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Abstract. We extend the results of a previous paper to arbitrary non-integrable but
polynomially bounded functions defined over any connected semi-simple Lie group of
real-rank one. Our approach is based on the method of bilateral horospheres and is
a direct generalisation of that used earlier. All the features of the more restricted transform
are retained in this more general formalism.

Introduction

In a recent paper [1] we introduced a “Laplace transform” on the
Lorentz groups SO(n, 1), based on Gel'fand’s method of horospheres.
That paper was restricted to (nonintegrable) quasiregular or Class I
representations, which can be regarded as defined by right translations
of functions over the two-sheeeted hyperboloids SO(n, 1)/SO(n); how-
ever, a theory of horospheres for the regular representation of an
arbitrary connected semi-simple Lie group is now available [2], and in
this paper we show how the results of [1] can be extended to arbitrary
functions defined over the group itself. Although it is not difficult to
treat the quite general case, we shall for simplicity restrict our con-
siderations to the groups of real-rank one, which we shall call the
Lorentz groups. These comprise the real Lorentz groups, SO(n, 1); the
hermitian, SU(n, 1); the symplectic, Sp(n, 1); and a real form of F, which
we shall call the octavian Lorentz group .

Our approach is that of [1]: we divide the Fourier transformation
into two steps, the integral transform f(g)— £ (h), which maps a smooth
function over the group into one over the manifold of horospheres, and
the Fourier transform over the horospheres themselves. The former we
regularize by a process similar to the “analytic continuation in the
co-ordinates” used before; the latter we replace by a pair of classical
Laplace transforms. We show that the combination of the two, which
we call the Laplace transform on G, converges for all polynomially

! This remark will not be explained.
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bounded functions except those with certain discrete asymptotic be-
haviours, and the kernel of the mapping is the set of all functions which
transform under finite-dimensional representations of G.

The inversion formula proceeds via the Laplace transforms, since
unlike [1] we are unable to invert the horospheric transform directly.
We derive it by considering the inversion formula for the Fourier trans-
form of an integrable f(g); there are then three possibilities if we apply
this to our (regularised) Laplace transforms:

(a) the expression converges to f(g),

(b) it converges to something else,

(c) it diverges.

We show that it can diverge if and only if f— f diverges too; and a
simple analysis shows that we are faced with case (b) above, in that it
converges to f(g) redefined modulo its finite-dimensional components.
All'these features were first met in Ref. [1].

We refer constantly throughout this paper to the results of [1], but
very little acquaintance with that paper is actually necessary to under-
stand this, although some is obviously desirable. The relevant results of
Ref. [2] are summarised in Section I, which is devoted to familiarising
the reader with the theory of horospheres for the regular representation
of a group of real-rank unity.

1. Preliminaries

Let G be a connected semi-simple Lie group of real-rank one (that
is, a generalised Lorentz group) and G = NAK an Iwasawa decomposi-
tion. The centraliser of A in K we denote M, and the normaliser M’;
then M'/M is finite and is called the Weyl group W. We can write
almost any element ge G in the form g=namv where ne N, ae A,
me M, and v belongs to the subgroup V contragredient to N. Let r denote
half the sum (with multiplicities) of the positive restricted roots, and if o
is an arbitrary complex number set

A° = earlnA
as a character on A. Then the irreducible representations of G are
given by
T f(0) = A DI (m): (v,
vg =namv’

(1)

where 27 (m) is a unitary irreducible representation of M and f e L* (v, D))
is a smooth function on V' with values in the finite-dimensional space D;
in which act the 2.
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The manifold of horospheres (in Gel’fand’s sense) of the space G/K
is a fibre bundle over I with fibre 4; and the set of bilateral horospheres
H of G introduced in [2] is a bundle over V x N with fibre A x M. The
Fourier transform of fe C ®(G)N I*(G) consists of an integral transform
f(g)— f(h) (he H), followed by a Fourier transform on the fibres of H
into unitary irreducible representations of the direct product group
A x M; and we showed in [2] that this can be written as

f@r(n, v)= g fg) A7 (vg™'n) D' [M(vg~'n)] dg &)

where we have set vg™'n=n, AMuv,. Therefore the Fourier transform is
a continuous mapping of f(g) into a function over the bundle whose
base is the product of two elementary representation spaces of G and
whose fibres are the product of the real line (the dual space of 4) and
the Krein algebra of M.

There is however no particular need to use this parameterisation:
given the fibre bundle H, it is often convenient to choose a different
cross-section and so obtain a pair of elementary representation spaces
of G different from N and V. This is made extensive use of in [3] for the
one-sided case of the quasiregular representations of SL(2, C), and its
application to the regular representation of that group was indicated
in [2] Section V.1. For the general case it is slightly less simple because
of the difficulty of ensuring that there is no ambiguity in the para-
meterisation (e.g. g =kak’ is not suitable), but the principle is the same.
In this paper we shall make considerable use of that cross-section of the
bundle determined in the obvious way by the parameterisation g = §'ma0,
where 0, 0'e K/M; we shall refer to this as the spherical basis for the
space of horospheres. Its advantage is quite simply that it is compact;
since we are dealing with nonintegrable functions that means that by
use of this cross-section we eliminate the need for a further regularisa-
tion process.

The inverse formula to (2) for real-rank unity was given in [2] as

oS @=5 [do L 4t-wtog ™t
STr{f ) (n,v) [2/[M(vg™'n)]]~'} dn dv
Res[pj(s]2 s )
=2m ) ~dimD) (as)fA (vg™"n)

Tr{f?(n,v) [2/[M(vg'n)]] '} dndv.

Here I' is a contour along Res =0, and the j-summation is over all
equivalence classes of unitary irreducible representations of M. The trace
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is to be taken in the space D;. The s-sum is over all the poles of p;(o)
in the right half-plane; indeed, this whole result can be written formally
as a single contour integral by interpreting I" as being “to the right of ”
all singularities of the Plancherel measure (but not of £ itself). The
constant cg is given by

(cg) ™t =3nV(K/M)

where V is the volume of K/M in the metric induced by the negative
of the Killing form. We have assumed that the Haar measure dg in (2)
is normalised according to

dg=e *"™dndadmdv

if g=namv, and that the total measures of K and M are unity.

We draw attention to the symmetry between (2) and (3). Notice, too,
the resemblance to the quasiregular case: there we had an integral over
a cross-section of the horospheres, and the measure in the o-integral
was the Plancherel measure; here we have an integral over a cross-
section of the fibre bundle, and the measure now is the square of the
Plancherel measure. The discrete series of representations if present
enters as the residues of the integral at its poles; as shown in [2], these
are actually simple.

In this paper we shall use (3) in a form adapted to the spherical basis
of H. In [1] we labelled the points of the horospheres (the cones) by k,
and the cross-sections by #; here we shall use & and % for that purpose.

II. The Horospheric Transform

2.1. Definition
The Fourier transformation of fe C*(G)n L(G) has two parts: the
mapping f— f which takes f into a space of functions over the mani-
fold H of horospheres V x N x M x A, and the actual expansion of f(H)
into homogeneous functions on A. In this section we shall define a regu-
larisation procedure for the first step.
The mapping f— f is defined for fe L'(g) by

fvma)= | f(g) [t —aAwg™ m][mM"(vg~'m)1dg  (4)
G
where vg~'n=n;AMuv,; and if fe C®(G)nL'(G) this converges and

defines a function fe C*(H)n L' (H). The regularisation of this trans-
form we define as follows:

fn,v;m, a)= I;ilgl{j f(g)J,(n.vigin)o[mM ' (vg 'n)ldgl,=—y} (5
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where ‘ ’
Jo(nvsg;m)=e 9212 (n,v;95m) + €2 T2 (0595 — 1), (6a)

Jd(m,v;9;m)=[4I (0 + 1) cosmg/2] ™ (1 —aA(vg™'n) +inlgl). (6b)

Here |g| is a “norm function” on G defined in the following manner.
Set g=ka* k', with k, k'€ K and a* = exph with h in the positive Weyl
chamber of a; we then take

lg|*> = cosh 2h . (7)

For matrix groups this is the familiar definition |g|> = N~' Z|g,;|* where
N is the dimension of the adjoint representation of G.

Equation (5) is to be interpreted as follows. First we integrate over G
for positive # and Reg sufficiently negative to ensure convergence; then
we analytically continue in ¢ to ¢ = — 1; finally we let  —>0. The inte-
grals converge for all polynomially bounded f, and define functions
which are analytic both in ¢ and either half-plane Ren =0: hence the
continuation procedures are well-defined. If the final limit #—0 in (5)
converges, we shall call f the horospheric transform of f.

We now prove these statements. Set ¢ =x +iy, with x, y real and
x <0; suppose Ren >0; let D be a precompact set in G containing the
points [g| =1, and D’ its complement; and consider

uf(g) [1—aA(vg™'n)+ inlgl]gdgf

<const|Ren|*e” " ™" O | f(g)| dg
D

+const [Ren[*e ™" O [ | f(ka® k)| e [] (sho(h) dh dk dk'

D'skak’ a>0

< const(x, y) + const(x, y) | fi(e") explh| (x + 2|r]) dh

where f,(a*) is the maximum value of |f(ka* k)| as k, k' vary and we
have written |h| for the length of the vector h € a. Hence by choosing x
sufficiently negative the integral certainly converges for any polynomi-
ally bounded f(g), and it is clear from the proof that the convergence
is uniform in compact sets in the ¢ and 5 complex planes, so that it
actually defines an analytic function of both these variables. Returning
to (5), the extra factor there of §(mM ~') is easily seen to make no dif-
ference to the result, and so the convergence of (5) to an analytic func-
tion of ¢ and # is proved.

Remark. The proof used the fact that |g| >0 everywhere upon G.
This is certainly a very useful property, because it enables us to perform
a single integration, with Reg <0, but it is not essential: the one crucial
requirement is that |g|— oo polynomially whenever a™ e a becomes
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large. If |g| =0 on some (necessarily compact) subset G, of G, then to
define the integral in (5) we must integrate separately over a compact
G, D Gy, with Rep >0, and its complement, with Reg <0. There is quite
apart from this great latitude in the precise specification of the regu-
larisation of (4), since what has significance is only the result and not
the intermediate stages: thus we could have taken

fin,v;m, a)= [ f(g) J,(n. v;g;0)|n,(vg ™ n)l° v, (vg ™' N)°
: 5[mM_1(Ug_1n)] dg|g= —1,6=0=1

and f, is identical with f/ when they are defined at all. We have chosen
(5) as our principal definition because of its symmetry and elegant form.

We now show that if fe L'(G), then (5) reduces to (4). In this case
the integrals are uniformly convergent for all #, and so we can take the
limit #— 0 before integrating. (6) becomes

[4I (o + 1) cosme/2] ! {e "¢2(1 —aA +i0)°+ ™ ¥*(1 —aAd —i0)%}. (9)

Consider the measure dg: since this is Haar measure, dg =d(vg ™' n) for
fixed v, n; but we have set vg~'n=n, AMv,, and so in this parameterisa-
tion we find dg=dn, - dv, - dM - exp(—2r1nA) dA. Now return to (9).
This is just [2I'(1 +9)] 1|1 —aA|% and at ¢ = — 1 this generalised func-
tion is regular and takes the value 6(1 —aA). Hence (5) reduces to (4)
as we claimed.

t)]

2.2. Convergence and Zeros

We must now investigate the convergence of the limit #—0 in (5).
From the foregoing argument it is clear that this exists for all integrable
f(g), and so we can confine our considerations to the behaviour of f at
large |g|. The same is true if we wish to find the kernel of the mapping
f— f, since the existence of an inversion formula for the Fourier trans-
form implies that no fe L!(G) is annihilated by (4). Let us choose a
“spherical basis” for the spaces V, N; that is, let us now realise the space H
of horospheres as the set of points ¢ x ¢’ x M’ x A, where ¢, ¢" belong
to some fixed coset K/M (compare the Remark at the end of Section II
of Ref. [2]), so that there is now only one improper integral to deal with.
We consider the following mixed transform f— /"

f3(¢.¢'sa)=Reg | f(g) 61 —ad(dpg™ $)1 2 [M(pg ™' ¢)1dg. (10)

Here ¢pg ' ¢’ =nAMv with ¢, ¢’ e K/M.

Set g =60 mw®exph- 60, where 0,0 € K/M', w is a fixed representative
in M’ of the nontrivial element of W,hea™, and ¢=0, 1; then the 0, ¢’
integrals converge, and the regularisation of the divergent integral over h
is performed by the methods of the previous section. As h— oo we are
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therefore faced with behaviour of the form
[ F(exph, m) (ch2h)?* 2 (m) I1 sha(h) dm dh .

where we have ignored all terms of non-leading asymptotic behaviour.
The (ch2h)?? is of course the contribution of the regularisation pre-
scription; the last term is the product of sha(h) for all the positive roots,
with multiplicities.

Let us set e"=a"'. Then we are interested in the behaviour near
a =0 of the expression

0j)F(a"l,m)a“"‘9"(m)|1'lshoc(lna)|dmda. (11)
0

The m-integral is of a C* function over a compact set, and hence always
converges, so we need consider only the behaviour of the g-integral
near zero: which is not worse than

[F@Ya ¢'"2"da (12)
0

where F(a) is the transform over M of F(a, m).
Now by hypothesis f is polynomially bounded; so we can write

0

F(a— )= ZFu‘(a) Y ca™l (13)

j=0
where the c} are constants and
Lima™""¢F, (a)=0

a— o

for all ¢>0. Hence (12) behaves as
Yoch fa e fi(a ) da
i 0

where the f;(a) can increase with a only slower than any positive power
— that is, they must be essentially logarithmic in nature. Standard theory
then tells us that the integral has singularities only when y, + ¢ + 2r is
a non-negative integer; and because the regularisation (5) is actually
equivalent to setting 9—0 above, this implies that the mapping f— f
can diverge only when f(g) has components [in the sense of (13)]
behaving asymptotically like |g|"~ 2" where n is a non-negative integer.

Now in general the transform f— f will indeed diverge under these
conditions; exceptionally, however, it may not, and we assert that the
finite-dimensional representations of G are in fact annihilated. To see
this, consider the transform f; given by (8). We require

b (@1 —adlPA 2 |NI7 |V S(mM ') dAdMdNdV|,._,  (14)
F(Q) a=1t=0
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where we have written A for A(vg~'n) (and similarly for N, V and M),
and replaced dg by d(vg~'n) since this is Haar measure. Now f(g) is
by hypothesis polynomial in the elements of G, and hence in those of
vg~'n also. In particular, it is polynomial in the elements of N and V;
so we can perform both the N and V integrals above, and find that they
vanish identically. Therefore the transform ﬂ vanishes as we asserted;
and since this coincides with f, it follows that f(n, v;m, a) itself is zero.

Therefore the finite-dimensional representations are annihilated by
the transform f— f. To show that these functions fill up the kernel,
suppose that some other, non-polynomial, F(g) lies therein too. By con-
sideration of the asymptotic behaviour on H (see the Proposition of the
next section) it follows that functions with different asymptotic be-
haviour as |g|— oo are annihilated separately, if at all, and we already
know that no fe I'(G) lies in the kernel; so that if we write

kak)—Z (1g1) ©;(k, k') (15)

where as |g|— o0 F,,(|g]) has the smgle asymptotic behaviour |g|* f;(|g]),
with the f; satisfying the same conditions as earlier, then it follows that
each term in the series satisfying u; = — 2r is annihilated, whereas the
remainder are not, and hence cannot occur in the expansion (15) since
by hypothesis F(h)=0. Under the conditions of the problem, there are
therefore only a finite number of terms annihilated here; and hence
because the kernel of the mapping f — f is invariant under the action of
the group (since the operators 7,8 T, commute with the horospheric
transform), it follows that the F, (|g]) @;(k, k) for y; = — 2r lie in a finite-
dimensional invariant subspace of C*(G) — that is, they must after all
belong to the space of finite-dimensional representations that we con-
sidered earlier. Hence the kernel of the transform f— f consists only
of the finite-dimensional representations, as we asserted.

We summarize the results of this section in the form of a Lemma:

Lemma 1. Let f— [ be the horospheric transform of a C* polynomi-
ally bounded function f(g). Let |g| be a norm function on G, and suppose
that when g=k-exph-k' becomes large at fixed k, k' € K, then f(g) has
the asymptotic behaviour

f@~1gl™> T E () X ¢lal” €'k K)

where the cij are constants and Limr™""°F, (r)=0 for all positive e.
r—> o0

Then the transform converges for all f(g) whose asymptotic behaviour
contains no components F, (|gl) ©'(k, k') with p; a non-negative integer.
The kernel of the mapping is the space of all functions which transform
under a finite-dimensional representation of the group G.
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Remark. For Class I representations of the real Lorentz groups
SO(n, 1) this was proved earlier in Ref. [1], and that proof can readily
be extended to all the matrix groups dealt with here. Moreover, if G is
such that its Plancherel measure p;(0) has poles at the integer points,
then by considering the Fourier transform of Q(g) regarded as a gen-
eralised function, and making use of the Parseval identity derivable
from the inversion formula (3), it follows at once that the polynomials
on G are annihilated; unfortunately however this simple proof does not
apply if G has no discrete series, and then we must use the method above.

Finally, the argument following (14) apparently shows that f(g) is
annihilated if it has any power-law dependence upon the elements of
N or V. But the only such dependence possible within C*(G) is poly-
nomial, for which the argument is valid; other powers can enter only
in the form of a Fourier integral expansion into the vectors of some
pseudo-basis of L?(N) or C*(N), and then (14) must be understood as
the transform of a generalised function, which is non-zero.

II1. The Laplace Transform

Proposition. Let f(g) e ¢ (G) be a function with a convergent horo-
spheric transform, and |g| a norm function on G. Suppose that as |g| — oo f(g)
has leading asymptotic behaviour

f(@)=f(k-exph-Kk)~|g/* Ok, K);
then f (H) behaves as
fle " H)y~e f(H),
fe* P Hy~ e 2 f(H)

where He H and R f— co. In addition, f(H) is infinitely differentiable
at all points of H.

Remark. The proof of this is straightforward and we omit it. The
asymptotic behaviour as f— oo of f(ef H) differs from that found in
Lemma 2 of Ref. [1] because we now have two nilpotent manifolds V, N
and not just one. Notice that the behaviour on H is in a sense the worst
possible for a given behaviour on G; in particular, if fe LYNG) [L*(G)],
then f e L' (H) [L*(H)]. Finally, notice that f can have no polynomial
dependence upon H (because the corresponding f(g) lie in the kernel
of f—f), and no dependence which 1s polynomial-cum-logarithmic
(because then the transform f— f diverges and so f is undefined).

We have now defined a mapping f— f which associates with f(g)
a polynomically bounded function on the horospheres. In direct analogy
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with Ref. [1] we define the Laplace transform on G as the Laplace
transform of f(n, v; m, a) over a and the Fourier transform over m: this
gives a pair of transforms

FE 0= | f(e,m;n,v) D (m)e """ dm dp
) N ©)
fePm,0)= [ fn,v;m;e™?) Dim)e V" dmdp.

0

Because of the Proposition above, both these transforms exist if
Re(ra)> A1 —r

and, indeed, define analytic functions of ¢ in this domain: the asymmetry
in the definition of the f, is chosen to ensure this.

We can now obtain an explicit expression for the map f— f by
arguing along lines identical with those of Ref. [1], Section III. We find
that

fePn,v)= I'Tirgl{ff(g) @ (g, n;0,0) 2/ [Mvg™" n)]dgl,- _,} (17)
where

' (g,n;0,0)=— % cosecnr(l + o) [A(vg~tn)]°*!

. {einr(a+1)(1 + i;,”g})q—r(a+1) _e—inr(a+1)(1 _inlg})g—r(a+1)}
-0(1 — A(vg ™' n))

and we have used the symbol r interchangeably either for half the sum
of the positive roots or for the length of this vector, as the context
requires; f7 is defined similarly. These expressions are precisely
equivalent to those given by the alternative (and much simpler) kernels

065 (9.n50,0) = (1 + inlghe[A(vg ) *70[1 —(A(vg~ ' m)*'].  (18)

We shall call (17) the Laplace transform on G. Notice that the inte-
gral in (17) extends only over part of the group, by virtue of the 6-func-
tions in the definitions of the kernels @,. It is of course this which pro-
vides the analyticity in ¢; but although it helps the convergence, we
cannot dispense with the regularisation of the horospheric transform
introduced in the last section.

Now suppose that f e L'(G). Then the Fourier transform exists, and
is given by the aid of the integral kernel

®(g,0) =2 (g,0)+ P (g, —0) (19)
where Reag =0,
(pi(g, O.)=A(1+a)r 0(1 _A-_tl)
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and A= A(vg~'n). These very much simpler kernels are sufficient too
if fe I?(G), in the usual way.

Remark. If we regard f(g) as a generalised function (that is, as a
distribution on the space of smooth functions of compact support on G),
then its Fourier transform is of course always defined by the Parseval
identity for the group, although its calculation may not be easy. It is
clear that if this transform is a regular function, then it coincides with
the Fourier transform of f(g) as defined above in (19); and the com-
ponents of f which give rise to zeros or devergences of f — f correspond
in their turn to the inverse transforms of é-functions or their derivatives.
From an analytic viewpoint, the distinction between the mapping f— f
for a classical and a generalised function lies in the way we choose to
perform the regularisation: in the former case it is performed by
“analytic continuation in the co-ordinates” as above, and in the latter
by analytically varying f(g) itself; and the two procedures may give
different results. As a simple example of this we cite Ref. [1], Eq. (14).
Finally, it is of interest to note that the sophisticated procedure used
above reduces exactly [see (18)] to the elementary device of multiplying
f(g) by an analytic regulator function before taking the Laplace trans-
form, and then continuing this function to the identity.

IV. The Inversion Formula

4.1. The Fourier Inversion Formula

We start by deriving the inversion formula for the Fourier transform
of a (non-integrable) f(g). This transform is defined as the analytic
continuation of

F@d(n, v)= f@D(n,v)+ £ (n, v) (20)

and reduces to the usual definition if f € L*(G). Our method is to take
the inversion formula found in Ref. [2],

caf(1)

(0)1? o 21
=) [da [dpij_rilal))]_ [ A (on) Te{f " (n, v) [Z/(M(vn)]"'} dn d(v )
Jj T J

and apply it to the transform (5); then an analysis of the essential points
of the proof of the quasi-regular inversion formula in Ref [1], Sec-
tion 2.2, will show us how, if at all, (21) can go wrong.

Let us then first rewrite (21) in a form more appropriate to non-
integrable functions: that is, let us recast it for the compact realisation
of the horospheres. As in Section [, let {#} denote the space of “cross-
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sections” of the horospheres, the space of pairs {6, 6’} where 0,0 € K/M;
and instead of writing A(vg ! n) we shall write A (%, g). Then (21) becomes,
in brief,

ccflg)=% ; do ... [ A" (h,g) Te {f1 (W) [Z)(M(h, g)] ™"} dh

22
+Y [do...[ Ak g) Te{f ) (h) [/ (M, g)] '} dh 22
i r
where I' is “to the right of” all singularities of the integrand. The integral
over h is now over a compact set, so we have only one improper
integral to consider.

Now it is inconvenient to work with the pair of Laplace transforms
in (22); let us therefore consider the inversion formula rather as a linear
functional B on the space of the mixed transforms f7(#, a) of (10). To do
this, we first use the classical Plancherel theorem for generalised func-
tions over the real line, which implies that the contribution of the con-
tinuous series can be written in the form of an integral of f over a x {h},
where the measure on a is essentially the Fourier transform of [pj(a)]z.
Now p;(0) is known to behave as a product of a polynomial in ¢ and
factors of the form tan (so +t) where s and ¢ are constants; hence as
lo| = co in any direction except along the real axis, p;(c) behaves asymp-
totically as a polynomial in o, of degree p say. Therefore its Fourier
transform behaves? (asymptotically) as p;(«) ~ const |a| "7 1 as a— 0.

It follows from arguments like those of Section II that the func-
tional B can have singularities only on the space of those functions
f7(h, a) which have polynomial asymptotic components (we use this
phrase also to include any logarithmic (')}/ non-power behaviour). But
by Lemma 1 and the Proposition of Section III, such f can arise only
from f(g) which also have polynomial asymptotic behaviour; and by
the hypothesis of the convergence of f— f either there are no such
components of f or they are annihilated. Hence on the space { 1} B has
no singularities which arise from asymptotic behaviour.

Now if the transform L:f— f converges, then BL defines a linear
functional on C*(G); and by an argument entirely analogous to the one
used to deduce the Proposition above, we find that if B(%, a) ~|a|? as
a— oo, then, as an integral kernal, BL(g) ~ |g|? as |g|— oo ®. Therefore the
singularity subspace of BL too is exactly the singularity subspace of

L:f—f.

2 The Fourier transform of a pure polynomial is often written as a series of deriv-
atives of §-functions; but that formulation is only valid if the function space on which the
S-functions act excludes-polynomial behaviour at infinity. Such representations of the

transform as [R14(K) = — 2 sinAm/2- T(2+1)- k| =+~

are however always valid.
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Suppose then that G has but one class of Cartan subalgebras — that
is, that it has no discrete series of representations. Then p;(o) is a poly-
nomial, and we know that when restricted to the subspace C*(G)n L' (G),
BL takes the form 6(g). But there is only one way in which a generalised
function defined by an integral or integral kernel can find its support
concentrated upon a lower dimensional manifold, and that is by the
confluence of a pole and a compensating zero [cf. &(x) = [I'(x)] ! [x* !
at p=0]. Therefore BL is the product of a complex-number-valued
function which has a zero and a distribution-valued-function which has
a pole at g =1; and behaves polynomially, as |[g|— co, as seen from the
last paragraph. But as we have just observed, such asymptotic behaviour
cannot give rise to a singularity unless L:f— f diverges, and therefore
the entire contribution to BLf of the asymptotic region [g|— o0 is
cancelled by the factor of zero.

Hence BL takes the form J(g) too upon the space of interest, of
(non-polynomial) C* functions which are not integrable; and therefore
(22) is the inversion formula that we seek.

Now suppose that G does have a discrete series. In Ref. [2] it was
shown that (22) gave the inversion formula then too provided that the
contour I" was interpreted as being “to the right of all singularities”, in
the sense that we run I' along the imaginary axis and then subtract off
all the contributions from poles of the Plancherel measure [but not
from singularities of f‘*?(h)] crossed when we formally move the
contour of integration off to infinity in the right half-plane. The proof
of that depended largely upon analyticity arguments, and an analysis
of the possible singularities arising from the asymptotic behaviour in
exactly the same manner as the above leads again to the conclusion that,
provided L:f— f converges, then modulo the kernel of L (22) is still the
inversion formula.

4.2. The Laplace Inversion Formula

The formula (22) held for even a non-integrable f(g) because of the
convention regarding I' as “to the right of” all singularities of p;(0).
When f(g) is allowed to grow at infinity, the singularities of the Laplace
transforms move into the right half-plane; fortunately, the inversion
formula for the classical Laplace transform also requires a contour now
genuinely to the right of all singularities, and so the two are compatible.

_ Let us therefore substitute (20) in (21), and remember that the
fied)(h) are analytic to the right of I Consider the term arising from

3 There is an error in Eq. (18) of Ref. [1]: the last factor in the denominator should
read (chr/2)**" instead of (chr/2)**"~2 This propagates from a misprint in the last
equation in Chapter V, Section 2.3 of Ref. [4]. Since we are only concerned with its value
at r =0, none of the conclusions of Ref. [1] are in any way affected.
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f... The integral over A, which is of course over the entire cross-section
of H, can be written as the sum of an integral over the region A(h, 1) > 1
and one over A(h, 1) <1; and in the former case the integrand decreases
in the right half-plane, so that we can close the contour I' to the right
and pick up only the contributions from the (double) poles introduced
by the Plancherel measure. For the region A(#h, 1) <1 this is impossible.
We can treat the term in f_ similarly, to obtain the resulting Laplace
inversion formula, which we give as a Theorem.

Theorem. Let f(g) be a ¢® polynomially-bounded function on a con-
nected semi-simple Lie group G of real-rank unity whose Laplace trans-
forms fi9(h), as given by (17), are convergent. Then we have

[pj( )] 1-0
ol @)=Y [do gy | A0l

-Te{ f17(h) [2/(M(h, 9))] "} dh
+Z j do ([gjr(:)D]) Ah }[)>1A1+a(h,g)
Tr{f“’ D(h) [27(M(h, g)17"} dh

—2ni ¥ Res [p;(0)]* (i [ A=k, g)

~  (dimD) ds
STr{ £ (h) [27(M(h, g)17'} dh
Res [pj (0)]*

—27:1’2

£ (dimD))
-Tr { [0 () [27 (M (h, g))] '} dh.

a 1+s
(g [ A1*5(h,g)

Here I' is a contour of integration parallel to the imaginary axis of o
and to the right of all singularities of the integrand except the poles of
the Plancherel measure; and the discrete sums are over all the poles of
p;(0) to the right of I.

The left-hand side of this equation, f’(g), is to be understood as f(g)
redefined modulo all functions which transform under a finite-dimensional
representation of G; the remaining notation is that used throughout this

paper.
4.3. Discussion

It is worth commenting on our proof. We have constantly inter-
changed orders of integration without at the time discussing the va-
lidity of this; similarly we have made use of the Parseval identity on the



Laplace Transform on Lorentz Groups 311

real line. The justification rests on the definition of all the processes
involved: the generalised functions were all defined in the sense of their
regularisations, and that involved analytic continuation in the param-
eters. The analyticity implicit there at once allows us to interchange
orders of integration; similarly the Fourier transform of a generalised
function K over C*(R)n L' (R) is always defined by the relation

jf_oc‘)K(x)dx=;—n§f(75k(k)dk;

and whether or not K(x) is itself integrable this is sufficient. Notice that
we have throughout treated f(g) itself on a different footing: we have
insisted that it shall be a function, and not a distribution.

We have been unable to derive an inversion formula directly for the
horospheric transform f — f, which was possible in Ref. [1], and so we
have circumvented the difficulties there caused by the divergence of
f—f for certain asymptotic behaviours in the same way as it was
resolved there by Lemma 4 of that paper. It is worth noting however
that these divergences would anyway not occur in a treatment of the
Class I representations by the present method: for they arose essentially
from the fact that the invariant measure on G/K contained the factor
exp(—rlInA), which can be either an integral or a half-integral power
of A; whereas on G itself the measure contains exp(— 2r In A4), which is
always integral. Therefore upon G a direct inversion f— f’ would
always converge if f— f did so.

The inversion formula has many of the features of that given in
Ref. [1], Theorem 2: in particular, the integrals over o possess “good”
analyticity properties in the left-hand half-plane, as in the classical one-
dimensional Laplace transform. The contribution of the pole terms is
more interesting, however. Let us consider first the case of Class I or
quasiregular representations, which was treated in Ref. [1], and return
to Theorem 2 of that paper: then the discrete terms contain contribu-
tions of two types, which we can categorise as discrete series represen-
tations or as end-point contributions coming from the fact that the
projection integrals defining the f, do not extend over the whole group.
But if we combine all the pole terms in that formula, we find that the
end-point contributions cancel out, and so we are left with only the
discrete series. But we know that finite dimensional components are
annihilated, and hence do not contribute, and so this leaves only the
unitary discrete series; which are not realised on G/K and hence do not
occur. Therefore the role of the discrete terms in Ref. [1] is just to cancel
out all the endpoint contributions in the integrals.

Now return to our results in this paper. The analysis of the discrete
terms proceeds in exactly the same way, and as before the end-point
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contributions of the summations cancel against those of the integrals.
The finite-dimensional representations are annihilated, and so do not
occur; but the unitary discrete series are indeed present, and the sum-
mations give their contribution exactly as in Ref. [2]. Although we
apparently now have double poles in the integral, we have shown in
Ref. [2] that the leading term in the Laurent series about these points
actually vanishes, and so the poles are actually simple. Notice inci-
dentally that the unitary discrete series enters as a series of derivative
terms.

Finally, the integral over # is in principal over any cross-section of
the fibre bundle; but as in [1], unless this is compact we shall need
some further regularisation procedure.

V. Some General Remarks

We have discussed earlier [1] the three alternative approaches to the
definition of the Fourier transform of a nonintegrable function K(g) on
a nonabelian group. These are:

(i) We can regard K(g) as a distribution on some space of test func-
tions and define K by the Parseval identity. Then K is always defined,
but may be difficult to calculate.

(i) We can project f(g) over nonunitary representations of a semi-
group contained in G. This approach was noticed earlier by other workers
but has been most highly developed quite recently by Toller [5] for the
group SL(2, C). For that group, the method rests upon noticing that the
two sets of elements

={g=v-exp(+ K30 -v':v,0veSU(1,1),{>0}

each define a semigroup; if we then choose a basis for the group in which
SU(1,1) is diagonalised, then the matrix elements of exp(+ K;{) are
just the classical second-kind functions and so readily lend themselves
to defining transforms with good asymptotic behaviour.

Unfortunately there are two severe difficulties with this approach.
The first is that SU(1, 1) is noncompact, so that if f(g) is nonintegrable
the transform diverges unless some further regularisation is introduced;
and the second (and more serious) is that the two semigroups do not
fill up G. Consequently Toller has been able to define a satisfactory
transform — inversion pair only when f(g) is an integrable function which
vanishes outside G, UG_. This is a major deficiency in an otherwise
elegant approach.

(i) We can use special-function projection techniques. The most
sophisticated work here is that of Cronstrém [6] for SL(2,R), who
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projects with the group analogue of Legendre’s second-kind functions
Q,(chp) (thus always achieving convergence) and gives an inversion
formula using the unusual functions R%,,(chpf), which for the spinless
case are

eiad)

1
n)/2 e

These functions are of course just those which arise in the application
of our inversion formula in [1], Theorem 2, to the case of spinless func-
tions over SL(2, R): for in such a case we can choose a spherical co-
ordinate system for the hyperboloid O(2, 1)/0(2) and obtain terms like

Ry(chp) = ¢ (I=-%+io).

[ U9 & 2 5df=f(s) [ (ch{—sh{cosg) **dg

w £>1 ()>1
=nf_(s) R,(ch{)

(we have used the notation of [1]) and this is identical to Cronstrom’s
function. The remainder of his inversion formula differs from ours by
not containing any discrete summations; this is a consequence of his
projection formula, which unlike ours uses the second-kind functions.

All these approaches, except perhaps the first, have their disadvan-
tages. In particular, the third loses contact with representation theory in
the projection formula and the second-kind functions used there; and,
moreover, it cannot be generalised even to SL(2, C) because these func-
tions for an arbitrary group (and, in particular, that one) are not locally
integrable at the identity. The only way to avoid this difficulty seems to
be to split K(g) into two parts, vanishing in a neighbourhood of the
identity and infinity respectively, and treat these parts separately — a
process possible but clearly unsatisfactory.

Our approach to the problem has disadvantages in its turn: the
two-stage regularisation process for the transform, and the existence of
zeros and divergences of the map f— f. It has however the considerable
advantages of being sufficiently general to apply to all groups (though
we have given the details here only for the Lorentz groups) and of
retaining the manifest basis-independence of the general theory in which
it is so firmly rooted.
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