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Abstract. Gravitational shock waves of order n = 2 are considered and their descrip-
tion in radiation coordinates is discussed. It is found that in such coordinates there exist
necessarily (trivial) discontinuities of first derivatives of gμv. The structure of the propagation
relation for this form of the shock wave is derived and the discontinuities of the Newman-
Penrose field variables are determined.

1. Discontinuities of the Newman-Penrose Field Variables

In the study of shock waves it has been found that besides the essential
discontinuities of the field variables there are also trivial discontinuities
which can be eliminated by appropriate transformations. In the usual
treatment of shock waves it is assumed that these discontinuities have
been eliminated.

In certain cases however this elimination may conflict with some other
demand we put on the description of the field. The case we shall consider
here in detail concerns a gravitational field described in radiation (Bondi)
coordinates. More specifically we shall use the Newman-Penrose
formalism [1] and we shall consider a shock wave which is essentially
of order n = 2 and propagates on the null-surface Σ determined by the
equation x° — 0. We shall show that, because of the use of radiation
coordinates, there will necessarily be present discontinuities of certain
first derivatives of the metric.

Since the shock wave is (essentially) of order n = 2, we shall have
discontinuities of at least some of the scalars ΨA determining the Weyl
tensor1. A priori we shall assume that certain first derivatives of the
tetrad components [/, Xκ, ω and ξκ (K = 2, 3) may also be discontinuous.
Similarly we may have discontinuities of the rotation coefficients ρ, σ, α,
/J, 7, λ, μ and v, as these coefficients contain first derivatives of the tetrad
components. A systematic use of the Newman-Penrose equations will
allow us to determine the derivatives of the different field quantities which
are really discontinuous.

1 We are using the notation introduced in [1].
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We firstly consider the coefficient ρ defined by

In the frame used by Newman and Penrose we have:

/μ = (1,0,0,0), lμ = (0,1,0,0);

mμ = (0, ω, ξ2, ξ 3 ) nμ = (1, [/, X2, X3}.

Therefore ,̂ = 0 and consequently

The first two terms vanish because gιμ = δμ0. The last term is con-
tinuous across Σ since x1 = r is a coordinate on Σ. Therefore

[0] = ρ + - e - = o . (2)
A reasoning of exactly the same type shows that the coefficients σ and
τ — α + β are also continuous:

M = [τ]=0. (3)

We now consider the coefficient μ,

μ= -nΛ.βm*mβ .

According to (1) we have α, jδ φ 0 and consequently

The discontinuity [gfα/5>y] being trivial, we shall have

[3*β,y]=β*βly, (4)

βχβ = Bχlβ + Bβla
and consequently:

[μ]=0. (5)

A reasoning of exactly the same type leads to the results :

M = [α] = [£]=0. (6)

In order to continue we have to use the other sets of the Newman-
Penrose equations. We shall not write these equations here in detail;
we shall refer to them by their numbers in [2]. We start with Eq. (l id).
Integrating both sides of this equation over the interval — ε ̂  x° ^ ε,
ε-»0, we find:

[^3]-0; (7)
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otherwise we should have Ψ4 ^ δ(x°\ contrary to our assumption (shock
wave of essential order n = 2). Similarly we find from Eq. (lie), ( l i b )
and (11 a):

[!P2] = [!P1] = [!F0]=0. (8)

From Eq. (9j) we get at once:

Therefore [y] = /(0, φ). Since y-»0 for r-» oo, we must have

[y]=0. (9)

By a similar reasoning we derive from (9m):

[v]=0. (10)

Turning again to Eq. (1 1 b) we find, using the results we have obtained
until now:

[* ί l]=0, (11)

the dot meaning derivative with respect to x°. Similarly we get from (1 1 a):

[<F°]=0. (12)

In a similar way we get from (lOd) and (10 a):

[ώ] = [<T]=0, (13)

and from Eq. (lOe) and (lOi) to (10m):

[A] = [μ] = ίfo = [σ] = [ρ] = [ά] = 0 . (14)

Finally we find from (9 c), after differentiating it with respect to x° :

Since ^κ^0 when r-> oo we must have

[^κ] = 0. (15)

Recapitulating we find that the following quantities will be discon-
tinuous :

U\ Xκ,ώ,ξκ

y, /,, v ; ρ, σ, α, β, μ

U/4 . (j/3 ( U 2 . (//I (7/0

The formula

^μ = jλ wμ + yn

λ- (mλmμ + mμmλ) (15)

(A)
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shows that the discontinuities of gλμ

 v will depend on [[/]. Starting from
the relation

[0 A μ ,v]=-0 λ μ /v

with βλμ of the form (4),

βλμ = Bλlμ + Bμlλ ,
we find from (15):

Bl=Q, B 2 = -[£/], B3 = B4 = 0. (16)

Hence the vector Bλ satisfies the relation

Bλlλ = 0. (17)

Using again the Newman-Penrose equations we can express the
discontinuities of all quantities appearing in the Table (A) in terms of
[*F4]. We give as example the following relations, resulting from the
Eq. (1 1 d), (1 1 c), (lOe) and the time derivatives of Eqs. (9j) and (9d):

[A] =-[¥*]; (19)

= σ l F 4 ] , }
. (20)

]-[y].J

From (9q) we get an equation for [*F4] :

3rΠP4] = ρ[!P4]. (21)

Eq. (21) is identical with the propagation relation derived by the
classical treatment of a gravitational shock wave, as we shall show in
the following.

2. The Classical Treatment of the Problem

In the classical description of shock waves the problem we have been
considering here is characterised as follows. There are discontinuities of
the first derivatives of gλμ, but they are trivial, the first essential discon-
tinuities being those of the second derivatives. Id est formally we have
a shock wave of order n = 1, but essentially of order n = 2.

Shock waves of order n= 1, propagating on the hypersurface z — 0
(in the present case z = x°), have been discussed in detail [3]. The discussion
is based on the formula

+ z2 z3

9μv = dμv + Zβμv + ~~ 7 μv + ~ ~ ̂ v + ' ' ' >
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gμv being the metric for z>0; gμv is the metric for z<0 and its con-
tinuation in the region z > 0 having continuous derivatives up to the
order 3. A direct calculation leads to the formulae:

2

2 ήv - Γ*μv) = Λ',V + zΛ'μ\ + ~Λ"μl+ (23)

(24)

lv + ββvlμ-βμ v If) + j8%iv + 0%., - βμ /

+ /Λ-^μv'

'v + ̂ Λ - )8μv '<.) + 2BΊ>(ββμ^ + βpv.μ - β μ

βμv = _ ̂ v^ ^μv = _ yμv + 2/5"^" J (25)

2(Λμv - Λμ v) = {- Λ'μv.x + Λ μa.v - Λμ\,la + Λ'μ',lv + \A\^ - \A\ΛA^}

+ z{- Λ'μ\.a + Λ'μ",.v - Λ'μ'v I, + AH lv + Xμ/l/v (26)

+ ίΛ^Λ'^ - %Λ*β,Λ'l>v- kΛ'flΛev} + 0(z2).

In these formulae indices are raised with the metric gμv and the symbol

denotes covariant derivation with respect to f*v.
Eq. (23) shows that Γ£v contains a term of the form ΛμvS(z), S(z)

being the step-function. Therefore Rμv will contain a term proportional

to-f-S(z) = δ(z):

Rμv = δ(z){-ΛlJaι + ΛlΛlv} + -. (27)

The omitted part is finite, but discontinuous at z = 0 and its discon-
tinuity is given by (26). In order to have the vacuum field equations
satisfied also on the surface z = 0 we have to put the coefficient of δ(z) in
(27) equal to zero:

Λ*Λ-/ί* v / v = 0. (28)

This is the local condition which leads, in the case of a shock wave of
(essentially) the order n= 1, to the conclusions:

ΓX - 0 (29)

βμv = a(mμmv + mμm v) + - (mμmv - m ; ίmv) + Bμlv + Bvlμ . (30)
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The next condition we have to demand is the vanishing of the term in
(26) which is independent of z:

-^v;α+^«;v-<v/α + <«/v + i(^μ^v-^«^v) = 0. (31)

The detailed discussion of this equation leads to the propagation con-
dition:

These relations are the real and the imaginary part of the equation

2(βμvm*m^ΛP + βμvm'ΛmvP.Λ = Q (33)

which is obtained when we multiply (31) by m μm v . What remains in (31)
is then a relation between yμ = \y*Jμ — y μ α / α and βμv.

The case we are considering here is characterized by a = b = 0.
Eq. (28) is then satisfied trivially. It is now Eq. (31) which will play the
role of the local condition 2. The propagation condition will in this case
be derived from the equation expressing the vanishing of the coefficient
of z in (26), which is equivalent to the demand

This is a rather lengthy equation and we shall not give it here in detail.
The propagation condition is again obtained when we multiply this
equation by mμmv. The final result is:

2{(yμv - Bμ.v) m"mv}tλl
λ + (yμv - Bμ.v] m*mΊϊλ = 0 . (34)

This is the generalisation of the propagation condition for a shock wave
of essential order 2, in the presence of trivial discontinuities of first
derivatives of gλμ.

We now consider the Weyl tensor Cλμvρ which in the vacuum case is
identical with the Riemann tensor :

C = R
^λμvρ -^λμvρ '

One verifies directly that because of the condition (28) Rλμvβ does not
contain a term proportional to δ(z). We shall calculate the discontinuity

2 Deriving the relation (29) from this condition is rather complicated. It will be simplei
to consider Eq. (29) as valid on the basis of the discussion of the shock wave in a frame in
which the trivial discontinuities have been eliminated. This is permitted because Eq. (29)
is an invariant relation.
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[jRAμvρ] starting from the relation:

Aμvρ c/Aρ,μv ' Uμv,λρ ί/λv,μρ Uμρ,λv * \ μv α,Aρ βQ <x.,λv) ' \^-
)
)

From (22) we find:

[0λμ,vρ] = βλμ, v lρ + βλμ,ρ^v + βλμ ^v, ρ + Jλμ ^v 'ρ

Using also the relation:

[Γzl] = ΓΔ-ΓA= Γ[zl] + [Γ] A + [Γ] [zJ]

we find after some elementary calculations :

μ v ρ σ J P μσ v ^ρ ' Pμσ ρ ^ v ' P μ σ ^ v ρ ' / μ σ ^ v ' ρ

' Pvρ μ ^ σ ' Pvρ σ ^ μ ' P v ρ ^ μ σ ~> / v ρ ^

Pμρ v ^ σ P μ ρ σ ^ v P μ ρ ^ v σ / μ ρ ^ v ^

~" Pvσ μ'ρ ~~ Pvσ ρ 'μ ~~ P v σ ^ μ ρ ~ 7 v σ * μ '

(36)

The scalar Ψ4 is defined by the relation (12n) of [2] :

^ 4-Rμ v ρ σm^ v^mσ. (37)
Therefore:

-2[Kμvρσ]m^v^mσ. (38)

Multiplying (36) by mμnvnQmσ we find:

= {2]8μ,;χ>yμ^^

(39)

Introducing in this relation the expression (4) for βμσ we find finally:

2[^4]-(7μσ-2^σ)m^mσ. (40)

This result shows that the propagation relation (34) can be written in the
more intuitive form:

,Jα+[^4]/α;α = 0 (41)

which is equivalent to (21) because of

C=-i'β;β

and the form (1) of P.

The author wishes to thank Dr. J. Stachel for valuable discussions.
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