Remarks on Two Theorems of E. Lieb

H. Epstein
I. H. E. S. Bures sur Yvette, France

Received March 12, 1973

Abstract

The concavity of two functions of a positive matrix $A, \operatorname{Tr} \exp (B+\log A)$ and $\operatorname{Tr} A^{r} K A^{p} K^{*}$ (where $B=B^{*}$ and K are fixed matrices), recently proved by Lieb, can also be obtained by using the theory of Herglotz functions.

In a recent article [1], Lieb has shown, among other things, that, if A_{1}, A_{2}, B, K are complex matrices, with $A_{1}=A_{1}^{*}, A_{2}=A_{2}^{*}>0, B=B^{*}$, the two functions $t \rightarrow \operatorname{Tr} \exp \left(B+\log \left(t A_{1}+A_{2}\right)\right) \quad t \rightarrow \operatorname{Tr}\left(t A_{1}+A_{2}\right)^{r} K$ $\cdot\left(t A_{1}+A_{2}\right)^{p} K^{*}$ (where $0<r, 0<p, r+p=s \leqq 1$), are concave functions of the real variable t for sufficient by small t. The object of this note is to indicate how this can also be seen by using the theory of Herglotz functions: in fact, for $A_{1}>0$, the two above mentioned functions can be extended to Herglotz functions holomorphic in the complex plane cut along the real axis from $-\infty$ to $\tau \geqq 0$. Some supplementary work is necessary to study the case of arbitrary self-adjoint A_{1}. The applicability of the method obviously extends beyond the examples treated here.

Note. in this paper, if A is an element of a C^{*}-algebra \mathscr{A} with unit, we write $A \geqq 0$ to mean $A=B^{*} B$ for some $B \in \mathscr{A}$, and $A>0$ to mean that, for some real number $a>0$, the inequality $A-a \geqq 0$ holds. Of course $A>0$ is equivalent to: $A \geqq 0$ and A^{-1} exists as an element of \mathscr{A}.

I. Remarks

Let \mathscr{A} be a C^{*} algebra with unit.

1. Let $A \in \mathscr{A}$ and let $\operatorname{Sp} A$ denote its spectrum. Suppose f is a complex function holomorphic in an open set of the complex plane containing $\operatorname{Sp} A$. Then $f(A)$ can be defined (as a holomorphic function of A with values in \mathscr{A}) by

$$
f(A)=\frac{1}{2 \pi i} \int_{\mathscr{C}} f(z)(z-A)^{-1} d z
$$

where \mathscr{C} is a contour surrounding $\operatorname{Sp} A$. All reasonable definitions of $f(A)$ coincide with this and:

$$
\operatorname{Sp} f(A) \subset f(\operatorname{Sp} A)
$$

(see [2], Chapter I, § 4, Proposition 8, p. 47).
2. For any $C \in \mathscr{A}$, denote

$$
\operatorname{Re} C=\frac{1}{2}\left(C+C^{*}\right), \quad \operatorname{Im} C=\frac{1}{2 i}\left(C-C^{*}\right) .
$$

Let $\mathscr{I}^{+}=\{C \in \mathscr{A}: \operatorname{Im} C>0\}$.
Any element C of \mathscr{I}^{+}is invertible: if $\operatorname{Re} C=A, \operatorname{Im} C=B>0$, $C^{-1}=B^{-\frac{1}{2}}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}+i\right)^{-1} B^{-\frac{1}{2}}$.

Moreover $C-z$ is invertible if $\operatorname{Im} z \leqq 0$, so that

$$
\operatorname{Sp} C \subset\{z \in \mathbb{C}: \operatorname{Im} z>0\}
$$

For any $C \in \mathscr{I}^{+},-C^{-1} \in \mathscr{I}^{+}$since:

$$
-\operatorname{Im} C^{-1}=C^{-1} \operatorname{Im} C\left(C^{-1}\right)^{*} .
$$

3. Let $0<\alpha<1$. The function $z \rightarrow z^{\alpha}$ will be defined in the cut plane $\mathbb{C} \backslash \mathbb{R}^{-}=\{z: \operatorname{Im} z \neq 0$ or $\operatorname{Re} z>0\}$ by the formula:

$$
z^{\alpha}=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} d t t^{\alpha}\left(\frac{1}{t}-\frac{1}{t+z}\right)
$$

If $C \in \mathscr{I}^{+}, C^{\alpha}$ is defined (since $\operatorname{Sp} C \subset \mathbb{C} \backslash \mathbb{R}^{-}$) and given by

$$
C^{\alpha}=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} d t t^{\alpha}\left(t^{-1}-(t+C)^{-1}\right)
$$

Hence

$$
\operatorname{Im} C^{\alpha}=\frac{\sin \alpha \pi}{\pi} \int_{0}^{\infty} d t t^{\alpha} \operatorname{Im}\left\{-(t+C)^{-1}\right\}
$$

It is easy to check that the integral is absolutely convergent, and since

$$
\operatorname{Im}\left\{-(t+C)^{-1}\right\}>0, \quad C^{\alpha} \in \mathscr{I}^{+} .
$$

Let $K=-C^{-1} \in \mathscr{I}^{+} ;$by the preceding argument $K^{\alpha} \in \mathscr{I}^{+}$, $\left(-K^{\alpha}\right)^{-1} \in \mathscr{I}^{+}$, so that

$$
\operatorname{Im}\left(-K^{\alpha}\right)^{-1}=-\operatorname{Im} e^{-i \alpha \pi} C^{\alpha}>0
$$

Thus:
Lemma 1. If $C \in \mathscr{I}^{+}$and if $0<\alpha<1$, then $C^{\alpha} \in \mathscr{I}^{+}$and $-e^{-i \alpha \pi} C^{\alpha} \in \mathscr{I}^{+}$; in other words

$$
\operatorname{Im} e^{-i \alpha \pi} C^{\alpha}<0<\operatorname{Im} C^{\alpha} .
$$

4. Let $C \in \mathscr{I}^{+}$. Define $z \rightarrow \log z$ in the cut plane $\mathbb{C} \backslash \mathbb{R}^{-}$by

$$
\log z=\int_{0}^{\infty} d t\left(\frac{1}{t+1}-\frac{1}{t+z}\right)
$$

Then $\log C$ is well defined and given by the formula

$$
\log C=\int_{0}^{\infty} d t\left(\frac{1}{t+1}-(t+C)^{-1}\right)
$$

This implies that $\operatorname{Im} \log C>0$. Defining again $K=-C^{-1}=e^{i \pi} C^{-1}$ we find that

Thus

$$
\operatorname{Im} \log e^{i \pi} C^{-1}=\pi-\operatorname{Im} \log C>0
$$

$$
0<\operatorname{Im} \log C<\pi
$$

By Remark 2, this implies that $\operatorname{Sp} \log C \subset\{z \in \mathbb{C}: 0<\operatorname{Im} z<\pi\}$.
5. Let $R=R^{*}>0$ be in \mathscr{A} and let C be in \mathscr{I}^{+}. Then for any integer $n>0$,

$$
\begin{equation*}
\operatorname{Sp}\left(R^{\frac{1}{n}} C^{\frac{1}{n}} R^{\frac{1}{n}}\right)^{n} \quad \text { is contained in } \quad\{z \in \mathbb{C}: \operatorname{Im} z>0\} \tag{1}
\end{equation*}
$$

For, by Remark 3,

$$
\operatorname{Im} R^{\frac{1}{n}} C^{\frac{1}{n}} R^{\frac{1}{n}}>0, \quad \operatorname{Im} e^{i\left(1-\frac{1}{n}\right) \pi} R^{\frac{1}{n}} C^{\frac{1}{n}} R^{\frac{1}{n}}>0
$$

which (by Remark 2) implies that $\operatorname{Sp}\left(R^{\frac{1}{n}} C^{\frac{1}{n}} R^{\frac{1}{n}}\right)$ is contained in the angle:

$$
\left\{z=\varrho e^{i \theta}: \varrho>0,0<\theta<\frac{\pi}{n}\right\},
$$

from which (1) follows by Remark 1.
6. Let $B=B^{*} \in \mathscr{A}$ and $C \in \mathscr{I}^{+}$. Then

$$
\begin{equation*}
\text { Sp } \exp (B+\log C) \subset\{z \in \mathbb{C}: \operatorname{Im} z>0\} \tag{2}
\end{equation*}
$$

For, by Remark 4,
Hence

$$
0<\operatorname{Im}(B+\log C)<\pi
$$

$$
0<\operatorname{Im} \operatorname{Sp}(B+\log C)<\pi \quad(\text { by Remark } 2)
$$

hence (2) by Remark 1. This can also be seen by using the Trotter product formula

$$
\exp (B+\log C)=\lim _{n \rightarrow \infty}\left(R^{\frac{1}{n}} C^{\frac{1}{n}} R^{\frac{1}{n}}\right)^{n}, \quad \text { with } \quad R=\exp \frac{B}{2}
$$

This converges in norm, which implies resolvent convergence so that (2) follows from (1).
7. Let A and B be elements of \mathscr{A}, with

$$
\begin{aligned}
A=A_{1}+i A_{2}, & B=B_{1}+i B_{2} \\
A_{1}=A_{1}^{*}, \quad A_{2}=A_{2}^{*}, \quad & B_{1}=B_{1}^{*}, \quad B_{2}=B_{2}^{*}
\end{aligned}
$$

satisfying

$$
\begin{equation*}
\operatorname{Im} A>0, \quad \operatorname{Im} e^{-i \alpha} A<0, \quad \operatorname{Im} B>0, \quad \operatorname{Im} e^{-i \beta} B<0, \tag{3}
\end{equation*}
$$

where $0<\alpha, 0<\beta, \alpha+\beta<\pi$. Then

$$
\begin{equation*}
\operatorname{Im} \operatorname{Sp} A B \geqq 0 \tag{4}
\end{equation*}
$$

To see this, note that (3) means

$$
A_{2}>0, \quad A_{1}>A_{2} \cot \alpha, \quad B_{2}>0, \quad B_{1}>B_{2} \cot \beta
$$

Consider the following two analytic functions:

$$
\begin{aligned}
\xi \rightarrow Z(\xi)=A_{1} \sin \alpha-A_{2} \cos \alpha+e^{\xi} A_{2}, & (\xi \in \mathbb{C}) \\
\xi \rightarrow W(\xi)=B_{1} \sin \beta-B_{2} \cos \beta+e^{\xi} B_{2}, & (\xi \in \mathbb{C}) .
\end{aligned}
$$

For real $\xi, Z(\xi)$ and $W(\xi)$ are positive in \mathscr{A}; for $0<\operatorname{Im} \xi<\pi, \operatorname{Im} Z(\xi)>0$ and $\operatorname{Im} W(\xi)>0$. Finally $Z(i \alpha)=A \sin \alpha, W(i \beta)=B \sin \beta$. Denote

$$
R\left(w, z_{1}, z_{2}\right)=\left(w-Z\left(z_{1}\right) W\left(z_{2}\right)\right)^{-1} .
$$

This a holomorphic function of three complex variables. Fix w with $\operatorname{Im} w<0$ and z_{1} real; then

$$
w-Z\left(z_{1}\right) W\left(z_{2}\right)=Z\left(z_{1}\right)^{\frac{1}{2}}\left[w-Z\left(z_{1}\right)^{\frac{1}{2}} W\left(z_{2}\right) Z\left(z_{1}\right)^{\frac{1}{2}}\right] Z\left(z_{1}\right)^{-\frac{1}{2}} .
$$

Hence this is invertible if $0 \leqq \operatorname{Im} z_{2} \leqq \pi$. Similarly, it is invertible if z_{2} is real and if $0 \leqq \operatorname{Im} z_{1} \leqq \pi$; in other words, for $\operatorname{Im} w<0$, the domain of holomorphy of $R\left(w, z_{1}, z_{2}\right)$ contains an open neighborhood of the "flattened tube":

$$
\left\{z_{1}, z_{2}: \operatorname{Im} z_{1}=0,0 \leqq \operatorname{Im} z_{2} \leqq \pi\right\} \cup\left\{z_{1}, z_{2}: \operatorname{Im} z_{2}=0,0 \leqq \operatorname{Im} z_{1} \leqq \pi\right\}
$$

So that, by the "local tube theorem" (see, e.g. [3]), $R\left(w, z_{1}, z_{2}\right)$ is holomorphic in a neighborhood of:

$$
\left\{w, z_{1}, z_{2}: \operatorname{Im} w<0,0 \leqq \operatorname{Im} z_{1}, 0 \leqq \operatorname{Im} z_{2}, \operatorname{Im}\left(z_{1}+z_{2}\right) \leqq \pi\right\}
$$

In particular, taking $z_{1}=i \alpha, z_{2}=i \beta$, we get (4).
Suppose now A^{\prime} and B^{\prime} are elements of \mathscr{A} such that

$$
\begin{equation*}
\operatorname{Im} A^{\prime}<0, \quad \operatorname{Im} B^{\prime}<0, \quad \operatorname{Im} e^{i \alpha} A^{\prime}>0, \quad \operatorname{Im} e^{i \beta} B^{\prime}>0 \tag{5}
\end{equation*}
$$

Applying the preceding result to A^{*} and B^{*} yields:

$$
\operatorname{Im} \operatorname{Sp} A^{\prime} B^{\prime} \leqq 0
$$

If we take now $A^{\prime}=e^{-i \alpha} A, B^{\prime}=e^{-i \beta} B$, we find

$$
\begin{equation*}
-\operatorname{Im} e^{-i(\alpha+\beta)} \operatorname{Sp} A B \geqq 0 \tag{6}
\end{equation*}
$$

Actually (4) and (6) can be sharpened to strict inequalities: our hypothesis (3) implies that $0 \notin \operatorname{Sp} A B$ since A and B are both invertible; moreover there is a $\delta>0$ so small that $e^{ \pm i \delta} A$ and $e^{ \pm i \delta} B$ still satisfy (3), so that the spectrum of $A B$ is actually contained in

$$
\left\{z=\varrho e^{i \theta} \in \mathbb{C}: 0<\varrho, 2 \delta<\theta<\alpha+\beta-2 \delta\right\}
$$

Lemma 2. Let A and B be elements of \mathscr{A} verifying (3). Then:

$$
\operatorname{Sp} A B \subset\left\{z=\varrho e^{i \theta} \in \mathbb{C}: 0<\varrho, 0<\theta<\alpha+\beta\right\}
$$

As a corollary, if A and B are complex $N \times N$ matrices satisfying (3),

$$
\operatorname{Tr} A B \subset\left\{z=\varrho e^{i \theta}: \varrho>0,0<\theta<\alpha+\beta\right\}
$$

This can also be seen more simply by noticing that

$$
\operatorname{Im} \operatorname{Tr} A B=\operatorname{Tr} A_{1} B_{2}+\operatorname{Tr} A_{2} B_{1}
$$

$$
\begin{gathered}
\operatorname{Tr} A_{1} B_{2}=\operatorname{Tr} B_{2}^{\frac{1}{2}} A_{1} B_{2}^{\frac{1}{2}}>\operatorname{Tr} B_{2}^{\frac{1}{3}} A_{2} B_{2}^{\frac{1}{2}} \cot \alpha=\operatorname{Tr} A_{2} B_{2} \cot \alpha \\
\operatorname{Tr} A_{2} B_{1}>\operatorname{Tr} A_{2} B_{2} \cot \beta, \\
\operatorname{Tr}\left(A_{1} B_{2}+A_{2} B_{1}\right)>(\cot \alpha+\cot \beta) \operatorname{Tr} A_{2} B_{2}>0,
\end{gathered}
$$

(since $\cot \alpha+\cot \beta=\sin (\alpha+\beta) / \sin \alpha \sin \beta$). From this one concludes that $\operatorname{Im} \operatorname{Tr} e^{-i(\alpha+\beta)} A B<0$ by the same substitutions as in the proof of the lemma.
8. Estimate of $\left\|A^{\alpha}\right\|$ for $0<\alpha<1$.

Let $A \in \mathscr{A}$ with $A=V+i W, V=V^{*}>0, W=W^{*}$, then

$$
\begin{aligned}
& A^{-1}=V^{-\frac{1}{2}}\left(1+i V^{-\frac{1}{2}} W V^{-\frac{1}{2}}\right)^{-1} V^{-\frac{1}{2}} \\
&=V^{-\frac{1}{2}}(1+i T)^{-1} V^{-\frac{1}{2}} \\
&\left\|(1+i T)^{-1}\right\|^{2}=\left\|\left(1+T^{2}\right)^{-1}\right\| \leqq 1
\end{aligned}
$$

Hence $\left\|A^{-1}\right\| \leqq\left\|V^{-\frac{1}{2}}\right\|^{2}=\left\|V^{-1}\right\|$. Let $a=\|A\|$.

$$
\begin{aligned}
\frac{\pi}{\sin \alpha \pi} A^{\alpha}= & \int_{0}^{2 a} t^{\alpha}\left(t^{-1}-(t+A)^{-1}\right) d t \\
& +\int_{2 a}^{\infty} t^{\alpha}\left(\sum_{n=1}^{\infty}(-1)^{n} \frac{A^{n}}{t^{n+1}}\right) d t
\end{aligned}
$$

The first integral is bounded in norm by

$$
\int_{0}^{2 a} 2 t^{\alpha-1} d t=\frac{2(2 a)^{\alpha}}{\alpha}\left(\text { using }\left\|(t+A)^{-1}\right\| \leqq\left\|(t+V)^{-1}\right\| \leqq t^{-1}\right) .
$$

The second integral is bounded in norm by

$$
\begin{aligned}
\int_{2 a}^{\infty} t^{\alpha}\left(\frac{1}{t-a}-\frac{1}{t}\right) d t & =a^{\alpha} \int_{2}^{\infty} t^{\alpha}\left(\frac{1}{t-1}-\frac{1}{t}\right) d t \\
& \leqq a^{\alpha} \int_{2}^{\infty} d t 2 t^{\alpha-2}=\frac{2^{\alpha} a^{\alpha}}{1-\alpha}
\end{aligned}
$$

Thus $\left\|A^{\alpha}\right\| \leqq\left(\frac{2}{\alpha}+\frac{1}{1-\alpha}\right)\|2 A\|^{\alpha} \frac{\sin \alpha \pi}{\pi}$.
9. Lemma 3. Let D denote the domain in \mathscr{A} given by

$$
D=\bigcup_{-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}} \bigcup_{0<\varepsilon \in \mathbb{R}}\left\{A \in \mathscr{A}: \operatorname{Re} e^{-i \theta} A \geqq \varepsilon\right\} .
$$

Let f be a complex valued function on D such that
(i) f is holomorphic on D.
(ii) If $\operatorname{Im} A>0$ then $\operatorname{Im} f(A) \geqq 0$, and if $\operatorname{Im} A<0$, then $\operatorname{Im} f(A) \leqq 0$.
(iii) For every real $\varrho>0$ and every $A \in D$

$$
f(\varrho A)=\varrho^{s} f(A)
$$

where $0<s \leqq 1$ (s being independent of ϱ and A).
Then the restriction of f to $\mathscr{A}^{+}=\left\{A \in \mathscr{A}: A=A^{*}>0\right\}$ is concave. More precisely, let $A_{1}=A_{1}^{*}$ and $A_{2}=A_{2}^{*}>0$ be elements of \mathscr{A}. Then, for all sufficiently small real t, and for all integer $n \geqq 1$,

$$
\frac{d^{2 n}}{d t^{2 n}} f\left(A_{2}+t A_{1}\right) \leqq 0
$$

(Remark: a function f satisfying the conditions (i), (ii) and (iii) with $s=0$ is a constant).

Proof. Note that condition (ii) implies in particular that $f(A)=f\left(A^{*}\right)^{*}$. Let $A_{1}=A_{1}^{*}$ and $A_{2}=A_{2}^{*}>0$ be fixed elements of \mathscr{A}, with $A_{1} \neq 0$, and let $\tau=\left\|A_{2}^{-1}\right\|\left\|A_{1}\right\|$. Denote, for $z \in \mathbb{C}$,

$$
\begin{aligned}
& F(z)=f\left(A_{2}+z A_{1}\right), \\
& G(z)=f\left(A_{1}+z A_{2}\right) .
\end{aligned}
$$

$G(z)$ is well defined and analytic when $\operatorname{Im} z \neq 0$ or $\operatorname{Re} z>\tau . F(z)$ is well defined and analytic when $|z|<\tau^{-1}$. In the region where $\operatorname{Re} z>\tau$, we have, by analytic continuation of (iii),

$$
\begin{equation*}
G(z)=z^{s} F\left(z^{-1}\right) . \tag{7}
\end{equation*}
$$

Hence this relation extends every where. In particular it shows that $G(z)$ could be analytically continued across the real axis from $-\infty$ to $-\tau$.

Furthermore, G is a Herglotz function, i.e. $\operatorname{Im} G(z)$ has the sign of $\operatorname{Im} z$. This guarantees the existence of boundary values of G, in the sense of tempered distributions, on either side of the real axis. We symbolically denote $G(z \pm i 0)$ these distributions, i.e. for every $\varphi \in \mathscr{S}(\mathbb{R})$, we write

$$
\int_{-\infty}^{\infty} G(x \pm i 0) \varphi(x) d x=\lim _{\substack{y \rightarrow 0 \\ y>0}} \int_{-\infty}^{\infty} G(x \pm i y) \varphi(x) d x
$$

The Herglotz condition shows that $\operatorname{Im} G(x+i 0)$ is, in fact, a positive measure which we denote symbolically by $h(x)$. It is clear from (7) that, for $|z|>2 \tau$, there is a constant K such that $|G(z)|<K|z|^{s}$.

Let $A \in D$ be such that $\operatorname{Re} e^{-i \theta} A>0$ for some θ with $-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$. By analytic continuation of (iii) we have

$$
f(A)=e^{i s \theta} f\left(e^{-i \theta} A\right)
$$

Let $\operatorname{Im} A>0$. Then

$$
\begin{aligned}
f(A) & =e^{i s \pi} f(-A) \\
e^{-i s \pi} f(A) & =f\left(-A^{*}\right)^{*}
\end{aligned}
$$

so that

$$
\operatorname{Im} e^{-i s \pi} f(A) \leqq 0
$$

(implying, in particular the triviality of the case $s=0$).
Applying this to $A=A_{1}+z A_{2}$ shows that

$$
\begin{equation*}
\operatorname{Im} z>0 \Rightarrow \operatorname{Im} e^{-i s \pi} G(z) \leqq 0 \tag{8}
\end{equation*}
$$

or:

$$
\sin s \pi \operatorname{Re} G(z)-\cos s \pi \operatorname{Im} G(z) \geqq 0
$$

Denote

$$
M(z)=z^{1-s} G(z)
$$

This function is identical to G if $s=1$. If $s<1$, we have $\sin s \pi>0$ and, for $\varrho>0,0<\theta<\pi$,

$$
\begin{aligned}
\operatorname{Im} M\left(\varrho e^{i \theta}\right) & =\varrho^{1-s}\left[\sin (1-s) \theta \operatorname{Re} G\left(\varrho e^{i \theta}\right)+\cos (1-s) \theta \operatorname{Im} G\left(\varrho e^{i \theta}\right)\right] \\
& \geqq \varrho^{1-s}(\sin s \pi)^{-1} \sin [(1-s) \theta+s \pi] \operatorname{Im} G\left(\varrho e^{i \theta}\right)
\end{aligned}
$$

and, since $0<(1-s) \theta+s \pi=\theta+s(\pi-\theta)<\pi$, we find that

$$
\operatorname{Im} z>0 \Rightarrow \operatorname{Im} M(z) \geqq 0
$$

a conclusion which, of course, also holds for $s=1$. Thus, for all s with $0<s \leqq 1, M$ is a Herglotz function. Furthermore, since $M(z)=z F\left(z^{-1}\right)$, it is analytic in the complement of the cut $\{z: \operatorname{Im} z=0,|z| \leqq \tau\}$ and, at infinity, is bounded by const. $|z|$. We denote $k(x)=\operatorname{Im} M(x+i 0)$
(symbolically) the positive measure with support in $[-\tau, \tau]$ which is the boundary value of $\operatorname{Im} M$, on the real axis, from the upper half plane. Then

$$
M(z)=\frac{1}{\pi} \int_{-\tau}^{\tau} \frac{k(t)}{t-z} d t+a z+b
$$

It follows that

$$
F(z)=z M\left(z^{-1}\right)=\frac{1}{\pi} \int_{-\tau}^{\tau} \frac{z^{2} k(t) d t}{z t-1}+a+b z
$$

for all z in the complement of $\left\{z: \operatorname{Im} z=0\right.$ and $\left.|z| \geqq \tau^{-1}\right\}$. Since $z^{2}(z t-1)^{-1}$ $=-\left[-z t^{-1}-t^{-2}+t^{-2}(1-z t)^{-1}\right]$, we have, for $n \geqq 2$

$$
\frac{d^{n}}{d z^{n}} F(z)=-\frac{n!}{\pi} \int_{-\tau}^{\tau} \frac{t^{n-2} k(t)}{(1-t z)^{n+1}} d t
$$

which is $\leqq 0$ for all even n, and real z such that $|z|<\tau^{-1}$.

II. Applications to Matrices

In this section, we restrict our attention to the case when \mathscr{A} is the set of all complex $N \times N$ matrices. However, our discussion would also hold in more general situations: for example a von Neumann algebra with a finite trace; note that, in the latter case, the trace of an element A is contained in the convex hull of $\operatorname{Sp} A$ ([4], p. 108, Corollary).

Let $B=B^{*}$ and K be fixed elements of \mathscr{A}. We consider the following functions $\mathscr{A} \rightarrow \mathbb{C}$:

$$
\begin{aligned}
& f_{1}, \text { given by } f_{1}(A)=\operatorname{Tr} \exp [B+\log A] \\
& f_{2}, \text { given by } f_{2}(A)=\operatorname{Tr}\left[\mathrm{e}^{\frac{B}{2 n}} A^{\frac{1}{n}} e^{\frac{B}{2 n}}\right]^{n} \\
& f_{3}, \text { given by } f_{3}(A)=\left[\operatorname{Tr} A^{r} K A^{p} K^{*}\right]^{\frac{1}{s}} \\
& f_{4}, \text { given by } f_{4}(A)=\operatorname{Tr} A^{r} K A^{p} K^{*},
\end{aligned}
$$

where n is a positive integer, r and p are real, $0 \leqq r, 0 \leqq p, s=r+p \leqq 1$. From Remarks 6, 5, 7, it follows that $f_{j}(j=1,2,3,4)$ satisfies all the conditions of lemma 3. (It is worth noting that, in view of the estimate in Remark $8, f_{2}, f_{3}, f_{4}$ are bounded in modulus, on D, by const. $\|A\|^{\alpha}$. Using this fact would slightly simplify the proof of Lemma3.) Let $A_{1}=A_{1}^{*}$ and $A_{2}=A_{2}^{*}>0$ be elements of \mathscr{A}, denote

$$
F_{j}(z)=f_{j}\left(A_{2}+z A_{1}\right), \quad(j=1,2,3,4)
$$

we find that, for real t with $|t| \leqq \tau^{-1}$,

$$
\frac{d^{2 m} F_{j}(t)}{d t^{2 m}} \leqq 0 \quad \text { for all integer } \quad m \geqq 1
$$

In particular, all the functions f_{j} are concave on \mathscr{A}^{+}.
Using the properties described in Section I, it is easy to construct other examples; examples involving functions of several variables can be constructed by considering $\left(A_{1}, \ldots, A_{n}\right)$ (where $A_{j} \in \mathscr{A}_{j}$) as an element of $\mathscr{A}_{1} \oplus \cdots \oplus \mathscr{A}_{n}$, etc...

Acknowledgement. This note was written under the direct influence of a lecture of Elliott Lieb, to whom I am also most grateful for discussions and for making his paper [1] available to me in advance of publication. I also wish to thank D. Ruelle for several enlightening discussions.

References

1. Lieb, E.: Convex trace functions and the Wigner-Yanase-Dyson conjecture, to appear in Advances in Mathematics.
2. Bourbaki, N.: Théories spectrales. Paris: Hermann 1967.
3. Epstein, H.: In: Axiomatic field theory. Chrétien and Deser (Eds.). New York: Gordon and Breach 1966.
4. Dixmier, J.: Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de Von Neumann). Paris: Gauthier-Villars 1957.
I.H.E.S.

F-91440 Bures-sur Yvette, France

