
Commun. math. Phys. 33, 75—82 (1973)
© by Springer-Verlag 1973

On Birkhoff s Theorem in General Relativity

A. Barnes*
School of Mathematics, Merz Court, The University, Newcastle upon Tyne, U.K.

Received March 15, 1973

Abstract. Two generalisations of Birkhoff s theorem are proved for the cases where
the three-parameter group of motions acts on two-dimensional time-like and null orbits.
A complete list of possible extensions of the three-parameter group to one of four parameters
and of the resulting metrics is given.

§ 1. Introduction

In a series of papers Plebanski, Stachel, and Goenner [1-3] have con-
sidered space-times admitting three-parameter isometry groups with
two-dimensional surfaces of transitivity. Following Goenner [3] we will
denote these groups by G3(2s), G3(2ί) or G3(2n) when the orbits are space-
like, time-like or null respectively. This class of space-times includes the
spherically symmetrical case for which the well-known theorem of
Birkhoff [4] is valid: a spherically symmetrical vacuum space-time
admits a fourth hypersurface orthogonal Killing vector. In this paper the
following generalisation of the above theorem will be proved1: a space-
time admitting a three-parameter group of isometries with two dimen-
sional non-null orbits and with a Ricci tensor of Segre type [(11) (11)]
or [(11 11)] admits a fourth hypersurface orthogonal Killing vector.
This theorem was proved in [3] for the case of space-like orbits but the
analysis for time-like orbits was incorrect. An account of the algebraic
classification of the Ricci tensor is given in references [5] and [6]. A
vacuum space-time admitting a G3(2n) is shown to be a plane-wave
space-time. In the above the fourth Killing vector commutes with the
original three Killing vectors (i.e. the extension of the group G3(2) is
central). It is interesting to investigate the case where the extension is
non-central. In § 3 a complete list of extensions of a G3(2) to a G4 and of
the resulting metrics is given. This list includes the results for G3(2n)
and a number of other cases omitted in [3].

* Turner and Newall Research Fellow.
1 In fact for one special case mentioned at the end of § 2 (ii) the theorem is not valid.
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§ 2. Space-Times Admitting a G3(2)

(i) Space-like orbits.

For these space-times the metric may be written as [2]

ds2 = - e2«(χ3>χ4} {(dx1)2 + /2(xx) (dx2)2} + 2β(x\ x4) dx3 dx4 , (2.1)

where f ( x ) = sinx, 1, sinhx, for JK = + 1,0, — 1 respectively, K being the
Gaussian curvature of the metric (dx1)2 + f2(xl)(dx2)2. The isometry
group is of Bianchi type IX, VIII or Vllq = Q for K= +1, — 1 or 0 re-
spectively [7]. The Killing vectors are given by:

X] = sinx2——r + cosx2 cotx1 „ , , X7 = „ ~ ,
Sx1 dx2' dx2

X, = cosx2 : sinx2 cotx1 ^-, for K = l,
δx1 δx2 '

^ = ̂ -' **=-έ- ^=^2^+^^forK=0 (2 2)

Xi = sinx2——r- + cosx2 cothx1 ^ 9 , Z2 = „ 9 ,
δx1 5x2 ' θx2

Xλ = cosx2——i—sinx2 cothx1——Γ, for K= — 1.
δx1 δx2 '

(ii) Time-like orbits

In this case the metric may be written as [2]

ds2 = *2><*3'*4> {/2(x2)(rfx1)2 - (rfx2)2} 3)

where /(x) is as in (2.1). The Killing vectors are given by

XΛ = sinhx1 -—=— coshx1 cotx2——Γ, X2 = Λ i ,
δx δx ' ox

X3 = coshx1 ——j— sinhx1 cotx2 ——Γ, for K = + 1,
δ x δ x

(2.4)Λ Λ ίί
Xλ = sinhx1 — —~— coshx1 cothx2 „ 1 , X2 = ^ i

δx2 δx1 ' δx1

Λ Λ

Jίλ = coshx1 : sinhx1 cothx2

 Γ, for K = — 1.
δx δx
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The group is of Bianchi type VIII for K Φ O and VI^^ for K = 0.
For K — 0 it is convenient to use null co-ordinates in which case the
metric and Killing vectors are given by

ds2 = 2y(x\ x4) dx1 dx2 - e

2β(χ3'χ4) (dx3)2 - e

2«(χ3>χ4) (dx4)2 , (2.5)

and

In [2] a second form of the metric is given with the first bracket in
(2.3) replaced by (dx1)2 — f2(xi) (dx2)2, but this metric is in fact equivalent
to the first. For example the co-ordinate transformations :

x2 x1 x2 x1

tanh — - coshx1 = tan — sinhx2 , tanh — - sinhx1 = tan -— coshx2

transforms the metric sinh2x2(dx1)2 - (dx2)2 into (dx1)2 - sin2*1^*2)2.
The other transformation is similar and is obtained most easily by an
intermediate transformation to stereographic co-ordinates.

If γ is not constant, curvature co-ordinates may be used so that
ey = x3 in Eq. (2.3) and the Einstein tensor is

-2β, (2.7)
\ /

2α' 1

(x3)2/ (x3)2

.=-fe- (2.10)

where a prime and dot denote partial derivatives with respect to x3 and x4

respectively.
Clearly two of the eigenvalues of the Einstein tensor are equal and the

condition for the other two to be equal is (G^ -G4.)2 + 4G^G|-0, i.e.
G\ = Gl and Gj = Gt = 0. From (2.7-10) it follows that β = β(x3) and
&' + β' — 0. Integrating we obtain ea = e~β where the arbitrary function
of integration has been removed by a co-ordinate transformation. It is

easily seen that 4 is a hypersurface orthogonal Killing vector and

consequently the result stated in § 1 is proved. The remaining field
equations may be integrated easily and the results are given in Table 1.

If y is constant, curvature co-ordinates may not be used. However
it is easily seen that the Ricci tensor necessarily is of type [(11) (11)]
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Table 1

Ricci tensor e2x(x)

[(11) (11)]

[(11 11)]

(0,0) (0,C)

— K--

1 K-

2m c
2~

X X

2m

x

(Λ,0) (R,Q

X + αx + fr c2 F(x)

1 2m 1
X ylx 2 K Ax2

3 x 3

(.R, C) means that both the Ricci scalar and Weyl tensor are non-zero and a zero in
either place means that the corresponding quantity vanishes.

or [(11 11)]. For type [(11) (11)] with G\ non-constant, the metric need
not admit a fourth Killing vector. The metric is the direct product of two
two-dimensional metrics, one of constant curvature and the other
arbitrary. For type [(11 11)] or if G\ is constant the metric in fact admits
a six parameter isometry group and is the direct product of two metrics of
constant curvature. Similar results hold for the case of space-like orbits
if α is constant in Eq. (2.1) [8].

(iii) Null orbits.

The only admissible group is Bianchi type II and the metric may be
written in the form [7] :

ds2 = oc2(x\ x4) { - 2 dx1 dx4 + (dx2)2} + β2(x3 x4) (dx3)2

+ 2γ(x3x4)(dx4)2,

and the Killing vectors areXi = — — r-,X, = „ , ,X<> = x2 „ Λ + x4 „ 9ox ' ox ' ox ox
The Ricci tensor is given by

(2-12)

α
- ,

« 2ά2

2ya'β'

(2-14)
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where a prime and dot denote partial derivatives with respect to x3 and
x4 respectively. The Weyl tensor is type N or zero as there is an isotropy
group acting on null orbits [9]. The Ricci tensor has three equal eigen-
values and is of one of the following Segre types [(31)], [(21) 1], [(111) 1]
or their degeneracies. If Rab = Alalb where la = δl it follows from
(2.12)-(2.14) that α' = 0 and this implies that the null vector la is constant.
We make use of this result to prove the following theorem: a vacuum
space-time admitting a G3(2n) is a plane-wave space-time.

Proof. The co-ordinate transformations which preserve the form of
the Killing vectors are .x1 = x1 + /(x3,x4); x2 = x2 x3 = tp(x3,x4):x4 = x4

and the metric transforms as follows:

α = α, β = βy>', -α2/'' + 0Vv> + 034V>'' = 0,
2 ( ' }

By a suitable choice of / and ψ we may put g34 = 0 and β = β(x4) and
the remaining co-ordinate freedom is

~1_ 1 β2 I 1 ^ 3x2 # 3x ~x + ̂ MTT(X) + 7 X +

where v4,5 and C are arbitrary functions of x4 only.
The field Eq. (2.15) implies that

^ 3\2 i Γ"1 / 4-\ 3 i s~ιί 4 \ /Λ ι l~ι\c ) + F(x^) x + G(x ), (2.17)

where F and G are arbitrary functions of integration. From (2.16) (2.17)
it follows that y may be set equal to zero if the functions A, B and C are
chosen to satisfy the equations

A 2A2 ! β ά \ A α 2ά2 β

" 2 | ^~7JT + 7~~o^ + 7~
B

A A 2

2C + 4(^--|C-ί- + 4=0.

Thus the metric is of type V12 in Table 3 and consequently admits two
/ d \

additional Killing vectors, one of which 3 is hypersurface ortho-

gonal. The metric is in fact a plane wave and the transformations to the
usual metric form [9] are

= αx 2 , y = βx3 .



Table 2

Commutation relations Killing vector

IX VIII [_XaY~]=Q -+ε—- ε = 0 or 1

VIII VII [_Xa Y] = 0 Γ + ε —- for G3 (2s)

VI4 (k = ε = 0) \Xa 7] = 0 - -^~ + ε -^~ ε = 0 or 1

a a
ax2 ax3 ax4

V
r γ γ~\ Y Γ Y YΊ Y Γ Y YΊ Π v* _ι_ Y2 v ^ , „ ^
LA1 * J — Al LA2 * J — A2l_A3 •*• J — ̂  •*" ~^—f~ ' -̂  ~^—9" — ~̂ —5" ~r £ j-

β = _ i V I 1 > 5 ( c = - l e = 0) [Xβy]=0 ^̂

iv rAΊyι = or-Y9yι = ̂ r^yι = o x2-^+ a

ax2 ax4

i a o a a
Π Γ y vi 9 Y Γ Y YΊ Y Γ V YΊ Y O- Y 9 -v ^ _ι_ v2

LA1 •* J — ^ Λ j L^*-2 -*• J — A2 LA3 J — A 2 ~ ' 3 f" ' "̂ax 1 ax2 ax4

m
r y Λ/ ~ι _ y Γ v v~| V Γ V YΠ Y _ J _ / f Y / ,̂ -^1 ι
LA1 -* J ̂  y A1 LA 2 J — A 3 LA 3 J — — A 2 ~rt/y\. 3 v/-^ ~τ~

a
Λ / T (Is Γ\\ Γ Y" V~\ Γ\Γ Y V~\ Π Γ Y V~\ VV 13 ^/C — UJ |_-Λ ^ J J τ=L U [_-A 2 -f J — v' LA 3 -» J — A 2 — ~

dx4

T /„ __ 2"j r v" yπ 2 Y ΓY VΊ = Y ΓY YΊ = Y 2x* _ι
ax3

VI 2 ( fc = ε = 0) Kαy]=0 y=-^T

also admits fifth Killing vector Z

[^Z] = [X2Z] = [^3Z]=0 [y,Z]=^ Z^x3^Γ+/(x4)-^- with f4 = c
dx ax 3
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Table 3

Metric Orbit

VIII, VII, VI4 ε = l
VIII, VII, VI4 fi = 0
VII
VI1,5

IV
V c=l
V ε = 0

I C Φ 2
II
III

VI3

I (c = 2)
VI2

α = oφc3 + *4) 0 = 0(x3

α = 1 0 = 0(x4;
α = α(:x3) 0 = 0(*3)
α = α(x3) β = β(*3}
α = α(x3) 0 = 0(*3)
α = α(x3 + x4)x3 0 = 0(.x3

α = α(x4)x3 β = β(x

4]
1

α = α(x3)(x4) 2~ c 0=1

α = α(x:3) eχ4 0—1
α = α(x3)(l-^x4 + (x4)2)-^
y = y(χ3){l — qχ4 -)-(x

4)2}-2

α = α(x3) 0=1

α = α(.x4)£Γλ3 β = β(x4)
α = α(x4) 0 = 0(x4)

+ x4)
1

I y
I γ
} γ

+ x4)
I

y
y

e~qptar
where

y
1 γ

i γ

= y(χ3)
= y(χ3)
= y(x3)e2 χ 4

= γ(x3)/(x4)2

= y(x3)
r1p(2χ4-«).
p = (4-(?

2)-ΐ

= y(x3)
= 0
= 0

in (2.1)
in (2.1)
in (2.3)
in (2.5)
in (2.5)
in (2.1)
in (2.1)

in (2. 11)
in (2. 11)
0 = 1
in (2. 11)
in (2. 11)
in (2. 11)
in (2. 11)

T
N
T
T
T
T
N

T
T

T
T
N
N

or S

or S

In the last column a T,S or N denotes that the three-dimensional orbit of the G4 is
time-like, space-like or null respectively. For a G4 containing a G3(2s) the orbit is space-
like, time-like or null when the component of the additional Killing vector orthogonal to
the two-dimensional orbit is space-like, time-like or null respectively.

§ 3. Extensions of a G3(2) to a G4

Let Xaa=l,2,3 and Y be the original and additional Killing vectors
respectively. Then

ίXaY] = bb

aXb + daY (3.1)

where ba

b and da are constants. By using the Jacobi identities and the
freedom of choice of 7 (it may be replaced by an arbitrary linear com-
bination of the XβS and 7) it is possible to classify all extensions of the
original Lie algebras. Many of the extensions are not compatible with
the structure equations and Killing's equations and only the admissible
extensions together with the form of the additional Killing vector are
given in Table 2. In Table 3 the resulting metric forms for all extensions
are given. It is an immediate consequence of the generalised Birkhoffs
theorem that if an extension of type IV or V (see Ref. [7]) is complete then
the Ricci tensor is not of Segre type [(11) (11)].

For those extensions of a group of Bianchi type II which have time-
like three-dimensional orbits the Ricci tensor is not of type [(31)] but the
other two types [(21) 1], [(111) 1] and their degeneracies can all occur.
For those extensions with null orbits the Ricci tensor has four equal
eigenvalues. More specifically for type VI2 the Ricci tensor can be
written as Rab = Alalb where la (=δl) is a null vector. For type Ic = 2 all
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three Segre types [(31)], [(211)] and [(1111)] occur but in this case the
eigenvalue is non-zero.

We note that for all central extensions the additional Killing vector
is hypersurface orthogonal but that this result is not true for non-central
extensions unless additional conditions are satisfied.

Acknowledgement. I would like to thank Dr. R. A. Russell-Clark for help in computing
the Ricci tensors in § 2.

References

1. PlebanskiJ., Stachel,J.: J. Math. Phys. 9, 269—283 (1968)
2. Goenner,H., StachelJ.: J. Math. Phys. 11, 3358—3370 (1970)
3. Goenner,H.: Commun. math. Phys. 16, 34—47 (1970)
4. Birkhoff,G.D.: Relativity and modern physics, pp.253—256. Cambridge Univ.

Press 1927
5. Plebanski,!.: Acta. Phys. Polon. 26, 963—1020 (1964)
6. Barnes,A.: General Relativity and Gravitation. 5, (1974) to appear.
7. Petrov,A.Z.: Einstein spaces. London: Pergamon 1969
8. FoysterJ.M., McIntosh,C.B.G.: Commun. math. Phys. 27, 241—246 (1972)
9. EhlersJ., Kundt,W.: Chapter 2. In: Wίtten, L. (Ed.): Gravitation, An introduction

to current research. New York: Wiley 1962

A. Barnes
School of Mathematics
Merz Court
Newcastle upon Tyne, NE 1, 7 RU, UK




