity it follows that we need only show this for
those / with supp/ contained in a cube E which does not intersect D.
But such / can be approximated (in the topology of £f) by finite sums
of functions of the form g(kι)h{k2) with suppg, supp/z compact and
suppgn supp h = φ, from which B(f) = 0 follows.

Since B therefore has support in D it is a finite sum [13]

B(kl9 k2) = Σ (D°δ) (kt - k2)® Ts {^γ^j (A 3)

where Ts e ^'(1R3). The fact that 5 = 0 alone occurs follows from Eq. (18)

Finally, since B is a bounded operator T0 = beLco.
Now by assumption Sx and S2 have the additional property

(A 4)

(/, Stg) = Sdku dk2 /(kj Se(ku k2) g(k2) (A 5)

for all /, g in C0 0 with disjoint compact supports. Unitarity implies

(S2 + B)*(S2 + B)=ί+S^B + B*S2 + B*B= 1 (A 6)

or for fct φ k2

Sc(k2, kj 6(fc2) + 6(fci) Sc(ku k2) = 0. (A 7)

After removal of the energy conserving delta functions we have for
e1 Φ e2

b{ke2) (1 - e, e2r + b{ke,) (1 - eγ e2Y^ = 0. (A 8)

If # is a rotation around the eί axis, (A 8) implies b(kRe2) = b(ke2)
and since ^ t is essentially arbitrary b(ke) = c(k). But since (1 —eί e2)

ιy

and its complex conjugate are linearly independent functions of eγ e2,
c(k) = 0. Thus Si = S2 and the proof is complete.
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