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Abstract. We approximate a (spatially cutoff) (φ4)2 Euclidean field theory by an
ensemble of spin 1/2 Ising spins with ferromagnetic pair interactions. This approximation
is used to prove a Lee-Yang theorem and GHS type correlation inequalities for the (0 4 ) 2

theory. Application of these results are presented.

1. Introduction

Rigorous tools in the theory of the Ising model fall roughly into two
classes. Certain results have only been proven directly for what we will
call "classical Ising models" by which we mean ferromagnets with spin
1/2 (i.e. Si can have the values ± 1) spins and pair interactions. Others hold
for "general Ising models" by which we mean that arbitrary (ferro-
magnetic) many body interactions are allowed and that individual spins
can take an arbitrary set of values (including continuous values) with
fairly arbitrary uncoupled single spin probability distributions. The first
class includes the zero theorem of Lee and Yang [15,1] and the correla-
tion inequalities of the Griffiths-Hurst-Sherman (GHS) type [8]. The
second class includes the correlation inequalities of Griffiths, Kelly,
and Sherman (GKS) [6,13] and of Fortuin, Kasteleyn, and Ginibre
(FKG) [3]. (GKS inequalities were originally proven for classical models
[6] but were eventually proven with many body interactions [13],
higher spin [7] and arbitrary even spin distributions [4].)

Recently, Guerra, Rosen and Simon [12] have shown how the P(φ)2

Euclidean field theory [16,12] can be approximated by general Ising
models. As a consequence of this approximation (which they called the
"lattice approximation") they were able to prove GKS and FKG
inequalities. Our goal in this paper is to investigate the possibility of
approximating such field theories by classical Ising models.
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The idea of the approximation we will use is based on a method used
by Griffiths [7] to prove various results for ferromagnets where each
spin can take the values — n, —n + 2,...,n — 2,n with equal weight.
What was done in that case was to find a ferromagnet of n coupled spin
1/2 spins so that the probability distribution for the total spin gave equal
weight to each possibility. Knowing this, if one is given a system, S, of m
spin n/2 spins, sί9..., sm, ferromagnetically coupled, one easily constructs
an "analog system" of mn spin 1/2 spins {σ^ }, 1 :g ί^m, 1 ̂ j^n, so that
the σtj are ferromagnetically coupled and so that the probability distribu-

n

tion for the random variables s, = £ σij i*1 the analog system is the same
j=i

as in the system S. Inequalities and a Lee-Yang theorem for the system S
follow from those for the analog system.

Now, to approximate a P(φ)2 Euclidean field theory with a classical
Ising model, we first approximate it with the lattice approximation of [12].
Thus, it is approximated by a family of continuous spins with ferro-
magnetic pair interactions where each single spin has an (uncoupled)
distribution proportional to exp(— Q(s)) ds. Here Q is even if P is even,
and is a polynomial with deg<2 = degP. The next step is to realize each
single spin as a limit of classical Ising systems in the sense of the last
paragraph. In § 2, we will succeed in doing this if Q(s) = as4 + bs2(a > 0,
b real). The basis of our approximation is the DeMoivre-Laplace limit
theorem [2, pp. 179-182] which says that a suitably scaled binomial
distribution approaches a Gaussian. By using a ferromagnetic pair
interaction, we can cancel the Gaussian and rescale to obtain exp(— s4).
The ferromagnetic pair interaction (see the proof of Theorem 1) is
of the form in which every spin interacts equally with every other spin.
This leads, in a suitable thermodynamic limit, to the "mean-field" model
of ferromagnetism [24], and an exp(—s4) distribution is to be expected
at the critical point of such a model. (The exponent of s, 4, is δ + 1 in the
usual notation for critical point indices in the theory of phase transitions
[26].)

For general polynomials, Q, we only have the negative result that
not all exp( — as 6 — bs4 — cs2) are limits of classical Ising models. In
fact both the Lee-Yang theorem and the GHS inequalities fail for some
ferromagnets with single spin distributions from this sixth degree class.
Of course, we only know that these theorems do not hold for all (φ6)2

theories in the lattice approximation. They could be true for all (con-
tinuous) P(φ)2 theories and only be provable by some different approxima-
tion method (although this does seem unlikely).

Given our work in § 2 (which is the technical core of the paper), we
are able to prove GHS inequalities and a Lee-Yang theorem for
(aφ4' + bφ2)2 theories (§3). The applications we give of these results
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are closely patterned after those in classical statistical mechanics. Our
most interesting application of the GHS inequalities is patterned after
a theorem of Lebowitz [14]. Typically, it also requires the correlation
inequalities of Guerra, Rosen and Simon [12] - in this case those of
FKG type. We show (§8) that if (aφ4~ + bφ2)2 has a mass gap in the
infinite volume limit, then <φ(0)> for the (aφ4+ bφ2 - μφ)2 theory is
continuous at μ = 0. This is closely connected to "Bogoliubov's criterion"
for spontaneous symmetry breaking. Our application of Lee-Yang is
classical: We obtain analyticity of the "pressure", i.e. the energy per unit
volume [9,10], in the coefficient of the linear term in P (§ 6).

We close this introduction by emphasizing that in a certain sense,
we expect the Lee-Yang theorem to be a more useful tool in quantum
field theory than in classical statistical mechanics. The Lee-Yang theorem
is known to be a powerful tool in the study of classical Ising models at
non-zero field, but in statistical mechanics the main region of interest
is the zero field region, especially near the critical temperature. In field
theory, there is a different situation. While the region of dynamical
instability is of undoubted interest (if it exists!), "normal" field theories
are of great direct interest and we hope the Lee-Yang theorem will be a
powerful tool in their study.

2. Approximating Continuous Spins by Spin 1/2 Ensembles

This section is the technical heart of the paper. We will show that a
continuous probability density proportional to exp(— as4 — bs2) can
be well-approximated by the probability density for the total magnetiza-
tion of ensembles of suitably scaled spin 1/2 Ising spins with ferromagnetic
pair interactions.

Let sl9 ...,sN be random variables which can take the values ± 1.
A joint probability distribution for them (on {—1,1}N) will be called a
ferromagnetic pair Gibbs measure if

P(s 1,...,sN) = Z - 1

where

Z = Σ
s i = ± l , . . . , s i v = ± l

H(s)= -ΣaijSiSj,

and where each atj ^ 0. The associated probability distribution, w, for
N

μ= Σ si
i=ί

will be called a ferromagnetic pair magnetization, i.e. w is a measure on
-N, -N + 2, . . . , i V - 2 , AT given by

w(μ)= Σ P(sl9...,sN).
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A function, F, on 1R is called a ferromagnetic pair distribution if there exist
constants δ and c, an integer N and a ferromagnetic pair magnetization,
w(μ),μ= -N, -JV + 2, ...,JV, so that

n = ί c w ( μ ) if 5 ( μ - l ) ^ s < 5 ( μ + l )
[S) [0 if ŝ <5(JV+l) or s<(-N-l)δ;

δ will be called the mesh of F. Given F, μF(s) is the unique function with
the properties that μF(s) — N is always an even integer and

s/δ-ί< μF(s) g

Consequently we have

Finally, a function F will be called a strong limit of ferromagnetic pair
distributions or, for short, a ferromagnetic limit distribution (f.l.d.) if
and only if there exists a sequence of ferromagnetic pair distributions,
FM(x), with meshes, <5Π, so that:

(1) 5π->0.

(2) FB(x)->F(x) for each x.

(3) For each fc, there exists a constant Dfc with

lor all n and x.
Remark. Condition (3) rules out the possibility that F(x) be a

Gaussian. It is possible to weaken (3) if we require a positive definiteness
condition on our eventual continuous spin coupling (defined before
Theorem 2). For simplicity of exposition, we avoid this, although as a
result, we must add a step to the proofs in § 3.

The main theorem of this section is the following.

Theorem 1. Let a>0 and let b be real Then exp(— as4 — bs2) is a
ferromagnetic limit distribution.

The idea behind the proof is very simple. We will take

\2

HN= -dNi £ sή
for suitable dN so that

where is a binomial coefficient. We will then choose δN in such a way

w
that for s fixed, μN(s)-+ao but μ/N-^0. The dN's will be choosen to cancel
the quadratic term in μ/N in an expansion of the logarithm of the
binomial coefficient as iV->oo leaving a quartic term.
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We first note that since F(s/ac) is clearly a f.l.d. if F(s) is, we need only
consider the case a — 1/12.

Lemma 1. Let

f(n) = n logn + 1/2 log(n + 1) - n + 1/2 log(2π)

(wftere 0 logO = 0). Then

(a) |logn! — f(n)\ is bounded as n runs through 0,1,2,...

(b) li
n —*

Proof. This is Stirling's formula, with the exception that we have
written 1/2 log(w + 1) in place of 1/2 logrc to allow (a) be be true if n = 0.
See, e.g. [2, pp. 52-54]. Q

Lemma 2. Lei JV, μ be integers whose sum is even and with N ̂  |μ|,
kί x = μ/N. Let

G(N, μ) = DN- Nh(x) - 1/2 log(l - x + 2/ΛO - 1/2 log(l + x + 2/N)

where

Then

(a)

(b) For each fixed ε > 0 :

U5! M^,N ,J-G(N,μ)\=O.

ΊN = (jV + 1) Iog2 + 1/2 log[(JV + 1)/JV2] - 1/2 Iog2π , (1)

h(x) = 1/2[(1 + x) log(l + x) + (1 - x) log(l - x)] . (2)

is bounded independently of N and μ.

Proof. By Lemma 1, it is sufficient to prove that

G(N, μ) = f(N) -f({N + μ)/2) -f((N- μ)/2).

This follows by straight-forward manipulations. Π

Lemma 3. Let h(x) be given by (2). Then

(a) h(x) ̂  1/2 x 2 + 1/12 x 4 for all x in [ - 1,1].

(b) l imx" 5 [/z(x)- 1/2 x 2 - 1/12 x 4 ] = 0 .

Proof. The Taylor series for h(x) is

Z 1 -x2".
Λ t Ί 2 n ( 2 π - l )

Since the series converges for |x| ̂  1, (a) and (b) follow. •
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Proof of Theorem ί. Let

HJV(s1,...,5iv) = (&iV-3/2-iV-1/2)(>|s ij
2

cN = exp(-DN) (DN given by (1))

and let FN(s) be the corresponding pair distributions. For b fixed, HN(s)
is ferromagnetic for N large (N > 4b2) so we need only show that

for each fixed s and that for each k there is a constant Rk with

\fN(s)\^RkQxp(—k\s\2) (3)

If we fix 5, then
\μN(s) •

so that

Now

Letting

we see applying Lemmas 2 and 3, that

logFN(s)~ - Nh(xN(s))- 1/2 logίl - xN(

- W | ^ + T f ^ + ° N-
- - b s 2 - s 4 / 1 2

so

pointwise. Moreover, since

it follows that:

if \s\ ^(N+ l)/iV3/4, and - oo otherwise. Here,

KN(s) = - 1/2 log(l - xN(s) + 2/N) - 1/2 log(l + xN(s) + 2/N).
T pt

K(s) Ξ sup
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If N is such that \xN(s)\ ̂  1/2, e.g. if N ̂  (4s)4 + 8, then KN(s) ̂  1/2 Iog2.
On the other hand, if N ̂  (4s)4 + 8, then

KN(s) S ~ 1/2 log(2/N) g 1/2 log(128s4 + 4).
Thus

K(s)^l/21og2+l/21og(128s4 + 4).

We conclude that

F(s) S (256 s4 + 8)1 / 2 exp(|b| s2) for |s| ̂  2

^ (256s4 + 8)1 / 2 exp(|fe| s2 - (|s| - 2)4/12), |s| ^ 2 ,

so that (3) follows. •
Now suppose that F1(s1)...Fπ(sπ) are f.l.d.'s and let atj be a matrix

of positive elements let / i ^ R We call the measure

dv = G(s)dns/\G(s)dns
where

a continuous classical ferromagnet (c.c.f.). If /^ = ••• =/zn = 0, we say dv
is a zero field c.c.f. ;ifhί ^ 0 , . . . , hn ̂  0, we say dv is a positive field c.c.f.

Theorem 2. Lei < > be the expectation value for a positive field c.c.f
Then for any i,j, k:

SjSky + 2<sf> {sj} <sfc> - <st.> <s7sfe>

>-<s I.s7 > < s f c > ^ 0 .

Proof. Approximate Fί ( ),. . . , Fn( ) with ferromagnetic pair distribu-

tions F{m)( ),. . . , Fn

(w)( ), let μ[m)(s) be the corresponding μ's and let < >m

be the expectation value obtained when the Ft in (4) are replaced with

ί?-). Write ^ = 4 m ) +

By the GHS inequalities for spin 1/2 ferromagnets [8],

Because this inequality is multilinear it remains true if σα is replaced by
μ\m\ etc. Since μίm)(sf) δ\m)-+Si as m-> oo and

(5) follows from the dominated convergence theorem. •

Theorem 3. Let < > be the expectation value for a zero field c.c.f.
For any complex hx, ...,hn define

Z(hu...,hn)=(exp(h1s1 + --+hnsn)}.

Then Z + 0 provided each ht is either 0 or has strictly positive real part.
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Proof. As in Theorem 2, approximate < > with < >m and Z with

Zm(ή) = <exp(h, μM(Sl) + + hnμ^(sm))} .

Then by the dominated convergence theorem Zm(h) converges to Z(h)
uniformly on compacts of (CM. By relabeling indices suppose Re/z1?...
..., ReΛk >O,hk+ί = "-=hn = O. Then Z(/z1 ?..., hk9 0,..., 0) is not identi-
cally 0 (since Z(0,..., 0) = 1) and by the classical Lee-Yang theorem [15],

Z m (Λ 1 , . . .Λ,0, . . . ,0)Φ0 if R e A ^ O ^ . ^ R e Λ ^ O .

The theorem now follows from the lemma below. Π

The following lemma follows from the argument principle
(see e.g. [21]):

Lemma 4. Let fl9 . . . , / „ , . . . be functions analytic on a connected open
set DC<Ek. Suppose that fn-^f uniformly on compact subsets of D and
that for some open D' C D, fn is non-vanishing on D' for all n. Then either
f = 0 or f is non-vanishing on D!

We are now able to prove

Theorem 4. Not every distribution exp( — P(s)) for P(s) an even
semibounded sixth degree polynomial is a f.l.d.

Remarks. 1. We will actually prove more; namely we will show that
the Lee-Yang theorem fails for some sixth degree polynomials, and the
same is true of the GHS inequality.

2. By using the method of Theorem 1, but adding a (Σs f)
4 term, it is

easy to prove that any exp(— as6 — bs4 — cs2) distribution, a > 0, can be
approximated by ferromagnets with two and four body interactions.
Hence we also see that the Lee-Yang theorem cannot hold for arbitrary
ferromagnets with four body interactions, and the same is true for the
GHS inequalities (neither result is new).

Proof. Let P(s) = q[s2(s - I)2(s + I) 2] + 2ε[s 2 - s4/2] - 1/2 logq.
Then P(s) has minima at 5 = 0, ± 1 with

F(0) = 0, P"(0)

P(±l)-P(0) = ε.

In the Gaussian approximation,
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and, in fact, it is easy to prove that

lim

for any / continuous near 0,1 and — 1 and obeying

\f{s)\S const exp(s6).

Thus by following Theorem 2 (resp. 3) we could conclude a GHS
inequality (resp. Lee-Yang theorem) for single spin distributions

if a GHS inequality (resp. Lee-Yang theorem) held for all

exp( — as6 — bs4 — cs2).
a) Lee-Yang theorem. Ifα = 3,

(if x = e~h) has its zeros when x is real, not when \x\ = 1. So the Lee-Yang
theorem fails for some sixth degree polynomial self-couplings,

b) GHS inequalities. If

M = \s Qxp(sh) dv/\Qxp(hs) dv

then explicit computation shows that

where x = e~h. If GHS held, we would have d2M/dh2^0 for all x > 1.
Because of the — α2 term, this evidently fails for α large. •

This theorem suggests that the Lee-Yang theorem may not hold for
P(φ)2 theories with degP^ό.

3. Theorems for the (φ4)2 Euclidean Field Theory

In [12], a spatially cutoff P{φ)2 Euclidean field theory was approxi-
mated by a continuous Ising ferromagnet. The Ising spins were coupled
by a ferromagnetic pair interaction and the individual spins have an
unperturbed distribution of the form exp(— Q(s)) where

2N 2N

Q(s)= Σ ans" if P(X)= Σ KX"
n=0 n=0

and, in general, the highest odd powers of P and Q agree. Thus, by
Theorem 1, if P is of the special form P(X) = aX4 + bX2 - μX, then
the approximation of [12] is by c.c.f.'s. As a result, it is easy to prove:
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Theorem 5. (GHS Inequalities for (0 4 ) 2 J Let < > be the expectation
value for a spatially cutoff P(X) Euclidean field theory, where

with a>0, μ ^ 0. Then for any positive C00 functions /,g,h of compact
support:

<0(/) φ(g) φ(h)> + 2<0(/)> (φ(g)} (φ(h)} - <0(/)> (φ(g) φ(h)}

- <Φ(f) Φ(h)> <Φ(g)> - <φ(f) φ(g)> <Φ(h)> S 0.

Theorem 6. (Lee-Yang theorem for (φ4)2'J Let <( ) 0 denote the free
Euclidean field theory expectation value. Let a>0,b real and letg,hu..., hn

be positive C00 functions on IR2 with compact support. Let

F(λu...,λn)=(exp(-$g(x):aφ*(x):+b:φ2(x):

i = l / 0

for (λl9...,λn)e<En. Then F(λ)φO if R e λ 1 ? ...,Reλn are all strictly
positive.

Using the lattice approximation, these theorems follow from Theo-
rems 2 and 3 in just the way that Theorems 2 and 3 follow from the
classical Ising model theorems.

Remarks. 1. Technically, we have only proved Theorems 2 and 3 for
exp(-Q(s)); Q(s) = as4 + bs2 if α>0 and not if α = 0, b>0. Thus, in
proving Theorems 5 and 6 we should pick some h e £f with h strictly
positive, consider first g + εh cutoffs and then take ε to 0.

2. Once these theorems are proven with smooth cutoffs and smearing
functions they extend to more general cutoffs by a limiting argument.

3. In Theorem 6, < >0 can be replaced with a Dirichlet or half-
Dirichlet expectation value [12] without changing the proof. A similar
change is possible in Theorem 5.

4. Since the mass renormalization in (φA')3 and the mass and coupling
constant renormalizations in (φ4)4 do not change the degree, these
theorems should be provable in higher dimensions once one controls
local ultraviolet divergences.

Important partial control on the ultraviolet divergences in (φ4)3

has been recently obtained by Glimm-Jaffe [27]. Since these results are
in terms of removing a conventional momentum cutoff rather than a
lattice cutoff and since they are boundedness theorems rather than con-
vergence theorems, we are not yet in possession of classical Ising theo-
rems for (φ4)3 but we regard [27] as a hopeful indication.
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4. First Application of GHS: Concavity of the "Magnetization"

Our first application of the GHS inequality mimics the original
application of Griffiths, Hurst, and Sherman [8]. By an extension [12]
of a result of Nelson [18], if P(X) = aX4 + bX2 - μX9 then the Dirichlet
boundary condition states for P(φ)2 have an infinite volume limit.
(See [12] for a discussion of Dirichlet and the related half-Dirichlet
theory.) We denote this state as < }p. It is a translationally invariant
state, so (φ(x)}p is a number M(P). For P(X) = aX* + bX2 - μX (a > 0),
we write M(a, b, μ) for M(P). This M is the analogue of the magnetiza-
tion in an Ising magnet. The properties of M are summarized in:

Theorem 7. Fix a>b,b real. In the region μ > 0, M(a, b, μ) is

(1) Strictly positive.

(2) Strictly monotone.

(3) Concave.

(4) Continuous.

Remark. From M(a, b, — μ) = — M(a, b, μ), one can read off properties
in the region μ < 0.

Proof. That M is positive and monotone is a consequence of the
Griffiths inequalities (see [12]); (4) follows from (3) and given (3), the
strict monotonicity and strict positivity follow from the fact that M is
not bounded, which we prove in a lemma below. This leaves the proof of
(3). Fix fe C^(IR2), positive. Then, letting < }P>Λ denote the Dirichlet
state in volume Λ, we see that

(\fd2x)M(P)= lim iφ(f)}PtΛ
|Λ|->oo

by Nelson's result [18]. Thus it is sufficient to prove that

MΛ(a, b, μ) = <φ(f)yaX4 + bX2-μX>Λ

is concave in μ for each fixed A with A D supp/. Letting Q(X) = aX4 + bX2,
we obtain:

where, here and below, χΛ is the characteristic function of the set A.
Thus MΛ(a, b, μ) is analytic in μ and

d2MΛ(a, b, μ)/dμ2 = (φ(f) φ(χΛ)
2> + 2(φ(f)} (φ(χΛ)}2

A<Φ(χΛ)
2> - 2<φ(f) φ(χΛ)> <φ(χΛ)>

where
\ / — \ /Q-μX,Λ

Thus by Theorem 5, d2 MJdμ2 ^ 0 and MΛ is concave in μ. •
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Lemma 5. M(α, fe, μ) is not bounded from above.

Proof. Suppose that M(a, b, μ) ^ M o for all μ. Let Q(X) = aX* + bX2.

T h e Π <Φ(f)>Q-μxύM0$fd2x

for all positive /. Since

<Φ(f)>Q-μX,Λ^<Φ(f)>Q-μX

[18], we see that

for all μ^O and all A with A D supp/. Suppose that H/H^ ̂  1. By the
second Griffiths inequality,

G(α) =

is monotone increasing as α increases. Thus:

(eμφif)y
Λ

for all μ > 0. Letting v be the probability distribution for φ(f) in < }QtA,
we see that „

j ^ J (
for all μ > 0. It follows that v has support in [— oo, Mo \ fd2x]. Since v
is symmetric,

Since yl is arbitrary, we conclude that for all feC£ and 0 ^ / ^ 1,

) 2 . (6)

Since < >Q is a Euclidean invariant state obeying positive defmiteness
(in the sense of Symanzik [20] and Nelson [17]), and Nelson's reflection
axiom [17], there is a positive measure, κ, on (0, 00) with

(φ{f)2\ ^ $dκ(m2)jf(x) f(y) Sm(x - y) dx dy (7)

where Sm(x — y) is the Euclidean propagator for the free field of mass m.
Moreover \dκ(m2)= 1 since the convergence of the Dirichlet Schwinger
functions implies the convergence of the Dirichlet Wightman functions
[5,12] which in turn implies that

(φ(x) φ(y)} - (φ{y) φ(x)) = ίδ(x - y).

Because of the logarithmic singularity of Sm(x) at x = 0, (6) and (7) are
inconsistent. •
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5. Second Application of GHS: Monotonicity of the Mass Gap

This application is modelled after one of Lebowitz [14] in his study
of Ising magnets:

Theorem 8. Fix a>0 and b real. Let < ) μ g denote the expectation
value for the :aφ4 + bφ2 — μφ: Euclidean field theory with cutoff
g e CJ(1R2). Let /, h be positive test functions. Then

<<£(/) φ(h))M - <φ(f)}M<φ(h)}M

is a monotone decreasing function of μ in the region μ^O.

Remark. The same result holds if < }μg is replaced with a Dirichlet
state.

Proof. The given function is analytic in μ and its derivative is negative
by Theorem 5. •

It was proven in [19] that the rate of falloff of the truncated two point
function

<Φ(f) Φ(h)>τ = <Φ(f) Φ(h)> -
as dist (supp/, supp h) —• oo determines the mass gap. Thus Theorem 8
implies:

Theorem 9. Fix a > 0 and b real. Let m(μ) denote the (Hamiltonian

theory) mass gap for (aφ4 + bφ2 — μφ)2 in one of the following situations:

(a) With fixed Fock spatial cutoff g e L1 +ε + L2 [11].

(b) With Dirichlet boundary conditions in an interval [0, /] [12].

(c) Dirichlet or half-Dirichlet states in the infinite volume limit [18,12].

(d) Free states in the infinite volume limit when a,b and μ are all

small [5].

Then m(μ) is monotone increasing in the region μ^O (in case (d), for μ

small and μ^O).

Proof. Let us prove (c). The others are the same. Let μ1>μ2>0.
Then going to the \Λ\ -> oo limit in Theorem 8,

<Φ(f)Φ(h)>τ,μi£<Φ(f)Φ(h)>τ,μ2

if/ and h have disj oint compact supports. Fix / with support in {(x, t) \ t < 0 },
let / be the reflection of / in the / = 0 axis and let ft be the translate of /.
Then

<Φ(ft)Φ(f)>τ,μ2£Cexp{-m(μ2)t)

for all t. Since this therefore holds for < > Γ j μ i , the theorems in [19]
imply - m{μγ) S ~ m(μ2). D



158 B. Simon and R. B. Griffiths

6. Analyticity of the Energy per Unit Volume

This application is patterned after the original application by Yang
and Lee [25] of their theorem. We need the following lemma which does
not seem to be readily available in just this form in the literature:

Lemma 6. Let fn be a sequence of functions analytic in a region R C C.
Suppose that

(a) fn(z) converges for z in D a determing subset of R (DcR is called
determining if every function analytic in R vanishing on D is 0).

(b) For every compact KcR,

sup Re/π(z)< oo .
zeK n

Then there exists a function f analytic in R so that fn converges to f
uniformly on compacts of R.

Proof. Let #„ = exp(/J. Then, by (a), gn(z) converges to a non-zero
number for each z e D. By (b),

sup \gn(z)\ < oo ,
n zeK

so by the Vitali convergence theorem [21], gn-*g uniformly on compacts.
Since g is non-zero on D, g is non-zero on all of R by Lemma 4. For any
closed curve C in R, ,,,

so this remains true if g replaces gn. Thus / = logg is a single-valued
analytic function in R and /„->/. •

Theorem 10. Fix α > 0 , b. Let oό^(μ) be the energy per unit volume
[9, 10, 12] for the (aφ4-bφ2 - μφ)2 field theory. Then Oί(^(μ) is real
analytic on (0, oo) and has an analytic continuation to the half plane
{μ I Reμ > 0}. Moreover for any μ in the half plane

oc%\μ)= lim - L l o g / e x p ( - f (a:φ\x)'. +b:φ2(x): -
Ml-oo \Λ\ \ *Λ

where < yΛd is the Dirichlet boundary condition free field in A.

Remarks. 1. The limit can be taken as \A\ -> oo in the Fisher sense.
2. This theorem holds with free boundary condition pressure

[9,10,12], i.e. < >0 replacing < }Λd. For use in the next section we
emphasize Dirichlet states.

Proof. Consider the functions
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By the zero theorem, ocΛ(μ) is analytic in the half plane where Reμ>0.
For any μ,

/exp f- J a: φ\x) + bφ2(x): - μ </>(*)) ^

):-Reμφ{xj)\
) / Λ,d

SO

Re α*f }(μ) g α^} (Re μ) ̂  α(^} (Re μ)

where we have used the superadditivity of the Dirichlet pressure in the
last step [12]. Thus Reα^f}(μ) is uniformly bounded on compacts of the
right half plane. Moreover, by [12], α ^ μ ) converges to α ^ μ ) for μ real.
The theorem follows from Lemma 6. Π

Henceforth we will drop the superscript from α(^} and αjf}.

7. Magnetization is the Derivative of the Pressure

Formally, the magnetization is the derivative of the pressure. We
show this for the μ + 0 region:

Theorem 11. Fix α>0, b. Let ^^(μ) be the Dirichlet pressure for
(aφ4 + bφ2-μφ)2. Then

M(a,b,μ) do
for all μ φ 0.

Proof. By symmetry, we need only consider the μ > 0 region. Since
αyl(μ)-^α00(μ) uniformly on compacts of the right half μ plane, docjdμ
converges to dot^/dμ for μ > 0. Thus, we need only prove that for fixed

Mia, b, μ) = lim — - (φ(χΛn)}Λn,d
I M-+0O \Λn\

(8)

for some sequence Λn going to oo (Fisher). On the one hand, by the
monotonicity of (φ(f)}Λ,d *n Λ [18],

<Φ(XΛ)>Λ,d S <Φ(χΛ)>oo,d = \Λ\ M(a, b, μ ) .

On the other hand, let ε > 0 and let Ro denote the unit square centered at
the origin. Then, for all large A, say for A containing the square of side
5 centered at the origin

<Φ(χRo)>Λ,d^(M(a,b,μ)-ε).

By translation covariance, for any unit square Rt

<φ(χRι)>Λ>d^(M(a,b,μ)-ε)

so long as the square of side 5 with the same center as Rt is contained in A.
Let An be the square of side (5 — 1) -f n centered at the origin. Then n2
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non-overlapping unit squares of the type just discussed can fit inside Λn.
By the first Griffiths inequality,

SO

(φ(χΛn))^n2(M(a,b,μ)-ή.

Since n2/(n + s - I) 2 -• 1, (8) follows. •

Corollary 1. Fix a > 0, b real. Then M(a, b, μ) is real analytic in the
region μ>0 and has a continuation to the entire right half plane.

Corollary 2. The pressure α j μ ) is strictly monotone and strictly
convex in the region μ>0.

8. The Definition of a Phase Transition in (φ4)2

The last corollary of Theorem 11 says:

Theorem 12. Fix a>0,b. Then α j μ ) is right differentiable at μ = 0
and its right derivative is the limit as μ decreases to 0 of M(a, b, μ). In
particular, the following are equivalent:

(1) oc^iμ) is differ entiable at μ = 0.

(2) limM(a,b,μ) = 0.

(3) M(a, b, μ) is continuous at μ = 0.

Proof. By the second Griffiths inequality [12], the limit as μ decreases
to 0 of M(α, b, μ) exists. Call it Mo. Since

Theorem 11 implies that

M o μ ^ α w ( μ ) - α J O ) ^

Thus the limit as μ decreases to zero of [α^μ) — αJOfl/μ exists and
equals Mo. Given this, (1) and (2) are clearly equivalent. That (2) and (3)
are equivalent follows from M(a, b, — μ) = — M(a, b, μ). •

Theorem 12 shows that two possible definitions of "phase transition"
agree. The following result, patterned after a study of Lebowitz [14],
shows a relation to a third common definition.

Theorem 13. // the infinite volume (Dirichlet) :aφ4 + bφ2: field
theory has a mass gap, then M(a, b, μ) is continuous in μat μ = 0.

Proof. Let α e Z 2 , let AΛ be the unit square centered at α and let χa

be its characteristic function. By the technique of the transfer matrix
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[12,16], if; > 1

<Φ(Xo,o) Φ(Xj,k)> ^ e x P C - ( / ' - 1)^] <Φ(Xo,o)Φ(Xι,o)>

where < > is the infinite volume (Dirichlet) state for :aφ4 -\-bφ2: and m
is the mass gap. By Euclidean symmetry and monotonicity of < }Λd in A,
we conclude that

<Φ(Xo,o)0Oθ,*)W

where < }ΛT is the truncated two point function and (j,k) + (0,0). By
using Theorem 8,

>μ,Λ,τSCe~m[m{^^-ί]. (9)

In (9), there is no restriction on j, k for we take

C= max«φ(χO s O) φ(χo,o)>, <Φ(χo,o) Φ(Xo,i)»

C is finite because the two point function can be written in a Kallen-
Lehmann representation with spectral integral on [m, oo) and with
total weight 1 (see the proof of Lemma 5), so that the coincident point
singularity is only logarithmic.

Now, let A be a finite union of Λa including Aoo, say Λ= (J Aa.
Then for any μ > 0, α e J

-J-<Φ(Xθ,θ)>Λ,μ=<Φ(Xθ,θ) Σ Φ(XΛ)}τ,Λ,μ
aμ α e /

< C V ^-m[min(|j|,|fc|)-l]

by (9). Thus for all such A and any μ > 0

Taking yl to oo, we find that

for μ > 0. Thus M is continuous at μ = 0. •

Remark. It may be possible by further mimicking Lebowitz to prove
that M is C00 at μ = 0 if there is a mass gap.

9. How Good is the Conventional Wisdom?

It is perhaps useful to summarize what we know about the
aφ4 + bφ2 — μφ theory for fixed a as far as mass gap and magnetiza-
tion is concerned. This summary uses results from [5,12] as well as
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from this paper. We suppose the bare mass is large. Then one of the
following holds:

(a) There is a mass gap for all b, μ. Also, M(a, b, μ) is continuous in
μ for each fixed b,

or
(b) There is a critical value of b, call itb1. There is a mass gap iΐb>b1

for all μ and not one if μ = 0 and fr < /?!. Again, M(a, b, μ) is continuous
in μ for each fixed b,

or
(c) There are critical values of b, call them bί and b2 with b2^b1.

There is a mass gap if b>bγ for all μ and not one if μ = 0 and b<b1.
M(a, b, μ) is continuous in μ if b > b2 and discontinuous at μ = 0 if
b<b2.

Moreover, in any event,

(i) M(a, b, μ) is real analytic in μ away from μ = 0.

(ii) M(a,b,μ) is monotone non-decreasing as μ increases or, for
μ > 0, as b decreases.

(iii) m(b,μ) is monotone non-decreasing as \μ\ is increased with b
fixed or as b is decreased with μ = 0.

Of course, we expect that (c) occurs and that bί==b2.
It is useful to compare what can be shown rigorously with what

Wightman calls "the conventional wisdom" [22, 23]. Let us describe
this picture, often associated with Goldstone. Given a polynomial, P,
we define P{X) =

where m0 is the bare mass. Then the conventional wisdom asserts:

(α) The P(φ)2 theory with bare mass m0 leads to a theory with a
unique vacuum (and unique "equilibrium state") if and only if P(X) has
a unique minimum at a point Xo.

(β) If P(X) has a unique minimum, Xo is (φ(x)} in the infinite volume
theory.

(γ) In case P(X) has a unique minimum, the physical mass is given
by mG o l d = P"{X0) + m0.

(δ) If P(X) has a non-unique minimum, say at Xί9 ...9Xk, then the
infinite volume theory has a fc-fold degenerate vacuum and the k pure
states obtained by a central decomposition have (φ(x)} and the physical
masses given by Xt and P'\Xi) + m0.

Aside from its crudeness, this picture has the defect of being invariant
under the formal change <P, mo> -> <P — i(5m0 X

2, m0 + <5mo> while the
:P(φ)2: theories are not because of the difference in Wick ordering.
Nevertheless, we can think of the conventional wisdom as a qualitative
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picture and see how it compares with the qualitative results of this
paper. Fix Q(X) = aX4 + bX2 and consider the family of polynomials
Pμ(X) = Q(X) — μX. Then, in the conventional wisdom picture:

(1) Pμ has a unique minimum at a point X0(μ) > 0 if μ > 0. (If Pμ has
minima at a and b it is of the form c1 + c2(X — a)2(X — b)2. The vanishing
of the coefficient of X3 implies that μ, the coefficient of X, also vanishes.)

(2) Let X+ be the largest minimum for Q(X). Notice that X+ =0
if and only if Q(X) has a unique minimum, in which case X0(μ) is real
analytic at μ = 0. In any case, X+ = limX0(μ).

μiO

(3) Differentiating Pμ(Xo(μ)) = 0 with respect to μ, we find the
striking equation:

( ) ( S X / S ) l (10)

which implies monotonicity of Xo.

dmG dX0

so concavity of Xo is equivalent to monotonicity of mG o l d.

(5) The quantity
^Goid(μ) = 12αX0

2(μ) + 2b + m0

is monotone increasing in μ and [by (4)], X0(μ) is concave.
At the risk of belaboring the obvious, we point out that (1) agrees

with Corollary 1 to Theorem 11, (2) with Theorem 12, (4) and (5) with
Theorems 7 and 9.
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