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1. Introduction

Four years ago, the following result was proved simultaneously by
the author of the present paper [1-3] (for the case of general classical
lattice systems), and by Ruelle [4] (for classical lattice gases). If the total
energy of interaction between particles on the right-half line and particles
on the left half-line is bounded, then the infinite-volume limits of the
correlation functions exist, and the infinite-volume correlation functions
have some rather strong cluster properties. (In the language of probability
theory [5], this property is known as "uniform strong mixing" of the
corresponding random processes.) The examples constructed later by
Dyson [6] and by Fisher and Felderhof [7] show that the condition on
the potential cannot be essentially weakened. These results have been
extended to continuous systems with hard cores by the author [3] and by
Gallavotti, Miracle-Sole, and Ruelle [8, 9].

The above results are interpreted physically as implying the absence
of phase transitions, and so it is natural to conjecture that, in these cases,
thermodynamic and correlation functions vary analytically with the
parameters in the interaction. For classical lattice systems with finite-
range potentials such analyticity follows easily from standard theorems
of linear algebra (cf. [10]), and for continuous systems with hard cores
and finite-range potentials, this result was proved by van Hove [11] (see
also [10]). Recently Araki proved this result for lattice systems with
exponentially decreasing potentials [12]. Under similar conditions on
the potential, this result can be obtained as a consequence of some results
of probability theory (Statulevicius [13], Zhurbenko [14]), Gallavotti
and Lin [15] proved that for potentials vanishing at infinity more rapidly
than exp{ —rα},α>0, the thermodynamic and correlation functions
are infinitely differentiable. For potentials vanishing only like an inverse
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power of r previously available technique permit only the proof of the
existence of finitely many derivatives (where the number of derivatives
depends on the power of decrease of potential).

In this paper, the results of previous papers on the absence of phase
transitions for one-dimensional systems are extended to the more general
case. In particular, for potentials vanishing like an inverse power of r
we prove analyticity of thermodynamic and correlation functions both
for lattice systems and for continuous systems with hard cores. For pair
potentials, the conditions we need on the potential is that the interaction
between particles on the two half lines be bounded. The same is true in
the case of gases. For the general case, the conditions are to some extent
more restrictive. The impossibility of an essential weakening of these
conditions may be shown by examples.

To prove these results, we have developed some new techniques
based on the estimation of mean values of exponential functionals of
random processes. These estimates are made using new methods which
can improve the results on this theme known in probability theory. The
proof is not simple; we give a complete proof here only for a bounded two
body potential. The proof in the general case, and some additional
results, will be published elsewhere.

2. Gibbs Distribution

Traditionally, in the statistical physics literature, the corresponding
facts about lattice and continuous systems are formulated and proved
as separate results. Here we introduce a more general construction which
includes both cases. Let Έ = {...,— 1,0,1,...}; for any subset VcΈ, let
I V\ be the number of element in V and let

Z(7)=minί, s(F) = maxί, d(V) = s(V) - l(V) + 1. (2.1)
teV teV

Let H{V\ VeΈbe the set of all subsets CCTL such that C π K Φ 0 and
|C |<oo.

Let X be some arbitrary set; we will refer to X as set of states of a
component. We assume X is equipped with a σ-algebra 93 of measurable
subsets and a measure m( ) on 95 such that 0 < m(X) < oo. Let Xv be the
set of all mappings yv = (xt,teV) where x ( e l , t e V . Let 93 F be the
σ-algebra on Xv which is a product of \V\ copies of 93 and let mv{ )
be the product of \V\ copies of m( ) on 93F.

By a potential we mean a system of measurable functions

U = {υv(yv)9VeH(Ί)}
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where yv e Xv and the values of Uv lie in (— oo, oo]. We will consider in
this paper the following conditions on the potential:

A) For any Ve H{Έ\ n e Έ and xt e X, t e V

Uv(xt9tεV)=Uv+n(xt-n9teV+n). (2.2)

B) There exists Θ < oo such that, for any Ve H(Έ\ yv e Xv

^-@. (2.3)

C J There exists a measurable subset CcX with m(C) =
such that 1

Uv(yv)S@ if * t o G C for some toeV. (2.4)

C2) There exists a measurable subset CcX with m(C) = μ>0
such that R

Uv(yv) = 0 if x ί o e C for some toeV. (2.5)

D x) For some integer L ̂  1

Σ M ^ )
FeH((-oo,-l])n/ί([0,oo)):d(F)^L ^ , .

Σ {d(V)-i)Mυ{V)<<x>
Λ VeH{l.):l(V) = O,d{V)^L

where
MV(V)= sup |C/F + n(yF + n)l- (2-7)

D 2) For some integer L ̂  1 and some α > 0

£ M [ / ( F ) e o t | F | < α ) . (2.8)

Evidently, CJ is weaker than C2) and D x) is weaker than D2).

In the following we consider three classes of potentials:

SΆ: Those satisfying A), B), C^, D J .

Sli: Those satisfying A), B), C J , D 2).

9ί2: Those satisfying A), B), C2), D x).

Let

Σ (d(V) - 1) M^T) ^ ψ(d\ L^d<oo (2.9)

where ψ(d) is a non-increasing function such that

ψ(d)-+0 as d-^Go.

1 Condition Cx can be weakened. For example, for a finite-range potential and finite X
it is enough to require that the Markov chain corresponding to the Gibbs distribution has
only one class and one subclass. A well known condition for this (see for example [16]) can
easily be reformulated in terms of potential.
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We will say that conditions B), Cj), D^ hold uniformly in a set of poten-
tials 2t if 21C 21 and the constants 2, μ, L in these conditions and the
function ψ in (2.9) can be taken to be the same for all U e 21.

For any A e H(Έ) we will denote by boundary condition any function
x = (xf,ίeZV4) where xteXv{θ},teΈ\A, and 0 is called the "empty
element". The equality xt = θ means that there is no boundary condition
at point t. We extend the definition of the potential by defining

Uv(xt9teV) = 0

if xΐo = θ for some t0 e V. The set of all such boundary conditions will be
denoted by X(A). For any 3c e X(A) let2

ΦΛ(xt9teA\x) = Σ Uv(xt9teV). (2.10)
VeH(A)

For any xeX(A)ht3

FA(x)= J exp{-ΦΛ(yΛ\x)}dyA. (2.11)
xA

By conditional Gibbsian distribution on A with boundary condition
xeX(A) (cf. [17]), we mean the probability distribution on XA defined
by the following density with respect to the measure mΛ{-)

PA(yA\x) = (FA(x)y1 e χ p { - Φ ^ J χ ) } , ^ e xA. (2.12)

(The usual Gibbsian distribution corresponds to the boundary condition
x0 e X(A) where xt = θ, te TL\A. This will be called the trivial boundary
condition.) The existence of the sums in (2.10) and the finiteness of FA(x)
follows from conditions A), B), Dx). The inequality

exp\- £ ®- £ Mv(V)\>0 (2.13)
I VeH(A),d(V)<L VeH(A),d(V)^L J

follows from condition C^ We introduce finite dimensional densities
as follows: For B C A, xt e X for t e B and yAχB = (xt,te A\B) e XAχB

rB

A(xt,teB\x)= J pA{x,teA\x)dyAχB. (2.14)

Case I: Let X be finite, © the σ-algebra of all subsets, and m( ) counting
measure. This is the case of classical lattice systems (see [10]). In this
case rA(xt,teB\x) is the probability, that at each lattice site teB there
is a particle of type xt. This case was investigated in Dobrushin [1-3] with
the additional assumption that the potential is finite valued. (This is
equivalent to assuming C = X in C1.)

2 Here and in the following we use the conventions a + oo = oo for any a > — GO and

3 Here and in the following we will write dyA instead of mΛ(dyA).
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Case II: Let X= {0,1, ...,n};m, 93 as in Case I. Assume C2) for
C = {0}. Then this is the case of a lattice gas (see [10]). When n = 1 and
x,= 1, teB, the functions r^ are the usual correlation functions. Ruelle
[4] and Araki [12] investigated this case with the additional assumption
that n = 1 and the potential is finite-valued.

Case HI: We introduce potentials of continuous systems U'( ) which
are Borel functions defined on the set #(IR) of finite subsets of 1R with
values in (— oo, oo]. Let 2Γ denote the set of all potentials of continuous
systems for which the following conditions A', B', D' hold:

A') For any K e H(1R) and s e 1R

U'(K)=U'(K + s). (2.15)

B') There exists Θ' < oo such that for any K e H(]R)

U'(K)^-@'. (2.16)

C) For some δ > 0

[7 /({r1,r2})=oo if |r t - r 2 | < δ , rx elR, r2 elRW . (2.17)

D') For some a, 0 < a < δ, and L' > 0 which is an integral multiple of δ
there exist functions φk(υl9 ...,vk),k=l,2,... non-increasing in each
variable, defined in domains

and such that, for any

K={ru...,rk + ί}eH(]R) where k^ί, r1 <r2 < -•• <rk+1

φk(r2-ru...,rk + 1-rk) if \rk + 1 - r i \ ^ L (2.18)\
and

00 /1 \k

Σ — ί<PfcK,...,ϋfc)(«i + - + ϋfc)^i.-.dϋk<cx). (2.19)
fc=l V " / G k

For any Borel subset v4;ClR we will define the set of boundary con-
ditions X'(A') as the set of all locally finite subsets x' of IRV4' (xf is locally
finite if its interaction with any bounded set is finite). By an evident
generalization of definition (2.12) (see [3]), we introduce the notion of
conditional Gibbs distribution on A with boundary condition x'eX'{A').
X = [0, δ)uΛ where A is interpreted as the vacuum. Let 33 be generated
by the Borel subsets of [0, δ) and {A}, and let m( ) coincide with Lebesgue
measure on [0, δ) and give m({Λ}) =LLetxteX,teV9Ve H(Έ)

τ / , ί U'({xt + 1 δ, t e V}) if xt Φ Λ for all ί e F
κ ' 0 if xt = A for some t0 e V .
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It is easy to see that, for such systems, there is an evident one-to-one
correspondence between boundary conditions 3ceX(/l) and x'eX'(A')
where Af=\J[tδ9(t+l)δ)9 partition functions (2.11) and Gibbs

teA

distributions with density (2.12) and partition functions and Gibbs
distributions for the potential U'. Correlation functions hk'(vί9 ...,vk\x')
defined in the usual way (cf. [10]) for Gibbs distributions with boundary
conditions X', where tiδ^vι•<(ti+ l)δ, ί= 1, ...,/c, and tt are integers,

Ϊ = 1 ,/c, can be expressed in terms the finite-dimensional densities as

ht'(vl9...,vk\x') = r$(xt9teB\x),
where (2.21)

B = { t ί 9 . . . 9 t k } 9 x ^ v ^ t i δ , ί = l , . . . , / c .

We now show that if the potential U' e 21' then the potential U
It is evident that conditions A' and B' imply A and B. Condition C 2

is true for C = {A}. From (2.7), (2.18) and (2.20) we see that, if

where the gt > 0 are integers, ί = 1,..., /c, k = 1,2,... and δ(g1-\ h gk)
^L + δ

Mu{V)^φk{{g1-\)δΛg2-^)^...Λgk~l)δ). (2.22)

Thus, if L = L δ ~x + 1 and g\ = gi — \ we find that

Σ (d(V)-l)Mv(V) (2.23)

V) = O,d(V)^L,\V\=k+ 1

Σ (^Ί H 1" ̂ fc +

Each term in the sum on the right of (2.23) can be majorized by the integral
over the cube {(vί,...,vk):(gr

i—ϊ)δ<vi^g'iδ,i=l,...,k} of the func-
tion δ"{k+ί)(υ1 + v2^ \-vk + 2kδ)φk(vl9...9v^. Thus, we see from
(2.23) and (2.19) that condition D' implies condition Dί.

For two-body potentials, condition D' is equivalent to the condition

|t/'({ri, r2})| ^ φ d r ! — r 2 | ) when \rx-r2\^L

where φ(v) is a non-increasing function such that
00

J φ(υ)υdv<ao . (2.24)
L'

Such a condition was used in the paper of Gallavotti, Miracle-Sole and
Ruelle [8] together with some additional assumptions related to the
continuity of this function, and in the paper of Dobrushin [3] without
these additional assumptions. In the paper of Gallavotti and Miracle-
Sole [9], a condition on the decrease of the potential which is approxi-
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mately the same as our condition D' is used (together with the some
continuity assumptions). Conditions A', B', C,D' imply the conditions
of Theorem 3 of Dobrushin [1] but the explicit form of the condition D'
was not introduced earlier.

By similar procedures it is possible to reduce to the general
framework used in this paper the theory of spin systems with con-
tinuous spin (the classical Heisenberg model), gases with several species
of particles, etc. It is also possibly to make a similar reduction for con-
tinuous systems of particles without hard cores and for some quantum
systems (by using the representation in term of stochastic integrals), but
in these cases conditions B and Dx generally do not hold.

A probability distribution for random process {ξt,teΈ} where the
random variables ξt take values in (X, 93) will be called a Gίbbs state with
potential U if for any A e H(Έ) the conditional distribution of {ξt, t e A}
given {ξt,teΈ\A} has the density pA(-1 {ξt, t e Έ\A}) (which was defined
in (2.12)) with probability one. For the cases I, II, III considered above,
this definition is the definition introduced by Dobrushin [17, 3] and
Lanford and Ruelle [18].

3. The Main Results

Theorem 1. Let the potential l/e9I. Then there exists exactly one
Gibbs state with this potential. The finite-dimensional distribution of this
state are given by densities rB{yB\U\ yBeXB,BeH(Έ) withjespect to
mB(') such that, for any sequence of boundary conditions xn e X([— n, ή]),

n-> oo

and the convergence is uniform in yB e XB. Let SΆbe a class of potentials on
which the conditions B, C1,Dί hold uniformly. Then there exists a function
χ(s) which goes to zero ass^cc such that for all U e 91, all n e N, V C [ — n, n\
and any xn e X([ — n, ή])

I \rv(yv\U)-rl_^n](yv\xn)\dyv
yV

(3.2)

' γ v (3-3)

where _
Cv= sup_ pv{yv\x)<QO. (3.4)

yveXv,xeX(V)
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// in (2.9), ψ{d) = H exp {— hd}, H < oo, h > 0, i£ is possible to choose
χ(s) = H exp{ — hs}, H < oo, h > 0. // i/;(d) = Hd~ f c it is possible to choose

The proof of this theorem, based on some simplifications of the
arguments in [1] will be published in another paper. In that paper, we
obtain as a consequence of this theorem some results on the differen-
tiability of the pressure, on cluster properties of Gibbs states, and on the
existence of the limits of correlation functions for continuous systems.

Now we formulate a general theorem on the mean values of an exponen-
tial functional with respect to Gibbs states. All our results about ana-
lyticity will follow from this theorem.

Theorem 2. Let U be a fixed potential in 2ΪX u 2 I 2 * let ψ(L) be a fixed
function, defined for L^L, with 0^ψ(L)< oo, and with ψ(L)^0 as
L-^oo and let qbe a positive number. Let δ>0 and let (ίψtqίδ(U) denote the
class of all families

Γ={γv(yv),VeH(τ)}

of complex-valued Borel functions of yv e Xv having the following pro-
perties a) and b):

a) For all Ve H(Έ) and all yv e Xv

\yv{yv)\^δ{\ + \Uv{yv)\). (3.5)

b) Let Cv = {yv = (xt,teV):xtoeC for some t0 e V} and let

jfY{V)= sup bv+nϋv+X

jfr(v)= sup hv + B θv + J.
nel,yv + neCv + n

Then either U e SΆχ and

X _jrr(V)eq^d(V)Sδψ(L), L^L, (3.7)

VeH(Έ),l{V) = O,d(V)^L

or U E 9I2

 and

^ l l (3.8)

Now for any A e H{Έ\ yA = (xt, teA)eXA andx = (xt, t e Έ\A)eX(A)
we define

n(yA\x)= Σ yv(χ»tev) \
VsH(A} ^ ^ ( 3 9 )

0A(Γ\X)= j exp{-£(yA\x)}pA(yA\x)dyA.
xA

Here, as in (2.10), we put γv{xt, teV) = 0iϊxto = Θ for some ί0 e V.
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Then: There exist δo>0 and a function s(δ) defined for 0<δ<δo with
0^s(δ)< 1 and with s(<5)->0 when δ^O such that for all Γe^ίψ9q9δ,δ^δ0,
pairs of integers a,b;a^b, all xeX{[a,b]) the integral in (3.9) exists,
does not vanish, and for any xf = (x, xf

a)eX([a+ 1, b~\) (where x'aeX
is an arbitrary element of X), we have:

(3.10)

The proof of this theorem, which is the main result of this paper, is
given in Section 4 for the special case of bounded two-body potentials.
The proof in the general case will be published in other papers. Theorem 2
implies the following:

Theorem 3. Let U e (H1 u2l2>
 a function xp and a number q be fixed

(as in Theorem 2), and let δ <δ1 where δ1 is sufficiently small.
Let

Γ(z) = {yv(yv;zlyveXv,VeH(Έ)}e<εψ>q>δ(U) (3.11)

for all zeW where W is some neighborhood of 0 in Cm, such that for
each zeW, each Ve H{Έ\ each neΈ and each xt e X, t e V

γv(xt,teV;z) = γv + n(xt,teV + n;z) (3.12)

where xt + n = xt,teV. Assume further that for all VeH(Έ), yveXv

yv(yv; z) is a holomorphic function ofzonW vanishing at z = 0 and having
real values for (zl9 ..-,zm) real.

For any zeW define

, VeH(Έ), (3.13)

U(z) = {Vv(yv;z),VeH(E)} (3.14)

and let FA(x;z) be defined by (2.10H2.H) with U replaced by_U(z). Then
for all pairs of integers a^b and all boundary conditions x e X{[a, bj) the
functions ,

f[a,b](x;z)= b _ a + { ^F[aM(x;z) (3.15)

are holomorphic in z on W and bounded uniformly in a, b,x,ze W. For
all zeW the limit

/ U ) l i / (3.16)

exists, and does not depend on the sequence {xn} of boundary conditions,
and is holomorphic in z on W.

5 If a = b we put g[a+1>b](Γ\x')=l.

6 Here and in the following, we consider the principal branch of the logarithm defined
by the condition In 1 = 0.
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Proof. Theorem 3 follows easily from Theorem 2. First of all it
follows easily from Eqs. (2.10H2.12), (3.9) and (3.13) that

FA(x;z) = FA(x;O)gA{Γ(z)\x). (3.17)

From the definitions of 9I 1 ? 9I 2 and Gψ f €>a and Eqs. (3.9) and (2.10) it
follows that there exists a finite valued function Q(\Λ\) such that, for all
zeW,yAeXA,xeX(A),AeH(Έ)

\χΓ

A

iz)(yA\x)\^δ(Q(\A\) + ΦA(yA\x)). (3.18)

Thus, from the definition (2.12) it follows that, ΰδ1<l

J (sup\Qχp{-χΓ

A^(yA\x)}\)pA(yA\x)dyA< σj . (3.19)

From this inequality, it follows that gA(Γ(z)\x) is a holomorphic func-
tion of z e W. ( For example, we can use the theory of functions taking
values in a Banach space ([19], 3.2.22) applied to the Banach space of
bounded holomorphic functions on W.)

From (3.15) and (3.17) we see that, if we define x'c e X([c, b~\) (where c
is between a and b) as (3c,x' t,a^t<c) where the x't9te[a,b— 1] are
arbitrary (but fixed) elements of X then

TO]
 (3 2O)

If δ1<δ0 it follows from Eqs. (3.20) and (3.10) that the functions
f[atb](x',z) are holomorphic and uniformly bounded functions of ze W.
For δί<l and for real z the limit (3.16) exists as a consequence of well-
known statements about the asymptotic behaviour of partition functions.
The existence of a holomorphic limit for all zeW follows, in the case
m = 1 from Vitali's Theorem about convergence of holomorphic func-
tions. For m ^ 1 we need a multidimensional generalization of Vitali's
Theorem, which follows from the compactness of the space of bounded
holomorphic functions (cf. [20], Theorem 1 A 12) and the theorem that
a holomorphic function which vanishes for real values of its arguments
is identically zero (cf. [21], p. 286).

Note that the condition of Theorem 3 is true if m = 1 and

yv(yv;z) = zUv(yv) (3.21)
or if m = 1 and

Uy(yv) if |K| = 1, , . _

0 i f | F | > 1 (3.22)
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for sufficiently small W. Thus, Theorem 3 implies analyticity of the
pressure as a function of the inverse temperature and the chemical
potential, for interactions in the class we are considering, so previous
results on this question (see Section 1) are contained in Theorem 3.

In a similar way, using Theorem 2, we can obtain results about
analyticity of other physical quantities, e.g., the mean energy, and also
about the analyticity of correlation functions. The above results may be
reformulated as statements that physical quantities are analytic func-
tions on Banach spaces of potentials. We will return to this point in
another paper.

4. Proof for Two-body Potentials

Here, Theorem 2 will be proved for the special case of bounded two-
body potentials and systems of function Γ(z) of the same type, i.e. we
assume

MV(V) = O if \V\>2,

Mυ(V)<oo if | 7 | < 2 ,
u (4.1)

jrΓ(V) = 0 if | F | > 2 ,

JVΓ(V)<OO if \V\^2.

The main step in this proof is the following lemma:

Lemma 1. Assume the hypotheses of Theorem 2, as well as condition
(4.1). Then, there exist δo>0 and a function s(δ) defined for 0<δ<δo

and tending to zero as <5 —>0 such that, for all Γe Gψ,^, integersa^b and
xά = {xd

t,teΈ\[_a,b~])eX{ia,b]\ / = 1,2 the integral (3.9) defining the
function #[fl,fc]CΠ3cd) exists, does not vanish, and satisfies

- 1 (4.2)

We show that Lemma 1 implies Theorem 2. Formula (2.14) and
Definition (3.9) imply that for 3c = (xt, t e Έ\[_a, &])

X )
j
X 0[α+l,b]U \X

where x(xa) = (3c, xa) e X{[a + 1, £>]) and

Ψ(xa\x)=- Σ yv(^teV). (4.4)
V:VφH([a+l,b}),aeV
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It now follows from (4.1), (3.5)-(3.8) that

\ψ(xa\x)\S-φ(δ), *«eX,

where φ(<5)->0 as δ->0. Theorem 2 follows from (4.2) and (4.3) by an
appropriate choice of s(δ).

Lemma 2. Let (Wk, 33Wk), k = 1, 2, foe measurable spaces, and let
V=WίxW2be equipped with the product σ-algebra 23F. Let mk( ), fc = 1, 2,
foe /m/ίe measures on (Wk, 2Vk) and let m( ) foe ίfteir d/recί product. Let
pι(v), veV,i=l, 2, foe probability densities on (V, 33F). Lei p'ίwj), w2 G FF2

foe ί/ie o?ιe dimensional densities

pί(w2)= (4.5)

and assume that there is a conditional density p(w11 w2), wίeW1,w2£ W2

such that

pί(w1, w2) = p ΐ(
x I w 2 ) , 2, i=ί,2. (4.6)

Lei φ1(w2), φ2(w2), vv2 e FF2 and φ(ι̂ ), veV,be measurable complex-valued
functions and let ψι(v) = φ(υ) φf(w2), veV,ί=l,2. Assume that, for some
λ and any two points weW2,w' eW2

s(w')

s(w)
- 1

where

Let

s(w)= J φ(wi, w)p(wί\w)mί(dw).

q(w) = mind?1 (w),p2(w)),

pί(w) = pί(w)-q(w),

p2{w) = p2(w) — q(w), weW2.

(4.7)

(4.8)

(4.9)

Let
= Ί J \p1(w)-p2(w)\m2(dw)= J pi(w)m2(dw), / = 1,2. (4.10)

I, finally, let

θi= ί |<j9'(w)-l |p i (w)m 2 (dw), i = l , 2 , (4.11)

g= J | < p 1 ( w ) - φ 2 ( w ) | ί ( w ) m 2 ( ί ί w ) . (4.13)
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Then

- 1
1+λ

\W

2(v)p2{v)m(dv)
V

provided

Proof. By using (4.6), (4.8) and (4.9), for i = 1,2 we have:

ί ψi{v)pι(v)m(dv)= J s(w)φι{w)pι(w)rn2(dw)
V W2

(4.14)

= j s{w) φ m2(dw) m2{dw).
(4.15)

By fixing (arbitrarily) w° e FF2 we find:

- 1 (4.16)

w2 Ήw )

— j ό~ φ2(w)p2(w) m2(d
w2

 s(w )

By using (4.10) we find that if ρ Φ 0

W2

ί
W2

 S\W )

= f f
Q w2 w2

U w2 w2
s(w)

m2(dw)
2

(4.17)

p1(w)p2(w)m2(dw)m2(dw).

By using first (4.7), and then (4.10), (4.12), we obtain

I jr-φ (w

w2 s(w )
(4.18)

s{w)

s(w)
φ 2 ( w ) - l A(w) p2(w) m2(dw) m2(dw)

J ί [|φ1(w)-l|+2+(l+/l)|φ2(vv)-l|]p1(w)p2(w)m2(dw)m2(dw)
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(If ρ = 0 inequality (4.18) is trivial.) Furthermore, from (4.13) and (4.7) it
follows that

w2

(4.19)

Finally, from (4.7) and (4.11) we obtain

ί
w2 ^!- ί

- ί
w2

s(w)

s(w°)

s(w)

772 (w) m2(dw)

s(w°) s(w°)
- 1

(4.20)

p (w) m2(dw)

Combining (4.16), (4.18), (4.19) and (4.20) gives the statement oftiie lemma.
Now let ψ(L), Z ^ O , be a fixed function such that ψ(L)->0 when

Z->oo. Let Wψ be the class of potentials U={Uv(yv)9 VeH(Έ)}Ί such
that, first

Mv(V) = 0 for \V\>2
and second, if

Mτj(d) = Mv({n,n + d}), neΈ, d= 1,2,...
(4.21)

M ί /(0) = M[7({/t}), f i e Z
then we have

1 = 0 , 1 , . . . (4-22)

Furthermore, let &'ψfδ be the class of systems of functions Γ such that, first

JίΓ(V) = 0 for \V\>2
and second for

JίΓ{d) = oVΓ({n,n + d}), neΈ, rf=l,2,...

then we have

(4.24)

Since in the following we will frequently consider several potentials U
simultaneously, the quantities introduced in Section 2 and 3 will have
the additional argument U. For example gA(Γ\x;U) is defined by
formula (3.9) for potential U and system Γ.

7 We emphasize at this point that we are not assuming here that the potential is
translation invariant.
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For any A e H(Έ) and two boundary conditions

xj = (x/, t ε Έ\A) ε X(A), / = 1,2,
let

T(x\x2) = {te Έ\A : x\ + x 2 } . (4.25)

Lemma 3. Let ψ(L) be a fixed function which goes to zero as L-»oo.
There exist an integer d0 and a function δ(c)>0 (c>0) such_that for all
c>0, A GH(Έ), Ue%,Γe Vψίδ(c) and xj = (x/, teΊ\A)eX(A\ j = 1,2,
the following statements hold:

0) The integral (3.9) defining gA(Γ\x\ U) exists and is non-zero.

1) If one of the following four conditions holds:

a) T(x\ x2) c [6, ΐ] such that [b - d0, ϊ] C Έ\A,

b) T(xx, 3c2) C [fe, /] such that [ft, / + d 0 ] C

c) T(3c\5c2)c(-oo,/]c2:V4,

d) T(5c1,5c2)C[ft,oo)cZV4,

(where b, / are any integers with b^J) then

- 1
gA(r\χ2,u)

2) If T(x1, x2) c \b, /] C Έ\A with l-b^dQ-ί, then

(4.26)

^ 2c. (4.27)- 1

If the potential U satisfies condition (4.1) and l / e S ^ then
for some function ψ. Without loss of generality, we can assume that the
function ψ is the same as the corresponding function in Theorem 2, so
we can assume in Lemma 1 that Γ e df

ψtδ. Statement (4.2) of Lemma 1
follows from inequality (4.26) (Cases c) and d)) if we take s(δ) = 2c(δ) where
c(δ) = inf c. The more complicated statements of Lemma 3 are needed for

the proof of this lemma by induction on \A\.

Proof of Lemma 3. Without loss of generality, we can assume
c^c0 where c0 depends only on the function ψ. The function δ(c\ the
number c0 and the integer d0, which also depend only on ψ, are defined
below in the course of the proof. Fix the set A G H(Έ) and make the induc-
tion hypothesis that the inequalities (4.26) and (4.27) hold if A is replaced
by any proper subset A.

We begin by proving statement 1) of the lemma in the case where
condition a) holds. (The proofs assuming b), c), or d) are similar.) By
increasing I if necessary, we may assume that I + l e A Let A = AouAί...
...uAn where each Aj is non-empty; where A 0 = ACΛA0 and where the
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Λpj= 1, ...,n, has the form Ar\Ak where the fcy are distinct integers and

From condition a) and the assumption that / + 1 e A it follows that such a
decomposition is possible and that no kj is equal to — 1. We introduce the
sequence of potentials Uj = {U^(yv\ Ve H(Έ)},j = 0,..., n + 1, by

fC/K(xf,xf) if F={s,£} where s
vWv) = I ̂ ^ for o t h e r γ a l u e s Q f Ve fl(Zj ( 4 2 8 )

(where yF = ( x ί , ί e F ) e I F ) . Similarly we introduce the sequence of
systems of functions Γj = {yJ

v(yv\ VeH(Έ)},j = 0,..., n + 1, by

j ( jyv(χs?xt) if y={s,t} where seΈ\A, teAouA1U" uAj_1

yvκyv) = I y^yj for o t h e r v a l u e s o f VeH^E) (4 29)

Evidently 17°= U,Γ° = Γ. Furthermore, from (2.10) and (3.9) it follows

t h a t ΦΛ^I*2, u) = ΦA(yA\χ\ u»+i), yAeX\

Therefore, using (3.9) and (2.10H2.12)

gA(Γ\x\U) = gA(Γn+1\x\Un+1) (4.31)
so

9A(Γ\X\U) _ Λ gA(P\x\ W)
gA(r\χ\u) }X gA{r^\x\υ^) (*-iZ)

We will estimate each factor on the right of (4.32) by using Lemma 2.
We let W1=XΛ\ΛJ,W2 = XΛ'. The densities pf(.) on WίxW2 = XA

are defined by

, yΛeXA.

If j ; F = (χί? t e V) e XF, Fe H(Z), and

let

teAj,seZ\A

- Y y (x x ) - Y v (x) i 7 = 1 2

(4.34)
A) = exp {- χΓ

A\Aj{yΛAj 13c1 (yA))},

ψ2(yA) = ψ2(yA) Φ(yA) = exp {- χΓ

A

j+1(yA\
χ1)}
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Then, using (3.9) we have

gA{P\x\W)= f wi(yA)pi(yA)dyA,

xΛ

gA(Γj+1\x\ l/ '+ 1) = J Ψ

2(yA)p2(yA) dyA .
X^

From definitions (4.5), (4.33), and (2.14) we conclude that the marginal
densities are given by:

Ϋ(yA) = rΛAyAμ\υi),
2 i , yAjeXA>.

From (4.28) and (2.10) follows that for all yΛA. e XA^ and all x e X{A\A)

ΦΛUMΛU, I % V>) = ΦAUj(yA,Aj I x, W+ί) (4.37)

and therefore (see (4.6) and (2.14)) we obtain

(4.38)

Thus, all the conditions of Lemma 2 are satisfied. From (4.8), (3.9), (4.34),
and (4.38)

s(yA) = g^Aj^xHyA), uή = gA,Aj(rj+ x\xHyAjX ^ ' ) . (4.39)

It follows from definitions (4.22) and (4.28) that Uje% for all7 = 0,...
. . . , n + 1. It follows similarly from definitions (4.24), (4.29) that Γ j e(£^ δ

for all 7 = 0,...,n + l. Let yAoeXΛo

9 yAoeXA° For A replaced by
A\Aθ9 x1 replaced by 3c1(y 4̂o), 3c2 replaced by x1^^) the hypotheses about
boundary conditions in Case 1) of the lemma hold with [b, /] replaced
by [b, I + d0]. By the induction hypothesis, in the case7 = 0

c. (4.40)

In a similar way, in the case7 = 1,..., n, the hypotheses about boundary
conditions in Case 2) of the lemma hold with [6, /] replaced by Δkj, so by
the induction hypothesis

J ΛQ/ 4

7 = ! , . . . ,«. (4.41)

By comparison with (4.7) we see that we can put

2 ΐ ^ " ? (442)

2 c if j=l,...,n.
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Using the inequality

\ez-l\Se\z\ if \z\ ^ 1 (4.43)

we find, using (4.34), (4.23), and (4.24) that for Γ s d'ψtδic) we have

^ j = 0, . . . ,n, ι = l , 2 , (4.44)

provided δ(c)^(2d0ψ(0))~1. (This is the first of the conditions we will
impose on δ(c) in the course of the proof.) We note that, using (4.34),
(4.44), (4.23), (4.43) and the fact that

we have

teAj,seΈ\A I \

where
Qj= Σ ΛΆ\t-s\). (4.46)

se[b,l],teAj

Note also that by using (4.28), (2.10), and (4.21) we have for all
yΛ = (xt9teA)GXΛJ = 0,...,n,

\ΦΛ(yA I x1, Uj) - ΦA(yA 13c1, Uj+ x)| ̂  2Sj (4.47)
where

Sj= Σ Mv(\t-s\). (4.48)
se[b,i],fe^j

From (2.11) and (2.12) now follows that

Finally, using (2.14) and (4.36), we obtain

e-*sJS0AlSe4s^ y eXΛj9 j = O9...9n. (4.50)
v vyAj)

From (4.10) and (4.9) it follows that

1 - ρ = j ^ min (p1 (yAj\ p2(yA)) dyAj

XΛJ
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The comparison of inequalities (4.44) and (4.51) with definitions (4.11),
(4.12) shows that

(4.52)

j j = 0,...,n. (4.53)

Combining (4.35) with the statement of Lemma 2 and estimates (4.42),
(4.51), (4.52), (4.53) we obtain

Sj, i = 1,2, j = 0,...,n.

By comparing (4.45) with (4.13) we find also

gΛ(Γj+1\x\Uj+1) "

where (with b0 = 1, bj = 2, / = 1,..., n)

1 + bjC

(4.54)

fj = 1 - (1 + &7.c) 2e^ 0 ψ(0) δ(c) - bjC

- {bjC(l-e-4Sή + 2eQj{l + 2ed0φ(0)δ(c)) (4.55)

+ &edoψ(0)δ(c)(2 + bjc)Sj}, ; = 0 , . . . , n ,

provided c and δ(c) are small enough so that the denominator of (4.55)
is positive.

We use the following almost obvious inequality: For any complex
zu...,zr with k i l ^ α ^ . . J z ^ α ,

ΐ = l

From this, (4.32), and (4.54) follows that
r

- l < Γ
gA(r\χ2,u)

(4.56)

(4.57)

We will choose c0 and (S(c) such that co^(100)~1and^(c)^c(100ίίoφ(0))~1.
Then from (4.55) it follows that

Also, from (4.46), (4.24), (4.48), (4.22) and the definition of A} and taking
into account that kj Φ 0, — 1 for / = 1,..., n it follows that

(4.58)

Σ SJ^ Σ
se[b,l],\t-s\^do,tφ[b,l]
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Thus it is possible to find d0 sufficiently large (depending only on ψ)
so that

Πίi+ΛJ-i^-Γ*"4^- ( 4 5 9 )
j = i 4

Fix such a value of d0. Choose δ(c) and c0 small enough so that (in addition
to the requirements introduced above)

(4.60)

Then by using (4.55) and the fact that (Compare (4.58)) Q0^δ(c)ψ(Q),
So s; φ(0) we get

(4.61)

By (4.59) and (4.61), and taking into account that c ^
we have

Π (i+/7 )^ i+f i-^^" 4 t y ; ( 0 ) )c+4^" 4 v ; ( 0 ) = 1 + c (4 62)
j=o \ * / 3

Inequalities (4.57) and (4.62) give the desired inequality (4.26).
To complete the proof of Lemma 3, it is only necessary to check

inequality (4.27) for the set A. The proof of inequality (4.27) is similar
to the proof of (4.26), so we simply note the main changes in the argument.
Let A = AouA1 ...vAn where each Aj is non-empty, where A0 = AnA0,
A1=AnA_1 and where for j = 2, ...,n Aj = AnAkj where the Δk are
defined above. From the condition of Case 2) of the lemma it follows that
such a partition is possible if we assume, as we may without loss of
generality, that / + 1 and b — ί belong to A. All following steps in the
proof are the same, except that now the estimates for j = 1 are the same
as for / = 0. For example, instead of (4.42), it is necessary to write

ΐ '^ ' (4.63)
if ; = 2 , 3 , . . . , n .

I am very grateful to Professor Lanford for his assistance with the translation of
this paper.
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