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Abstract. For the Ising model with nearest neighbour interaction it is shown that the
spin correlations <σylσB> — <σ^> <σB> decrease exponentially as d(A, #)-> oo in a pure phase
when the temperature is well below Tc. This is used to prove that the free energy F(β, h)
is infinitely differentiable in β and has one sided derivatives in h of all orders for h = 0. The
bounds are also used to prove that the central limit theorem holds for several variables such
as e.g. the total energy and the total magnetization of the system, the limit distribution
being gaussian with variances determined by the second derivatives of F(β, h).

Introduction

We consider the Ising model with nearest neighbour interaction in a
finite box A on a v-dimensional square lattice Zv. The spin at each point
peΛ takes the values σp= ± 1, and the energy of a spin configuration
is given by

-£» = i Σ JP.tw+ Σ^Σ JP,q+
H Σ °, ω

p,qeΛ peΛ qφΛ peΛ

where Jptq = J > 0 if p and q are neighbours and Jp>q = 0 otherwise, and H
is the external magnetic field. We are only going to consider the situation
where A is completely surrounded by + spins, which give rise to the

boundary term in the energy. The Boltzmannfactor is e kτ . We put
-Λ T ΓJ /

-— = β and -— = h and denote the spin correlations / Y[

(σAy h>Λ Aξ:A. The free energy (multiplied by —kT) is given by

~. (2)

When A increases to all of Zv (in the sense of van Hove) the (σAyhtΛ

decrease to limits (σAyh which determine the state of an infinite system
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(i.e. all probabilities of events depending on a finite number of spins),
and F(β, h, Λ) converges to a limit F(β, h). For β<βc, the critical
reciprocal temperature, the (σAyh do not depend on the special boundary
condition chosen and there is no phase transition in the system in the
sense that F(β, h) is differentiable in hϊorh = 0. For β>βcandh = Q the
limits of the correlation functions depend on the boundary conditions
and the (σAy0 describe a pure phase with positive magnetization in the
sense that

<σ> = m*>0 and

when d(A, β)-»oo. In this case the right and left derivatives of F(β,h)
with respect to h are different for h = 0 and are equal to ± w* respectively.
(These questions are discussed in [6].) When / i Φ O the limits of the
correlation functions do not depend on the boundary conditions and
F(β, h) is analytic in /?, h. F(β, h) is always independent of the boundary
conditions chosen, and hence an even function of h.

In Section 1 we study the mixing properties of the state for β well
above βc. We show that

and also that
\<<>A\Λ ~ <<*A>H\ ̂

uniformly in Λ and h ̂  0 when β > β' for a certain /?' > βc depending on
the dimension.

In Section 2 we use these estimates to conclude that F(β, h) is in-
finitely differentiable in h to the right and left for h = 0.

In particular the susceptibility is finite at h = Q± and m*(β) is in-
finitely differentiable for β>β'. These results extend those recently
obtained by Lebowitz [7] for β < βc.

In Section 3 we show that the estimates of Section 1 can be used to
prove the central limit theorem for several quantities such as the total
magnetization and the total energy when h ̂  0 and β > β'. The proof also
works just as well for β small enough when the estimates of Fisher [2]
show that the correlations also decay exponentially. To simplify the
presentation we carry out the proofs in Section 1 for the two dimensional
case, but it is seen that they work just as well in any number of dimensions.

1. Mixing Properties of the State

The proofs in this section will be based on arguments concerning the
boundaries separating + and — spins. A spin configuration in Λ can
uniquely be represented by drawing the family of contours separating +
and — spins as indicated in Fig. 1 and described in detail in [8].
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Fig. 1. A spin configuration and its associated contours

With the boundary condition chosen all contours are closed, and we
consider them separated into simple closed contours as shown in Fig. 1.
The outer contours are those not surrounded by any other ones. The
following estimate of the probability that a contour y is an outer contour
of the configuration is basic in the following. It extends the well known
bound used in Peierls' proof that a phase transition occurs for h = 0
to the situation when h > 0.

Lemma 1. For all h ̂  0 we have the bound

Ph Λ (y is an outer contour) ^ e

Proof. Call the probability P. It can be written as

-β\y\

= e-β\y\ Z.(y)Z0(y)

Z(Λ)

(3)

(4)

where Z_(y) denotes the partition function for all configurations inside
y which have all spins adjacent to y equal to — 1, Z0(y) the partition func-
tion for all configurations outside y with all spins adjacent to y equal to 4-1
and without contours surrounding y, and Z(Λ) denotes the partition
function for all configurations in A. If in Z(Λ) we restrict the summation
to all configurations having + spins adjacent to y both along the inside
and outside and no contours surrounding y we get something smaller.
Hence Z(Λ.)^Z+(y)Z0(y), where Z+(y) is defined as Z_(y) but with
boundary spins + 1 instead, and

P<e-β\y\
Z+(v)

(5)

When /z = OZ_(y) = Z + (y), because to each term in one of the sums there
is precisely one in the other obtained by reversing all the spins which has
the same energy [remember that the energy is equal to const + β (the
length of the contours)]. To see that

Z-(γ)

Z+(y)
< 1 for h > 0
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we show that d Z-
= 0 .

dh Z + ( y )

In fact, this quantity is equal to

^ \σp/h,γ,- ~~ \σp/h,γ,+ >
p inside y

the averages being calculated in the two ensembles inside γ. But the F.G.K.
inequalities [3] tell us that the <σp>Λ>y are increasing functions of any
external fields acting inside γ. Hence the — averages are ^ the +
averages since they can be obtained by letting an external field equal to
+ oo respectively act on the spins along y.

Remark. The proof works just as well if the interactions Jp q and the
external field are not uniform as long as they are ^J>0 and ^0
respectively. This will be used in Section 3.

The estimate implies generally speaking that long contours are very
unlikely. We know that the <σ^>Λ Λ decrease as A increases, i.e. that
<<*A\Λ ^ <°A>H,A' when AgA [8]. '

We next estimate how much they differ when A is far from the part
of dA which is not contained in dA '. (dA is the set of points outside A
which interact with points in Λ.)

Theorem 1. Let A Q A £ Λ' and A = dΛ\(dΛndΛ')9 then

0 g (σA\Λ - (σA\Λ. ^ \A\ 6(1 - 3e^Γ2(^-β)d(A^ (6)

when /?>/?' = log 3 and h^Q. Hence the same bounds are valid for

Proof. For each configuration in the larger box A consider those
contours that surround points of A. Since long contours are unlikely
it is very unlikely that any of them also surrounds points of A if d(A, A)
is large. For the same reason it is very unlikely that a contour in A
surrounds A. This is proved in the following lemma which we prove
after Theorem 1 :

Lemma 2. For each configuration in A let yί9...9yn be those outer
contours that surround points of A (if there are any), and let E be the event:
"one of yι9...9yn surrounds a point of A or some outer contour in A
surrounds A". Then

) ̂  \A\ ' 3(1 - 3e-f)~2(3e-^^ (7)

when β > β' and h ̂  0.

Consider now <?4>h>yl, and split it according if £ occurs or not:

, - E . (8)
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Fig, 2. Boundary condition for fixed y l 5 , yn. The points of 0/1 are marked by circles

For each family y l 5 ... , yM that can occur as a family defined above of a
configuration in E consider the conditional average of σA given that the
family was precisely γl9... , yπ. That conditional average is however the
average in the box A'QA of points in A outside γι,...,yn with the
boundary condition + all along the outside of γί9... , γn and on dΛ as
indicated in Fig. 2 because there is only nearest neighbour interaction.
By the monotonicity of (σAyλ,, that average is ^ <0u>j,,,ι and summing
over all possible γ ^ , . . . , γn we can conclude that (σAyhfΛ<tE =
From (8) we then see that

because σA ^ — 1 always and the theorem follows using the estimate of
Ph Λ,(E) in Lemma 2.

Proo/ o/ Lemma i. Consider a point a e A at distance d from zl and
let L be an infinite halfline on the lattice starting from a. Consider any y
surrounding α. It must separate two adjacent points on L; let q = q(y)
be the last point on L not separated from a by y . We have d(a, q) + d(q, Δ)^d,
and because the segment (a,q) is surrounded by y \y\^2d(a,q). Also
\y\^2d(q,Δ) if y surrounds a point of J (see Appendix A). Hence we
know that if / = d(a, q) then \γ\ ̂  max(2(W — /), 2/), so we get the estimate
Ph Λ, (a surrounded by an outer contour surrounding a point of A)

'

ysurr. αand
points of Δ

)"+ Σ Σ

if 3e~^ < 1 using the estimate 3" for the number of contours of length n
starting at a given segment. The probability that A is surrounded by some
outer contour is estimated quite analogously by
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since A can only be surrounded by a contour if A = dΛ9 and in this case
/ ̂  d. The lemma is hence proved by adding the above estimates for a E A.

Theorem 1 can immediately be used to estimate the correlations
between σA and σB when A and B are far apart :

Theorem 2. d(A,β)

(10)
when β > βf and h ;> 0.

Proof. Let A' be the set of points in A whose distance from A is at

most d^A'B\ A = dΛ'\(dΛ'ndΛ) and Λ" = Λ\(Λ'vΔ). Then d(A,A)

If we constrain the spins on A to be all + 1 A is split into the two
independent boxes A and A" with + boundary conditions. In this
process (σAσByh,A can not decrease by G.K.S. inequalities [4, 5], and it
is changed into '<σA\Λ,(σB\A.,.

These averages can be estimated by Theorem 1 and we get :

0 ̂  <σA σByh>Λ - (σAyhiA (σByh>A ^ (σAyhιΛ, <σB\A,, - <σAyh>A (σB\A

= «^A>h,A' ~ <°A>h,A}(<>B>h,A" + (σA\A((σB\A,,- <σByhiA) (11)
d(A,B)

2

The first inequality in (11) is the second G.K.S. inequality [4, 5].

Remark. Theorem 1 and 2 are also valid for the lattice gas occupation

numbers ρp= — ~ ̂ -and their correlations (QAyh>A since these have the

same monotonicity properties as the (σAyhtA.
Although we are not going to need it in the following, we also show

that a stronger mixing property holds for e.g. the QA, namely that the
conditional average of QB given the configuration on a set A which does
not surround B deviates very little from the unconditional average if
d(A,B) is big:

Theorem 3. Let Abe a rectangular region in A and α any configuration
of spins in A. Then if (QByh,A,a denotes the conditional average of QB

given α we have:

\<QB\Λ.* ~ <QB\A\ £ 6\B\ (1 - ^e^Γ2(^-β)d(A^ (12)

when β > β' and h ̂  0.
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Proof. Let αQ and oq be the configurations in A having all ρp = 0 and 1
respectively. The F.G.K. inequalities [3] tell us that the conditional
average for any given α is bounded below and above by the corresponding
average given α0 and aί respectively, so it is sufficient to prove the theorem
for these two configurations. For αx it follows directly from Theorem 1
applied to ρβ, the smaller box being Λ\A and the bigger one A.

Consider now α0, i.e. consider the box A\A with boundary condi-
tion + 1 in dΛ and — 1 at the sites of A adjacent to dA. The contours in
Λ\A again have to be closed and an odd number of them have to surround
A. The argument of Lemma 1 can then be modified to give an analogous
estimate:

Lemma 3. For allh^Q we have the bound

Ph,Λ,z0(y ^ the outmost contour surrounding A) fg e-β(\y\-\dA\ϊ . (13)

Proof. As in (4) we have

is decreasing in h.
There is still a one to one correspondence between the terms in Z_ (7)

and Z+(y) obtained by reversing all spins inside y (and outside of A).
In this process all contours not adjacent to points in A are unchanged,
and the segments adjacent to A not belonging to the contours become
parts of them and vice versa. Hence for h = 0 the total energy of two
corresponding configurations differ at most by ±|<M|, so we have

Z~^ g eβ\dA\ f o r h = 0 and (10) is proved.
z+(γ)

The argument of Lemma 2 then gives the following estimate:

Lemma 4. Let E be the event: "the innermost contour surrounding A
also surrounds a point of #".

Then
3e-eΓ2(le-β)d(A>v (14)

when β > β' and h^Q.

Proof. Let b be a point of B at distance d from A, y a contour surround-
ing A and b9 and let L and q(y) be defined as in the proof of Lemma 2.
(L goes from b away from A.} We have d(b,q) + d(q,A)^ιd and (see
Appendix A) \γ\ - \dA\ ^2d(b, q\ \y\ - \dA\ ^2d(q, A). Hence if / = d(b, q)
then \γ\ — \dA\ ^max(2(d — /), 2/), and (14) follows as in the proof of
Lemma 2. (If the innermost contour surrounds b the outmost one also
does.)
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The proof of Theorem 3 for α0 can now be completed using Lemma 4
and the argument of Theorem 1 :

^β)fc,yi,£ = ̂ β)h,/ι> since for any contour γ surrounding A but not b
the conditional average of QB given that the innermost contour was
precisely γ is the average of QB in the region outside y with the boundary
condition -h 1 along the outside of y. That average is however ^ <ρβ>Λ,Λ
by F.G.K., and summing over all possible y the inequality follows. From
(15) we then get:

0 £ <QB\Λιβo - <QB\Λ έ - PM>βo(£) . (16)

(The first inequality is true by F.G.K.), and Theorem 3 for α0 follows
using Lemma 4.

2. Differentiability of the Free Energy

For a finite system the derivatives of F(β, h, A) are related to the
correlations in the well known way which follows from (1) and (2):

dF(β,h,Λ) = 1 y,
dβ 2\A\ {piA^

p(Tq>h'A

e.g., and similarly for other derivatives. In order to see the relations
between the various derivatives and the correlations in general it is
more perspicuous first to consider a system with an arbitrary many body
interaction whose free energy is of the form

\jAσA

 (1?)

and regard it as a function of all JA,AQA. (We define JA = 0 if A | A in the
following.)

From (17) we see that

dG

(18)

~~
dJB

etc. and we can define the generalized Ursell functions by :

(19)
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As shown by Lebowitz [7] for the ordinary Ursell functions (having all
\AI\ = 1) if we have a bound

\U2(A1,A2^ = \<σAlσAl > - <σXl> <σx,>|

we can get a bound
\ -- ίί(-4l U " ^^n) /ΛΓk\
)^ " (20)

in terms of the diameter of A^ \jAn if the diameters of A^ ,An

are all ^ α (see Appendix B). Hence by Theorem 2 we have such a bound
uniformly when A arbitrary, β^β"> βf and h ̂  0 for any β" > β'.

Since for the Ising model

Γ β/2 if A is a pair of nearest neighbours in A

JA=\ h + a boundary term if A is a one point set in A (21)

[ 0 otherwise

we have

Λ) =2""UΓ1 Σ' tWQ!,-,^,^, -,<?„) (22)

where the β^ range over all pairs of neighbours in A and the qt over all
points in A.

Similarly

= 2~mMΓ 1 Γ liH+. + ii^fii.-^^?!,-,?.) (23)

so that using the estimates above and Theorem 1 we can conclude that
they converge as A increases:

Theorem 4. For β>β' the limiting free energy F(β,h) and the (σ^)^
are infinitely differentiable in β for ft = 0. F, (σAyh and all their β-derivatives
have right and left derivatives of all orders with respect to h, and these are all
the limits of the corresponding derivatives when ft JO. All derivatives for
ft ̂  0 are the limits of the corresponding quantities in (22) and (23) when
A increases to Zv in the sense of van Hove, and the limits are given by the
corresponding expressions involving the limits (σAyh in place of the <σ^>Λ>yl:

Λ
Ί ^ — m \~*f TT //") f\ n \ ί^^'\

"I* V" βl...Qm

β2 «n

?" + "<OΛ>>, ^2-m y, „ (AO ... Q .. x (2y]

δβmδh» Q£Qm

 m +"+ l 1 '^' '^m''/1' '^
42- qn
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(In these sums e.g. ql or Q± is fixed and the other arguments range over
all of Z\)

Proof. The convergence of (22) and (23) to (22') and (23') for all
β > β\ h ̂  0 follows from (20), Theorem 1 and the van Hove condition,
which allow the boundary effects to be neglected. The fact that the con-
vergence is uniform in any region β^β">β, h^O and the fact that
F(β, h, A) converges to F(β, h) imply that F(β, h) is differentiable as
stated and that its derivatives are the limits of those of F(β, h, A). The
same argument applies to the (σAyhtΛ.

3. The Central Limit Theorem for Certain Random Variables

In this section we show that the central limit theorem holds for some
quantities X(σ) of the form

(24)

Generally speaking for a quantity as in (24) we expect X — < Xy to have an
approximatively gaussian distribution if in the sum there are many uni-
formly small terms which are sufficiently weakly dependent. This will
turn out to be the case for e.g. the total magnetization and the total
energy when A is large.

In the following we will only consider variables as in (24) with XA Φ 0
only if A is a one point set or a nearest neighbour pair in A. For such
variables the estimates previously derived can be used to get a rather
straight-forward proof by expanding the generating function (etxyhtA

for t^O to second order in t and estimating the remainder term suitably.
The basic estimates needed can be collected in the following lemma :

Lemma 5. // the XA are restricted as just indicated and are all non
negative, then

(25)
uniformly when β ̂  β" > β', h ̂  0, t ̂  0 and A arbitrary.

Proof. If we denote by G(t) the free energy defined as in (17) for the
interaction obtained from (21) by adding tXA to JA we get:

f G'(0) + - - G"(0) ' " ~ (26)

where f is an intermediate point 0 ̂  f :g t.
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The first two terms in the Taylor expansion are equal to the corre-
sponding ones in (25), and the third is equal to

the averages being evaluated with the interaction JA + tXA. Since
tXA ϊϊ 0 all our previous estimates are valid also for this interaction by the
remark after Lemma 1, and we get from (20)

t ^ -Z d(AivA2vA3)
< c n\ V Y Y Y e 3 nη\
= ~7~C3W 2, ΛAιΛA2

ΛA3

e \Ln

= O\t2[maxXA\ \ A

The last sum can be estimated in terms of X X% as follows: Let Bί,B2,B3
A

be the three different one and two points sets with JB Φ 0 that contain
the origin e.g. Then the sum can be bounded by

o f t Σ

(28)
p-q

We can now prove the central limit theorem for the total energy and
magnetization of the system :

Theorem 5. When A increases in the sense of van Hove the distribu-
tion of the fluctuations in the total energy EQ = Σ' σpσq and

(p,q}CA

magnetization

M= Σσ p, i.e. e = \Λ\-V2(E0-(E0\Λ) and m = \A\~ 1/2(M-
peA

converges to a gaussίan one with mean zero and second moments

λ d2F(β,h) ^ d2F(β,h) d2F(β,h)

whenβ>β' h^Q.
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Proof. Put XA = tί\A\~1/2 if A is a single point in A and XA =± f 2 |Λ| ~ 1/2

if ^4 is a nearest neighbour pair in A and ^d = 0 otherwise and apply
Lemma 5. The last term in (25) is 0(\A\ ~ 1/2) and hence goes to zero. The
quadratic term converges to \(t\ <ra2> +2t1t2 <em> + ίi<e2» by Theo-
rem 4, so we see that the generating function of e, m converges to that
of the gaussian defined by it:

lim^'i"^) = expi(^<m2> + 2ίι ί2<έ?m> + t22<e2>} (29)Λ

for all ί1?ί2 = 0. By the continuity theorem for generating functions
proved in Appendix C this implies that the distribution of e and m
converges to that gaussian distribution.

The gaussian distribution is the one prescribed by thermodynamic
fluctuation theory, and it is completely determined by the limiting free
energy F(β, h). However it is too crude to approximate the averages

<E0>Λ A and <M>Λ Λ by 2\Λ\ - jj^ and \Λ\ - j ̂ M- because in general
op on

surface effects are not small compared to \A\1/2. For example, using
Theorem 1 it is easy to show that if A is a square with side L then

oo

(M\Λ = L2 <σ0>Λ + 4L Σ (μd - <σ0>A) + o(L) (30)
1

where μd is the average magnetization at distance ά from the boundary
of an infinite half space with all spins + 1 at the boundary. Hence to
obtain the correct average of the gaussian distribution it is not enough to
know F(β9h); the "surface term" in F(β,h,A) can in general not be
neglected. This is even more pronounced in three dimensions, where the
surface correction is proportional to \A\2/3. In the proof of Theorem 5
we could more generally have considered the simultaneous distribution
of e and mQ,mί the magnetizations of the two sublattices A0 and Aί

of points whose coordinates have an even or odd sum. The co variances
of the gaussian limit distribution are then <£2>, <^mf> — ̂ -<ew>

peΛ0

and

Using this result and the transformation which reverses the spins on
one sublattice and turns the system into an antiferromagnet with inter-
action — β we get the central limit theorem for such a system :

Corrollary 5. For an antiferromagnetic system with parameters — β
and h = 0 the distribution of e and the total magnetization ma converges
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to a gaussian one with zero mean and covariances

<e2>,<emβ> = <e(m0-m1)> = 0
and

<™«> = <K) - ^ι)2> = <>2> - 4<m0m1> .

(The averages involving e, m0, m± are those given above.)

Since the estimate of Lemma 5 is uniform in A we can also use it to
prove the central limit theorem for a sum over a large region of an infinite
system :

Theorem 6. Consider an infinite system and let a sequence of variables
be defined as in (24), each by a finite sum. Then if

£ (XM)2 g const, ImaxIX^I ->0
A A

and

ί/ie distribution of X(n^ — (X(n)yh converges to a gaussian one with zero
mean and variance v. For example, if Xε = εv/2Σφ(εp)σp where φ( ) is

p
any continuous function with compact support, then asε-^0 the distribution
of Xs — (Xεyh converges to a gaussian one with variance

(31)
on

Proof. If X(

A

} ^ 0 the theorem follows immediately from (25) and
the continuity theorem for generating functions. If X(Jp are of both signs
we split them into the positive and negative part:

χw> = χw+ - χ%]_ with X%]+ X%}_ = 0 , and £ (X%\± )
2 ̂  const .

A

Consider an arbitrary subsequence {ri} of the given one. Since the
quadratic form £ XAlXA2U2(Aί,A2) is bounded by const ^XA

Aι,A2 A

(see (28)) we can always find a subsequence {n"} of {n'} such that the
covariances of X(""} and X(""} converge. The proof for non-negative X(

A

}

applies to any combination t+X(+"} + t_ X(""} with ί+,ί_ ^0, so by the
continuity theorem the centered distribution of (X(+"\ X(-"}} converges
to a gaussian one. From this follows that the centered distribution of
χ(n") _ χ(n") _ χ(n") converges to a gaussian one with variance υ. Since

any subsequence of the given one contains a subsequence converging to
the same gaussian distribution the sequence itself in fact converges to that
distribution [1].

The limit theorem for "coarse grained" averages like Xε implies more
generally that if we consider any finite family X\ , , Xε

n defined by
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Fig. 3. A path from g to A inside 7

functions φ1 , , φn with disjoint supports then the joint limit distribution
will be gaussian with independent components with variances

- T7y — §φϊ(x)dx. This follows directly by applying the theorem to

the variables t 1 X f - \ ----- \-tnX* for arbitrary ί l 5 v, tn. Hence the limit
distribution is the same as if the spins were independent with mean

dF(β, h)

dh

.
variance

dh2

and the limit theorem makes precise when the description of the system
as a union of macroscopically infinitesimal independent subsystems
often used in fluctuation theory is valid.

Appendix A. Some Estimates of the Lengths of Certain Contours

Here we prove the following estimate used in Section 1.

Lemma Al. Let A be a rectangular region and q a point on the lattice
at distance a from A. Then for any contour y surrounding A and q we have

Proof. Draw a path on the lattice from q to A going inside γ except
possibly near points where y touches itself as indicated in Fig. 3.

Let k be the number of segments in the path, let each segment be as
short as possible consisting of say n{ points i = 1, , k and let y f i = 1, , k
be the parts of y surrounding the segments of the path. We then have

Σ(ni~ l) + 2(/c — l)^d, since d is the shortest distance from q to A.
i

For each segment except the last we have the relation \y^ ^ 2(nt + 1). This
can be seen as follows: To each point p of the segment except the last
associate two units of yt by drawing a line through p perpendicular to
the next step of the segment and then assigning to p those two units of
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ji that are first cut by the line, one in each direction. In this process no
pair of units are assigned to two different points, since if that happened
for e.g. p and p' with p coming before p' in the segment they would both
lie on the same line with no unit of yt separating them, and the segment
could be shortened by going directly from p to p' along the line instead.
Similarly, to the last point of the segment we can associate the four units
of yt cut out by the two lines that can be drawn through it without con-
flict with the earlier assignments. Hence \γt\ ^2(n ί— 1) + 4 = 2(^4- 1).
For the last segment we have similarly \γk\ ^ \dA\ + 2(nk — 1). This can be
seen if we perform the assignments as above for all points of the segment
except the last, and then assign to each point p in dA that unit of yk first
cut out by the halfline going out of A through p and its neighbour in A.
Again, in the assignment of units to the points of dA no conflicts arise,
since if one occurred with e.g. p on the segment it could be shortened by
following the line through p to A instead.

Summing up we see that

and the lemma is proved.
Also if y surrounds A and a straight segment (fo, q) of length / going

away from A, then since d(q, A) = l + d(b, A) we have by the lemma
\γ\ ^\dA\ + 2d(q, A) > \dA\ + 21 as claimed in the proof of Lemma 4.

Appendix B. Estimates of the Generalized Ursell Functions

Here we prove the estimate of the Un(Al9 ••• , An) used in (20):

Lemma Bl. Suppose that we have a bound

\U2(A1,A2)\^C-e-κd(Aί>A2)

n

for all Aί9 A2, then for any partitioning of (J A{ into e.g.
i

A = \jAt and . A" = (J At
1 n'+l

we have
\Vn(Al9 9AJ\£Cne-*«A' A"> (B.I)

for all Al9 ••• , An and some constant Cn. Moreover if the diameters of the
A{ are all ^ a then d, the maximum of d(A, A"\ is bounded by

-a (B.2)
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so that (20) is true with Cn(a) = Cne
κa. (d(A) denotes the diameter of the

set A.)

Proof. By induction on n we first prove that for any partitioning
described above Un(Aί9~ , An) can be written as a finite sum of terms of
the form ±P-U2(B'9 B"\ where P is a product of <σ^> : 5 and B'gA',
B" £ A". For n = 2 this is trivially true.

Suppose it is true for all m<n and that A'u(A"vAn) is the given
n-l

partitioning, where A'^jA" is a partitioning of (J A{.
i

dJJ (A ••• A \
From (19) Un(Al9 9 An) =

 n~l( 1? >"n-ι) ^ and by the induc.
A

tion hypothesis [/„_ t is a sum of terms as described above. From such a
term similar terms are generated when P is differentiated. Finally when
U2(B'9 B"} is differentiated we get the following terms [using (18)]:

B,,σAny - (σB, σB,,y (σAn) - <σ^>«σ^σ4n> - <σB"><σAn» (B 3)

which are all of the desired form for the partitioning of (J A{. Hence (B. 1)
i

follows from the bound of U2 and the fact that |P| ̂  1.

n

To prove (B. 2) let p and q be any two points in (J At with peAl9

i
# e 4W e.g. Take A' = A± and ^4" = (J A,-. Then some member of A' has

2

distance at most d from ,4'. If it is An the distance d(p, )̂ is at most 2a + d.
If not, move that member to A' instead. Any point in A' has then at most
the distance 2a + d from p. Repeat the argument until after at most (n — 1)
steps An is reached. We can then conclude that d(p, q) ̂  n(d + α), and
(B. 2) follows.

Appendix C. A Continuity Theorem for Generating Functions of
Probability Distributions

Lemma Cl. Let {Gn} be a sequence of probability distributions on
Rd for which the generating functions gn(t) = ^et'xGn(dx) all are defined in
some convex set ΩcRd which contains 0 and some open ball of Rd. If
lim gn(t) = g(t) in intΩu {0} = Ω'and g(t) is continuous at the origin then Gn
n—>co

converge weakly to a distribution G, and g(t) = ^et'xG(dx) in Ω'.
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(I.e. lim \φ(x] Gn(dx) = §φ(x) G(dx) for any bounded continuous func-

tion, which we denote by Gn=>G.)

Proof. Consider the case d = 1 first, and let Ωf be an interval [0, ω)
ω > 0 e.g. Consider a point t E Ω', t Φ 0, and choose ε > 0 so that t + ε e Ωf

too. Then the tails of the integrals JVX Gn(dx) can be bounded as follows:

eεA J etx Gn(dx) ^ J e«+ε)* Gn(dx) = gn(t + ε) (C. 1)
1 A

so that

]etx Gn(dx)^conste~εA (C. 2)

uniformly in rc. Similarly
-A

J ^*GB(d;c)£<rM (C.3)
— 00

so the tails J etx Gn(dx) can be made arbitrarily small uniformly in n
\ x \ Z A

by choosing A large. By Kelly's theorem there exists a subsequence,
{n'}9 and a distribution G (possibly having total mass < 1) so that

l<p(x)Gn.(dx)^l<p(x)G(dx)
A A

for all continuous φ(x) if A and B are points of continuity of the distribu-
tion function G(x). From this and the uniform bound (C. 2), (C. 3) of the
tail integrals follows that

fetxG(dx) is finite and that J etx Gn,(dx)-+\ etx G(dx)9

so that
g(t)=$e?*G(dx) for all fe(0,ω).

Letting t go to zero we see by the monotone convergence theorem and the
continuity of g that 0(0) = 1 = J G(dx\ so G is not defective which implies
that Gn=>G [1]. If G is the limit distribution of another subsequence we
see that

for ίe[0,α>).

But both generating functions are analytic in the strip Re t e [0, ω) and
are continuous when Re£-»0, so we see that they coincide when t is
imaginary too, which implies that G = G by the uniqueness theorem for
Fourier- Stieltjes transforms. Hence G=>G and

g ( t ) = $ e t x G ( d x ) f o r t e f f .

In particular the sequence {GJ is tight, i.e. for any ε > 0 there is a compact
interval Kε such that J Gn(dx) ^ 1 — ε uniformly in n [1].
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Consider now the case d> 1. Since Ω contains an open ball of full
dimension we can find tί, , td e Ω' such that KA, the intersection of the
strips {x; \tt - x\ ̂  A} is compact for all ^4^0. Applying the theorem for
d = 1 to the random variables tt - x ί = 1, , d we see that they are all
tight, i.e. for any ε > 0 we can choose Aε such that

^~ for i=l,- . ,d

and all n. Hence Gn(KAε)^l-ε uniformly in n, and the family {GJ
is tight also. Hence it is relatively compact i.e. there is a subsequence {ri}
such that Gn, => G [1]. As in the proof for d = 1 we see that for any ί e £2'\{0}
the tail integrals J el'x Gn(dx) can be made arbitrarily small uni-

\t-x\^A

formly in n if A is made large, so that JV'X Gn'(dx)->jV'x G(dx) and
0(0 = ί & '* G(dx) for t e Ω'. The equality of any two limit distributions G
and G then follows as before, and we conclude that GΠ=>G with

g(t) = JV•* G(dx) for ί e Ω. If as in Section 3 g(t) = exp Γ ~ )wίth ̂

non negative definite then because this is an entire function we can con-
clude that g(i) = JV'* G(dx) when ί is imaginary too, and G is the gaussian
distribution determined by (λ
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