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Abstract. The concavity of two functions of a positive matrix A, Trexp(#-+-log,4)
and TτArKApK* (where £ = £* and K are fixed matrices), recently proved by Lieb, can
also be obtained by using the theory of Herglotz functions.

In a recent article [1], Lieb has shown, among other things, that,
if A1,Λ2,B,K are complex matrices, with Ax = Af, A2 = A%>0,B = B*,
the two functions t-*Trexp(B + log(tA1+A2)) ί->Tr(ί^1+ A2)

rK
- (tAx + A2)

p K* (where 0 < r, 0 < p, r + p = s :g 1), are concave functions
of the real variable t for sufficient by small ί. The object of this note is to
indicate how this can also be seen by using the theory of Herglotz
functions: in fact, for Aγ > 0, the two above mentioned functions can be
extended to Herglotz functions holomorphic in the complex plane
cut along the real axis from — oo to τ ̂  0. Some supplementary work is
necessary to study the case of arbitrary self-adjoint Av The applicability
of the method obviously extends beyond the examples treated here.

Note, in this paper, if A is an element of a C*-algebra si with unit,
we write A ̂  0 to mean A = J3* B for some Be si, and A > 0 to mean that,
for some real number a > 0, the inequality A — a ^ 0 holds. Of course
A >0 is equivalent to: A ̂ 0 and A~1 exists as an element of si.

I. Remarks

Let si be a C* algebra with unit.
1. Let A e si and let Sp,4 denote its spectrum. Suppose /is a complex

function holomorphic in an open set of the complex plane containing
Sp A Then f(A) can be defined (as a holomorphic function of A with
values in si) by

where ^ is a contour surrounding SpA All reasonable definitions of
f(A) coincide with this and:

Spf(A)Cf(SpA)

(see [2], Chapter I, § 4, Proposition 8, p. 47).
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2. For any Cestf, denote

~ ( C + C*), ImC= ~
2 2i

Any element C of / + is invertible: if RGC = A , ImC = B>0,

Moreover C — z is invertible if ImzgO, so that

SpCc{ze<C:Imz>0}.

For any CeJ + , -C~ι e / + since:

3. Let 0 < α < 1. The function z-*z* will be defined in the cut plane
C\1R~ = {z : Imz Φ 0 or Rez > 0} by the formula:

a sinαπ * J a I 1 1
zα = f dί ία

π \ ί ^ +

If C e / + , Cα is defined (since SpCc<C\lR~) and given by

Hence

j
π o

It is easy to check that the integral is absolutely convergent, and since

Let K = - C ~1 e J + by the preceding argument Ka e J +,

Thus:

Lemma ί. If C e J+ and if 0 < α < 1, ί/ien Cα e ,/+

e~ ι a πC a6e/+; in other words

lme~iaπCa<0<lmC\

4. Let CeJ + . Define z->logz in the cut plane C\1R~ by

los
GO / 1 -j

I \t+ί t + :
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Then log C is well defined and given by the formula

This implies that ImlogC>0. Defining again K= — C" 1 ^e^C'1 we
find that

Im log έ π C ~ι = π - Im log C > 0 .
Thus

0 < I m l o g C < π .

By Remark 2, this implies that Sp logC c {z e C: 0 < Imz < π}.
5. Let R = R* > 0 be in si and let C be in J +. Then for any integer

Sp[R"C"R")n is contained in {zeC: Imz>0} . (1)

For, by Remark 3,

i l l
lmeκ n)RnC"Rn>0,

i i i\/ i i i\
which (by Remark 2) implies that Sp\jR"C"Kn/ is contained in the angle:

π

from which (1) follows by Remark 1.
6. Let£ = £ * e j / and CeJ + . Then

Sp exp(£ -f logC) C {z eC : Imz > 0}. (2)

For, by Remark 4,
0<Im(J3-f-logC)<π.

Hence

0 < Im Sp {B + log C) < π (by Remark 2)

hence (2) by Remark 1. This can also be seen by using the Trotter product
formula

ί - - -\ R
exp(B + logC) = lϊm\RnCnRn)n, with R = e x p y .

This converges in norm, which implies resolvent convergence so that (2)
follows from (1).

7. Let A and B be elements of si, with
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satisfying

0, Ime~iaA<0, I m £ > 0 , Ime~iβB<0, (3)

where 0 < α, 0 < β, oc + β < π. Then

I m S p ^ B ^ O . (4)

To see this, note that (3) means

Λ2>0, A1>A2cot(x, B2>0, B1>B2cotβ.

Consider the following two analytic functions:

ξ-+Z(ξ) = A1sinoc — A2cosa + eξA2 ,

ξ-> W{ξ) = Bx sinβ - B2cosβ + eξB2 , (ξ

For real ξ, Z(ξ) and PF(ξ) are positive in s4\ for 0 < Im£ < π, ImZ(ξ) > 0
and ImW(ξ)>0. Finally Z(iα) = ^sinα, W(iβ) = B sin β. Denote

This a holomorphic function of three complex variables. Fix w with
Imw<0 and zγ real; then

w - Z{zγ) W(z2) = Z&)* [w - ZίzJ* P^(z2) Z{zxn Z{Zl)-* .

Hence this is invertible if 0 ^ I m z 2 ^ π . Similarly, it is invertible if z2

is real and if 0 ^ ImzjL ^ π; in other words, for Im w < 0, the domain of
holomorphy of JR(W, z1?z2) contains an open neighborhood of the
"flattened tube":

{zi,z2 : lmzi = 0 , 0 ^ I m z 2 ^ π } u { z 1 , z 2 : Imz2 — 0,O^

So that, by the "local tube theorem" (see, e.g. [3]), K(vv, z1?z2) is holo-
morphic in a neighborhood of:

{w,zuz2 : I m w < 0 , 0 ^ I m z 1 , 0 ^ I m z 2 , I m ( z 1 +z 2 ) :gπ} .

In particular, taking zγ — ΐα, z2 = iβ, we get (4).
Suppose now A' and B' are elements of si such that

A>Q, lmeiβB'>0. (5)

Applying the preceding result to A'* and £'* yields:

If we take now A = e~ia A, B' = e~ipB, we find

0. (6)
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Actually (4) and (6) can be sharpened to strict inequalities: our hypothesis
(3) implies that OφSpΛB since A and B are both invertible; moreover
there is a δ > 0 so small that e±iδA and e±iδB still satisfy (3), so that the
spectrum of AB is actually contained in

{z = ρeiθ e C : 0<ρ, 2δ < 0 < α + jS- 2δ}

Lemma 2. Let A and B be elements of sd verifying (3). Then:

SpABC{z = ρeiθe<C:0<ρ,0<#<α + β}.

As a corollary, if A and B are complex N x N matrices satisfying (3),

Tr AB C {z - ρeiθ: ρ > 0,0 < θ < a + β}.

This can also be seen more simply by noticing that

ImTr AB = ^ ^ 2 ι ,

ΎrA1B2 = ΎrBlA^i > Tr B\A2B\cota = ΎrA2B2 cotα

+ A2Bί) > (cotα + cot/?) ΎΐA2B2 > 0,

(since cotα + cotjS = sin(α + β)/sinαsinβ). From this one concludes that
ImTre~ i { a + β)AB<0 by the same substitutions as in the proof of the
lemma.

8. Estimate of \\A«\\ for 0 < α < 1.
Let A e sd with A = V+iW, V= F* > 0, W= W*, then

Hence \\A~x || ^ || V~*\\2 = || V~11|. Let a =

smαπ Ό
CO / C O

2a \n=ί

The first integral is b o u n d e d in n o r m by

2a 2(2aY
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The second integral is bounded in norm by

(
L \t-a t

1 - α

9. Lemma 3. Let D denote the domain in s$ given by

D= U IJ {/le^:Ree~ίθv4^ε}
-f ^0^f 0<εelR

Lei f be a complex valued function on D such that
(i) / zs holomorphic on D.

(ii) // lmA>0 then Im/(A)^0, αwd z/
(iii) For every real ρ>0 and every AeD

where 0 < s ̂  1 (5 fe^m^f independent of ρ and A).
Then the restriction of f to stf+ = {A e s$ : A — A* > 0} is concave.

More precisely^ let Aγ=A* and A2 = A*>0 be elements of si. Then,
for all sufficiently small real t, and for all integer n ̂  1,

(Remark: a function / satisfying the conditions (i), (ii) and (iii) with
s = 0 is a constant).

Proof. Note that condition (ii) implies in particular that/(,4) =
Let Ay = Af and A2 = A%>0 be fixed elements of J / , with
and let τ = || A~2

 x \\ \\ A1 \\. Denote, for ze<£,

G(z) = f(Aί+zA2).

G(z) is well defined and analytic when ImzφO or R e z > τ . F(z) is well
defined and analytic when \z\<τ~x. In the region where R e z > τ , we
have, by analytic continuation of (iii),

G(z) = zsF(z~i). (7)

Hence this relation extends every where. In particular it shows that
G(z) could be analytically continued across the real axis from — 00 to — τ.
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Furthermore, G is a Herglotz function, i.e. ImG(z) has the sign of
Imz. This guarantees the existence of boundary values of G, in the sense
of tempered distributions, on either side of the real axis. We symbolically
denote G(z + iO) these distributions, i.e. for every φ e ^(1R), we write

j G(x±iO)φ(x)dx = \im j G(x±iy)φ(x)dx.
- o o yT*9> - o o

y> 0

The Herglotz condition shows that ImG(x + zΌ) is, in fact, a positive
measure which we denote symbolically by h(x). It is clear from (7) that,
for \z\ > 2τ, there is a constant K such that \G(z)\ < K\z\s.

Let A e D be such that Ree~iθA > 0 for some θ with - f ^ θ <*f. By
analytic continuation of (iii) we have

f(A) = eisθf(e~iθA).

Let lmA>0. Then

= eisπf(-A),

so that

(implying, in particular the triviality of the case s = 0).
Applying this to A = A1 + zA2 shows that

Imz > 0=>Im <ΓίsπG(z) ̂  0 (8)

or:
sin sπRe G(z) — cossπ Im G(z) g: 0 .

Denote
1

This function is identical to G if s = 1. If s < 1, we have sinsπ > 0 and, for
ρ > 0,0 < θ < π,

lmM(ρeiθ) = ρ1 - s [sin(l - s) ΘRQG(ρeiθ) + cos(l - s)θlmG(ρeiθ)]
1 sin[(l -s)θ + sπ] ImG(ρeiθ),

and, since 0 < (1 — s) θ + sπ = θ + s(π — θ) < π, we find that

a conclusion which, of course, also holds for 5 = 1 . Thus, for all 5 with
0 < 5 ^ 1, M is a Herglotz function. Furthermore, since M(z) = zF(z~1),
it is analytic in the complement of the cut {z: Imz = 0, \z\ ^ τ } and, at
infinity, is bounded by const. \z\. We denote fc(x) = ImM(x-HO)
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(symbolically) the positive measure with support in [ — τ, τ] which is the
boundary value of I m M , on the real axis, from the upper half plane.
Then

, „ , . 1 Γ

τ k(t) .
M(z)=— dt + az + b.

π _τ t — z
It follows that

+ a + bz,v ' v ' π ίτ zt-1

for all z in the complement of {z : I m z = 0 and \z\ ̂  τ~ί}. Since z2(zt — 1)""1

= -\_-zt~ι -t~2 + t~~2(l - z ί ) " 1 ] , we have, for n^2

dn n\ I t"-2k(ή

dzn π lτ ( l - ί z ) π + 1

which is ^ 0 for all even n, and real z such that \z\ < τ ~ 1 .

II. Applications to Matrices

In this section, we restrict our attention to the case when sd is the
set of all complex NxN matrices. However, our discussion would
also hold in more general situations: for example a von Neumann algebra
with a finite trace; note that, in the latter case, the trace of an element A
is contained in the convex hull of Sp.4 ([4], p. 108, Corollary).

Let B = B* and K be fixed elements of sd. We consider the following
functions sd —• (C:

fλ, given by fx (A) = Tr exp IB + log A]

ί JL 1 JL\n

/ 2 , given by f2(A) = Tr[e2nAne2n

/ 3 , given by f3{A) = \ΊτArKApK*f

/ 4 , given by fA{A) = ΊvArKApK* ,

where n is a positive integer, r and p are real, O ^ r , O ^ p , s = r + p ^ 1.
From Remarks 6, 5, 7, it follows that /,.(/= 1,2, 3,4) satisfies all the
conditions of lemma 3. (It is worth noting that, in view of the estimate
in Remark 8, / 2,/3,/4 are bounded in modulus, on D, by const. ||^4||α.
Using this fact would slightly simplify the proof of Lemma 3.) Let
Ax = Af and A2 = A\ > 0 be elements of stf, denote

Fjtf^fj^ + zAJ, O ' = l , 2 , 3 , 4 ) ,
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we find that, for real t with |r| g τ ί

d2mFj(t)

dt2
g 0 for all integer m Ξ> 1.

In particular, all the functions j } are concave on J / + .
Using the properties described in Section I, it is easy to construct

other examples; examples involving functions of several variables can
be constructed by considering (Au ..., Λn) (where AjEjtfj) as an element
of j / 1 ©
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