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Abstract. We present and discuss some physical hypotheses on the decrease of
truncated correlation functions and we show that they imply the analyticity of the thermo-
dynamic limits of the pressure and of all correlation functions with respect to the reciprocal
temperature β and the magnetic field h (or the chemical potential μ) at all (real) points
(β0, h0) (or (βo,μoj) where they are supposed to hold. A decrease close to our hypotheses
is derived in certain particular situations at the end.

Introduction

In a recent work [1], Lebowitz considers a ferromagnetic Ising spin
lattice and presents a method which, starting from decrease properties
of the correlations, proved in certain cases, allows him to derive
regularity properties of the infinite-volume free energy ψ(β,h) and
correlations (σA} (β, h), at real points (β0, h0) where other methods have
given so far no information (e.g. at points close to βc). However, even
for finite range potentials, only infinite differentiability, rather than
analyticity has been obtained. The purpose of the present paper is to
present and discuss certain "physically reasonable" hypotheses, not
proved in general so far, on the decrease of the truncated functions1

and to show that they do yield analyticity.

1 Also called "cluster functions" or "Ursell functions" of the correlations in statistical
mechanics.
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The hypotheses are described in Part I. In Section A, we recall
the general type of decrease, called below "weak decrease", obtained
and used in [1] and we see that a stronger decrease might be expected,
following the idea that the truncated functions correspond to processes
or correlations "involving all the particles jointly". We outline the
mathematical reasons why the "weak decrease properties" do not
yield analyticity in Section B. In Section C, we then present our hypothe-
ses, called "strong decrease properties"; we indicate in Section D how
they will yield analyticity, in contrast to the "weak properties" and we
see that they are completely consistent with all known results, (in
particular those by Ruelle [2] on the integrals of truncated functions
at low activity).

In Section E, we finally describe an extension, whose usefulness
will appear in Parts II, III of the hypotheses to functions which are
truncated only with respect to various clusters of points.

In Parts II, III, we respectively consider classical lattices and continu-
ous systems. In Section II.A (resp. III.A) we present general formulae
expressing the successive derivatives of the pressure and of the correlation
functions with respect to β and h, (resp. β and μ), in terms of (generalized)
truncated functions, and in II.B, (resp. III.B), we prove that our hypotheses
do imply analyticity. In the continuous case, the truncation does not
refer in general to the correlation functions ρ(X) themselves, but to
related quantities which generalize the functions ρ(X) of [3] and which
are introduced at the beginning of Part III.

In Part IV, we consider lattice systems with finite range interactions
and we show that, whenever there is a gap in the spectrum of the transfer
matrix, the rc-point truncated correlations have a decrease of the type
e~χD where D is the diameter of the configuration X = (xu ...,xn)
ID = Max \xt — Xi\), and χ is independent of n (and of the configuration).
\ i,j=ί,...,n I

This decrease is better than the "weak decrease", which, for instance
in the case of equidistant points on a line, provides only a factor e~χD/n.
It coincides with the "strong decrease" whenever the points are lined
up, but is weaker in the other situations. Concerning the problem of
analyticity, the replacement of e~χDln by e~χD is already an improvement
(see footnote 2 in Part I.B). However, this is not yet sufficient to derive
analyticity.

I. Physical Hypotheses on the Truncated Functions

A. Decrease Properties of the Truncated Functions

We consider factorization properties of the following type for the
(non-truncated) correlation functions f(X) (X = (xx ... xn)), when the
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distances between several clusters Xί ... XM of points tend to infinity:

f(Xu X2) - fiX,) f(X2) * Θ[u(d(Xl9 X2))] , (1)

\f(xu...,xM)-
M

(2)

where u is a monotonous decreasing function vanishing at infinity, and
d(XuX2) = M{d(xhxj)}(xieX1,xjeX2). We remark that (2) is a
consequence of (1) and that we cannot expect physically better than the
infimum of the distances in (2).

The truncated functions, denoted below by T.F., are defined recur-
rently by:

f(x1,...,xn)- Σ flfT(Φj)) (3)

^ π i . . . π k j = l

where the sum ]Γ runs over all (non trivial, i.e. k> 1) partitions of
π i . .πk

x l 5..., xn.
When factorization properties are satisfied, it is well known that the

T.F. vanish at infinity as soon as certain clusters are separated from each
other. In the present framework, one shows more precisely that (1), (2)
are equivalent to the following decrease property, that we shall call
"weak decrease":

fτ(xu ...,xn)^&(u(MaxXuX2d(XuX2)) (4)

where Xl9 X2 is any partition of xί9..., xn into two subsets.
Starting from (1) (2), it is not possible to get better than (4). But better

decrease properties might be physically expected in various situations,
namely a decrease taking into account the separation of all particles
with respect to each other, and not only the maximum distance
M2Lxd(X1,X2). Truncated functions do verify such ideas in particle
physics [4]. We note that we do not want conversely to get better,
unexpected, asymptotic factorization properties than type (1), (2). The
"strong decrease properties" of the T.F. introduced in Section C satisfy
this requirement.

B. Weak Decrease Properties and the Problem of Analyticity

For the case of a ferromagnetic spin system, Lebowitz does obtain
in [1] factorization properties of type (1), (2) in the form:

Λ\ < l*iI \X2\ u(d(Xu X2)) (5)
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where A is any finite region and where u is independent of A, (and
depends only on β and h). The corresponding weak decrease of the T.F.,
of type (4) is:

\<σiu.,.tiyA\ < C'Hn - l)\u{MzxXuX2d(Xl9 X2)). (6)

The relationship between the derivatives of the free energy ψΛ and
of the correlations (σA}Λ with respect to β, h, and the T.F., then allows
to obtain the infinite differentiability of the thermodynamic limits ψ
and (σAy, iϊu has a rapid decrease at infinity, (i.e. faster than any inverse
power of the distance). The decrease of u has actually been proved in
certain cases to be exponential, for finite-range potentials and in appro-
priate domains in β and h: see [1, 5].

For instance, let us consider the behaviour of ψ with respect to h.
It is proved in [1] (see Part II.A) that

^ t - (A h) = J - Σ <^ •' °UTΛ (A h), (h = βh) (7)
O n \Λ\ iu.. ,ineΛ

Then (6) yields bounds on - 7 1 which are uniform with respect to A

as soon as u{d) decreases at least like d~nv~ε at infinity, where v is the
space dimension. It is shown in [1] that those bounds entail the existence
of the thermodynamic limit ψ and of its derivatives.

The nth derivative oϊψ still possesses the same uniform bound as—=^-.

But the trouble which prevents from getting analyticity even when u is
rapidly or exponentially decreasing, is that the bounds, thus derived
from (6), increase too fast with n: in particular, the use of the weak
decrease factor u(Max(d(Xι, X2))) induces terms such as nvn and (nv)\2.

In our approach, we shall only use integrability properties of u
but we will require stronger decrease properties of the T.F. than (6).

C. Strong Decrease Properties of the Truncated Functions

Asymptotic Physics of the T.F.

We now want to express in a stronger way the idea that the T.F.
correspond to correlations "involving all the particles jointly".

Consider for simplicity a three-point function fτ(x, y, z) and the
situation in which x, y, z are separated from each other in a way such
that d(x, z) > d(x, y), d(y, z), see Fig. 1:

2 The decrease e /D proved in Part IV allows one to remove the terms nvn (but not
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Fig. 1

We may then expect a first decrease of the order of u(d(x, y)) due to
separation of x with respect to y (inside the "cluster" x, y) and a second
factor of the order of u(d(y, z)) due to the separation of z with respect
to y. Effects due to the separation of z with respect to x are masked
asymptotically since u(d(z9 x)) <t u(d(x, y)\ u(d(y, z)). Therefore we are led
to a decrease of the order of u(d(x, y)) u(d(y, z)) whereas (4) provides a
decrease of the order of u(d(y, z)) alone.

For general rc-point functions fτ(xu ..., xΛ), the same physical ideas
lead to consider all trees &~ (i.e. connected graphs without closed loops)
of n— 1 lines joining x l 5 ...,xn and to assume a decrease of the type:

(8)

where 3/~m{n is the tree whose length L is minimal and dx is the length
of line / (The length <£(2Γ) of a tree 3Γ is the sum of the lengths of its
lines).

An alternative type of decrease will be presented in Section D for
finite-range interactions, but will be shown to be equivalent.

The above tree &~min can be obtained as the n-th term of a sequence of
(connected) trees &~p joining p points: ZΓγ may be anyone of the points
x l 5..., xn and $~p + ι is obtained from 9~v by adding the line of smallest
length joining a point outside ^ to a point of 2Γr Alternatively, ^min

can be constructed by considering the set of all lines joining two points,
and by successively choosing the line of smallest length, avoiding
however closed loops. (These two constructions correspond to slightly
different physical considerations).

Bounds on the T.F

In the following we need not only asymptotic properties, but general
bounds which would extend the bound on the 2-point-function
<σ._.>Γ( = < σ ϋ > - <σ i> <σ</» which follows from (5) or (6).

We shall consider the assumption:

(9)
3- 1 = 1

where the sum Σ runs over all trees &~ (of n— 1 lines) joining xl9..., xn.
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D. Links with Analyticity and Consistency with Known Results

For simplicity, we here consider again the free energy ψ of a spin
lattice and its behaviour with respect to h. The function fτ(xx, ...,xn)
is here anyone of the (σiχ >...)in>5 obtained for finite A; (9) will be supposed
to hold in appropriate domains in β, h, and for any allowed point β, h
the corresponding function u is assumed to be independent of A and
integrable I Σ u(\i\) < oo\: see Part II.

\ieZv I i

The contribution to the sum -—- Σ of (7) corresponding to a

given tree is clearly bounded by [ Σ u(\ΐ\)]n~1 Since the number ofieZv

trees is itself bounded, as is easily checked, by Dn (n— 1)! (where D is
independent of w), we get:

dnψΛ

dhn Σ
ilt...,ineΛ

(10)

It is the use of such bounds (generalized in Parts II, III to derivatives
of ψA and (σAyΛ with respect to β and h and to the continuous case)
which will ensure the convergence of the appropriate Taylor series
and will thus lead to analyticity (see Parts II and III).

Consistency with Known Results

a) Results Obtained from the Explicit Form of the T.F. [6]. 1) We
below consider the example of a classical gas. The truncated correlation
is then given explicitely [2] by:

zN + n

ρτ(x1,...,xn)= Σ \
where

Λ y^ΣIK
Γc leΓc

The sum Σ r u n s o v e r aM connected graphs joining xx,..., xπ, y1?..., yN

Γc

and dι is the length of line /.
In the case of a finite-range interaction, Φ(d) = 0 when d>d0, the

product Y\ vanishes whenever d(lo)>do for at least one line l0 and
leΓc

is otherwise bounded by e~χN(ΓC) where χ is positive if \e~βφ- 1|< 1 ?,
and N(ΓC) is the number of lines in Γc. For given points xu ...,xn, we
remark that e~*N(ΓC) is always less than e~χL> where 11 is the minimal
length of all (connected) trees ?Γ' joining xu...,xn and possibly other
vertices.

Or possibly equal to 1 at d = 0.
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Although no such result has been proved so far, a detailed analysis
of the above form of ρΊ(x1? ...,xn) then suggests that it might have a
decrease of the type e~χL\ under appropriate conditions.

We remark that this decrease is in actual fact equivalent to (8) if
we admit that the function u(d) of (8) is of the form e~κd for finite-range
interactions: the product Y[ u{d^ is then equal to e~κL where L

is the length of ^m{xv and the equivalence follows from the inequalities

The inequality L^L is obvious, since the trees ?Γ of SectionC
may not include other vertices than x l 5 ...,xn. To obtain the inequality
\^LL [7], we note that a tree 2Γ^ whose length ^{3Γ0) satisfies

f(«^))^2Z/, can always be constructed from the minimal tree
3Γm{n by joining directly the points x which appear successively when
"turning around 2Γ^\

2) Ruelle has proved [2], at low activity and under general assump-
tions of stability and integrability of the potential, that the infinite-volume
T.F. ρj(x1 ?..., xn) are absolutely integrable with respect to the differences
Xj — Xj. More precisely, he obtains a bound of the following type:

$\ρτ

n(xx,...,xn)\dx2,...,dxn<Cn-1(n-l)\ (11)

(where C depends on β and μ).
The "strong decrease properties" do lead to such bounds [see for

instance (10)] in contrast to the "weak decrease properties". The latter
yield the infinite volume integrability of the T.F. for all n if u is rapidly
decreasing, but the corresponding bound is even then much worse than
(11) (see Section B).

A final remark: a bound better than (11) is not expected [8]. The
hypotheses (9) do not indeed lead to a better bound since the number
of trees is larger than (n — 1)!.

b) Results Obtained from the Transfer Matrix Formalism. As already
mentioned, (8) has been proved in certain cases for the 2-ρoint function
<σί7 >

Γ, with u being exponentially decreasing for finite-range potentials
[1,5]. Those results will be generalized in Part IV to the n-point function
when the points are lined up.

E. Generalized Truncated Functions

We now introduce functions fτ&u...,xM)(χ^ c a u e d G.T.F., which

are truncated only with respect to certain subsets Xl9...,XM of a

partition of x 1 ? ...,xn, i.e. are defined by the following formulae where
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Xu ..., XM replace the individual variables xu ..., xn of (2):

(Xu...,XM) k

( i , , k ) j
Xi, . . .,XM

where Σ *s the sum over all (non trivial) partitions of (X1?..., XM)',
πi, . . .,ith

{X(πj}} denotes the subsets Xt belonging to π,- and Xiπj) is the set of all
xt belonging to the various subsets of {X(Uj)}. We note t h a t / T ( X l ' " " * M )

reduces to f(X) when M = l , to the usual T.F. fτ(X) when
each Xt(t= 1, ...,M) is one point (M = rc), and that it can be generally
expressed in terms of usual T.F. through the following formulae, which
can be proved by a recurrence procedure:

fnxu..,χM)(X) = fτ(χ)+

 iXlγXn> γifτ(X(πj)) (13)
( π i , . . . , π k ) c / X i , . . . , X M J = 1

where the sum Σ in the right-hand side runs over all (non trivial) partitions
of (x1 ?..., xn) which are "connected" with respect to Xu ..., XM: i.e. such
that a connected diagramm of M vertices is obtained when each Xt is
identified with one vertex (t = 1,..., M) and when Xti, Xt2 are joined by a
line whenever one (or more) variable xh in Xtί and one (or more) variable
xh in Xt2 belong to a common π-} (j = 1,..., k).

Strong Decrease Hypotheses for the G.T.F.

From the same physical ideas as before, we shall now assume the
following "strong decrease properties" for the G.T.F, analogous to those
described for the usual T.F.:

U-. XM) M-l

Σ YVWxι,xΐ)) (14)
\i=ί I F / = 1

X\, ,XM

where ^ is a sum over all trees of M — 1 lines joining the subsets

Xu ...,XM,XI and X" are the subsets joined by line / and d(X{9XΪ)
is their distance.

M

A factor γ\ χ(\Xi\) has been introduced [we shall assume that

χ( l )= 1]. We shall not discuss it in detail from physical considerations,
but we remark that a bound of type (14) is actually obtained by Lebowitz
in [1] in the case of two subsets Xί9 X2: see (5) [Note that fτ^x^x^(X)
= f(Xi,X2)-f(Xi)f(X2Ϊ]' A s a matter of fact, (5) in Lebowitz's proof



Truncated Correlation Functions 199

is a consequence of the more refined bound:

|<σ>ΓXl *2 )l< Σ u(d(x,y)). (15)
xeXi

A direct generalization of (15) when M > 2 , from which (14) would
follow with χ(\X\) being an appropriate power of \X\, would be:

(XI, . .JM) M-l

ιfτ(Xι,...,xM){χ)l< Σ Σ fΓ "(<*(«))•

A Final Remark

We note that (9) is a particular case of (14). Conversely by using (13)
the following bound may be derived from (9) for the G.T.F.:

ιfτ(Xί,...,xM){χ)]< γ γiu{d{χ>hX>;))
rηxu...,xMierc

where the sum Σ runs over all graphs Γc without closed loops, which
have rc vertices (x1? ...,%„) and which are connected with respect to
Xl9..., XM

The bound (17) does provide the expected asymptotic behaviour
of/ τ ( X l ' 'X Λ ί )(X): each term in the sum Σ of (17) is in fact bounded by
(at least) one of the terms involved in the sums Σ of (14) (or (15)) multiplied
by an appropriate power of u(0). However the number of terms involved
in (17) is too large for the proofs of parts II, III referring to the derivatives
with respect to β. We shall then use the formulation (14) (or (15)) of our
physical assumptions. Concerning the derivatives with respect to h (or μ),
we shall see that (17) and thus (9) are sufficient.

II. Ferromagnetic Ising Spin Systems

In this part, we consider classical spin lattices.
For simplicity, we shall restrict ourselves to Ising spin systems with

ferromagnetic pair interactions, but the essential parts of what follows
apply equally well to more general lattices. The space dimension v
will not be specified. In the following, we shall be interested only in
cases where there is no phase transition. Therefore, the thermodynamic
limits A ->oo of the correlation functions are known, from the results
of [9], to be independent of the boundary conditions. For simplicity,

4 The definition is here completely analogous to that given above for the connected
partitions.
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we thus consider below free boundary conditions, but formulae analogous
to those below can be written more generally.

We recall the following definitions:

(19)

(σA}Λ = (ZΛ)-* ΣΛ σAexp(-βHA(σ, h)), (20)
σ

where σA= γ[ σt. In the following, we consider β and h = βh as inde-
ieA

pendent variables.

A. Derivatives of ψΛ and (jσ^Λ

The following formulae [generalizing (7)] hold5:

iq,n yy^iβM, (21)(
iu...,iqeΛ \j=ί

*+abliA {βM= Σ ί Π Jy)<^«.. ...« ». ,yΛ"'ΛA)iβM (22)
On Op iu...,iqeΛ \j=l I

yu - ,yr^Λ2

where Tqr and Tqtr(A) mean the truncation with respect to the q subsets
il9..., iq of one point, the r subsets yί9...,y, of two points and possibly
the subset A.

When r = 0 and A is one point, (21) (22) involve only usual T.F. and
are given in [1]. On the other hand, they can be extended without
difficulty for /c-body potentials (/c>2), the functions involved in the
right-hand sides being then truncated with respect to subsets of k points
and less. They are readily derived, once the following formulae are
proved:

^Γ'i^Γ^W. (24)
X M ) = Σ <**.,>ϊ<* XM'ί]> (25)

ieΛ

< σ χ > Σ Jy<σχyynχu...,χM,vK ( 2 6 )

dp γ e Λ i

In the following Jy = 0 when y = (/, i).
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(23) (24) are easily obtained by explicit computation as well as (25) (26)
when M=l. The general proof of (25) (26) follows by a recurrence
procedure.

B. Analyticity Properties of ψ and

The existence and uniqueness of the thermodynamic limits of ψΛ

and (σA}Λ are known at all points (β, h) outside the phase transition
region (h = 0, β > βc): see for instance [9].

We then state:

Theorem. Let βo,ho be a {real) point at which the following bound-
holds uniformly for any region A :

M {Aι,...,AM)M-l

\<°Aι,...MM>liA'-' 'AM)(βoX)\<Y\ χ(\Λt\)x Σ WM^Aί))
i = ί r i - i ( 2 7 )

where Au ...,AM are finite subsets of Z v , u is integrable I ]Γ u(\i\) <oo\
\ieZv )

and the meaning of the right-hand side is the same as in (14).
Then the thermodynamic limits ψ(β,h) and (σAy(β,h) are analytic

at (βo> ̂ o) with respect to both variables.

Before giving the proof, we make some remarks:

1) The uniqueness of the thermodynamic limit <σ x ) which is already
known from the results of [9] is also implied by a factorisation criterion
on the probabilities of configurations which is due to Dobrushin [10]
and which is akin to the decrease property (27) in the case of two subsets
Aι,A2.

2) It seems physically reasonable to assume that the bounds (27)
are valid at all points (βo,ho) outside the phase transition region. We
recall that they have actually been proved by Lebowitz [1] in the case
of two subsets AUA2, under various conditions.

3) Analyticity is already known when h0 Φ 0 or h0 = 0 and β < β'
where β'<βc. (For references see for instance [11]). Thus the above
theorem will give further information at all points h0 = 0 and β'^ β0 < βc

where (27) is valid, and the assumptions of the theorem can be reduced
to those points.

4) As mentioned in Part I, the analyticity of ψ and <σ^> with
respect to h alone can be derived from assumptions involving only
usual T.F.

(This follows from the remarks at the end of part I and from the fact
that the number of graphs Γc is bounded by CM+q(\A\ + q)l where C
depends only on \A\, in the case of q subsets of one point besides the
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subset A. Since \A\ is fixed, this factor will not modify the arguments
given below).

Proof. For simplicity, we first consider ψ(β,h). For any finite A, ψΛ

is analytic at (βo,ho) Thus we have in a complex neighborhood of

(jSoA):

v (h-κy(β-βoγ d«+r

ψΛ lD ~

The successive derivatives of ψA are given by (21) and the following
bounds, uniform with respect to A, are then readily obtained from (27)
in a way similar to the derivation of (10) in Part I 6

dhqdβr V Γ ϋ ' " Ό ; — V 4 ' ' r ' l ^ ^ "ΛIM I ΛV^; Z ^ uon (29)

From (29), it follows that the series defining ψΛ(β,k) are convergent
in a complex disk D independent of A, in which a complex neighborhood
of(βθ9h0) of the form D1(β0)xD2(h0) can always be included, and that
the ψΛ are moreover bounded in D uniformly with respect to A.

For any given real βx in Dλ{β0\ [resp. any real hx in D2(h0)]9 it follows
readily from Vitali's theorem [12] and from the convergence at real
points that ψΛ converges to a function ψ which is analytic with respect to
h, in D2(h0) [resp. with respect to β9 in D^JSQ)]. From that convergence,
it follows frorn a second application of Vitali's theorem that for any
fixed complex h in D2(h0) [resp. complex β in £>i(β0)] t/; = l i m ^ exists
and is analytic with respect to β in D1(β0) [resp. h in D2(K0)]. Then
Hartog's theorem [13] entails that ψ is analytic with respect to both
variables β and h in D^o) x D^(h0).

The analyticity of {σA} (β, h) is derived similarly.

III. Classical Continuous Systems

We again restrict ourselves in this part to systems of classical identical
particles interacting through a two-body potential Φ. As in Part II,
similar results may be obtained in more general cases. We shall assume
that Φ is real symmetric, stable and absolutely integrable / f \Φ(x)\dx <oo\.

Vπr /
(Some results might however also be obtained by assuming only
integrability at infinity.) For any finite region A of IRV, we consider the

Use u(d(A'hA'l))^ £ u(d(a'ha'{)), and the fact that the number of products
6

aΊeAi
Yl u(d(a'h a")) in Π Σ u{d(aΊ, a'{)) is bounded by 2q + 2r~1 when there are q subsets of one

I I aΊeA'i
aΐeAί

point and r subsets of two points.
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grand canonical system for the reciprocal temperature β and the
chemical potential μ. The partition function is:

= Σ 4 r ί e-βUiXί'-'XN)dxu .,xN (30)

when μ = Logz and z is the activity.
The pressure and the correlation functions are defined (for finite A) by:

βpΛ(β,μ)=\ΛΓίLogZΛ(β,β), (31)

ρΛ(X) = (ZΛ(β,fiT1 Σ ±ΊΓrτ- ί e-^x ^dYN. (32)

The function ρΛ(X) is the "probability density" for finding n different
particles at points xί9 ...,xn. In the following, quantities which appear
naturally in the continuous case are functions ρ(χi> ->χM)(χ) where
Xί9..., XM is a partition of (xl9..., xπ), defined by:

fι "M)ffl = e W + Σ W ) ρ(XL) (33)
L

di IM)

where the sum £ runs over all "liaisons" L between Xu ...,XM:
L

a liaison L is composed of a certain number of "contractions", each
contraction being a set of variables xt with at most one variable in each
Xt(t = ί, ...,M). (A variable xf may not belong to more than one con-
traction of L.) With a contraction of p variables is associated a product
of (p — 1) ̂ -functions linking together the variables of the contraction,
and δL(X) is the product of all ̂ -functions associated with all contractions
of L. Finally, the set XL is obtained from X by identifying all the variables
of each contraction7.

The function ^ I - - X M ) ( J ) represents the "probability density" for
finding ^ = 1̂ 1 different particles at the points of Xt(t = l,...9M),
the particles belonging to different Xt being no longer necessarily different.
When each subset Xt is reduced to one point xt9ρ

(Xu~"XM)(X) reduces
to the function ρ(X) introduced by Ruelle [3].

Formula (33) can be shown to be equivalent to:

N>=0 Nϊ

(xι,...,xN) (xi x \ ) V '

Σ ••• Σ p(χtfi),...,*(•/*))
J J

Σ (
contractions of L



204 M. Duneaueία/.:

where φ is a test function (with support in Λ\ and each sum
(XI,...,XN)

Σ (ί = 1,..., M) runs over all the ordered subsets of \Jt\ = nt(= \Xt\)
Jt

variables taken from XN = (x1, ...,xN);x(Jt) denotes the set of Xj in Jt.
This formula is a generalization of Ruelle's formula (7.1) of [3] in which
each Xt is a point (M = ή).

From the functions ρ{Xu - X M ) {X\ the functions (ρ{Xu -x**γ(χi- • -x™\
which are truncated with respect to the same subsets Xl9..., XM, and are
denoted below ρfiXί" "XM\X), are defined by the recurrence formulae:

(XU...,XM) k

f n } y (35)

where the notations are the same as in (17). The functions ρτ(χi>
thus defined can be shown to possess a property analogous to (33):

(35')
where {Xί9 ...,XM;L} is the partition of XL obtained by gathering all
variables xt of any two subsets Xtί,Xt2(tu ί2 = 1,..., M) as soon as there
is a contraction of L joining Xtχ and Xt2.

A. Derivatives of βpΛ and ρΛ(A)

Formulae analogous to (21) (22) hold:

tq,AA)(A Ύ Y γ γ\QΛ \Ά, Λ 1 5 ..., x^, i l 5 . . . , x,.;

where dY,. = rfu^ d ^ and Φ(Y}) = Φ(w7 - 1 ; / .
As in Part II, those formulae are readily extended for /c-body

potentials, k> 2, and are derived from:

^ - w i ^ - w J ^ (38)

Tq>r and Γβ>r(A) have the same meaning as in Part II.A.
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i t (Y Y » r Y l / i r \ 7 / Λ Γ\\

Γi \ 1» ' ' ' Λ*' ' i Λ VI /7 V //Mil

J_ρf<*i.....*M> ( X)=_ f ρ ^i . . . .^M.y) φ (y) d y < (4i)
δβ χ2

(38) (39) are obtained by explicit computation. In contrast to Part II,
(40) (41) are not quite trivial at M = 1 (41) for instance is then a particular
case of the following formula which is verified by using (34):

dβKΛ
(42)

= - f $%ί> ~ XM'Y)Φ(Y)dY + ρ%ι--XM)(X) \ ρΛ{Y)Φ{Y)dY.
A2 A2

The general proofs of (40) (41) follow by a recurrence procedure as in
Part II.

We finally note that the derivatives with respect to μ alone can also
be written [14]:

- T τ ( β P Λ ) = - r τ r - γ J QTΛ(*U •• , x q ) d x l 9 ...,dxq, (43)

(44)

where z is the activity (z = e^).

B. Analyticity Properties

We now state:

Theorem. Let (β0, μ0) be a (real) point at which:
1) the thermodynamic limits p(β,μ) and ρ(A)(β9μ) of the pressure

and the correlation functions exist and are uniquely defined;
2) the following bounds hold uniformly with respect to A for any

test function φ(yl9..., yM) with sufficiently small support around the origin9:

M XU XM M-l \ '

^ C(φ) Π li\Xj\) x Σ W ΨW, Xϊ))

where Xj + yj is the set Xj translated by the common vector y^ u is an
integrable function I \ u(\x\) dx < oo\ and C(φ) depends only upon φ.

U
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Then the thermodynamic limits p and ρ(A) are analytic at (β0, μ0) with
respect to both variables.

The proof is completely analogous to that of Part I I 1 0 . We finally
make some remarks:

1) The uniqueness of the infinite Gibbs state is probably linked with
fall-off properties of the correlation functions, as for the case of lattices
(see remark about Dobrushin's criterion in Part II).

2) In contrast to PartII, the ρf(Xu -XM)(X) are now distributions
and thus the bounds (45) refer to integrals with some test function
ψiy^ •• >);M) Bounds of the type (45) may seem plausible (provided
the support of φ is sufficiently small) outside the phase transition region
and the solid phases.

3) We do not know from physical considerations whether the bounds
should apply to ρT{Xu ~>XM) or ρ

f(χi> >χM)m Thus it may be useful to
remark that analyticity with respect to μ can also be derived from
assumptions analogous to (45) but referring to ρτ(χi> >χM) ( o r alter-
natively can be derived directly from analogous assumptions referring
to the usual T.F. as in Part II). To see this, it is sufficient to use (43) (44),
in place of (36) (37), in the proofs.

IV. Some Results on the Decrease of the Truncated Correlations
in the Ising Model

For simplicity we consider a v-dimensional Ising lattice with nearest
neighbour interaction, at least in one direction /, and the splitting into
corresponding layers.

With any given finite width of the layers is associated the set of
configurations σ of each layer, which generates a vector space J f , and
the symmetric transfer matrix T defined by:

WJ1 ( 4 6 )

where H(σ) is the energy of the configuration σ and J(σ, σ') is the inter-
action between σ and σ' on two successive layers.

We shall denote by λθ9 λί9 ..., λj9 ..., (λ0 > λί ^ ••• ̂ λj- ) and
|0>, 11 >, . . . , [/>, . . . the eigenvalues and eigenvectors of T.

Let A0,Al9...9An be arbitrary operators defined on the layers of
c o o r d i n a t e s Iθ9ll9...9 ln(l0 <11<-- <ln) a l o n g ί.

1 0 The bounds on the integrals of (36) (37) are readily obtained from (45) by choosing

φ such that ίφ(yi,.. ,yM) dyu ...,dyMή=0 and by remarking that the function ]~J Φ{Y) is

invariant by translations y} of each set Yj.
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Theorem. In the limit of an infinite number of layers, the truncated
correlation function (κA0A1 ... An}

τ decreases like
} \i\n-lo) I 1 \{h-h) I ) \(h-h) I ) \(ln-ln-ι)
Aγ \ I Aγ \ / Aγ \ / Aγ \
ΛQ I \ ΛQ / \ AQ J \ AQ I

when the distances lι — lo,l2 — lu...l>ln — ln-iL tend to infinity.

Proof. It is easily shown ([15]) that:

<A0At ...Any = <0\AoA1 ... I n | 0> (47)
where

A - ( T\lί A I T \ ' U

and correspondingly:

The following lemma is readily checked at n = 1 and is then proved
by recurrence.

Lemma. Let BO,BU ..., Bn be arbitrary operators defined on 3tf
let Q = 1 - |0><0|. Then:

... QBJO> = Σ U <0|β(πt.)|0>Γ (49)

( , , ) Γ

where ]Γ runs over all partitions of (0, ...,n) (including the trivial
{πι,...,πk}

one) which "cover" the interval (0, n)5 i.e. are such that the set of open
intervals (αi? βt), where αf = Infπ i? /?f = Supπ i ? is α covering of (0, n).

(For the recurrence, use the operator Bt

n^1 = Bn_i. Bn and formula

By applying this lemma to Ao,..., An, we get:

φ\A0Aί . . . i Λ |0> Γ = <0|i'0(Qi1 ... Q l j O > - ( "Σ)Γ Π <0|i(π, )|0>Γ

(non trivial)

and the announced decrease of {A0Aί ... An}
τ is then easily obtained

by recurrence, using the fact that

Theorem. The same decrease is obtained in the limit of infinite width

of the layers, whenever ~- is strictly less than one in this limit.
λ0

This result, which generalizes the decrease obtained for the two
point function ([15]), can be extended for any finite range potential
and non symmetric transfer matrices.

When A0,Au...,An have the same localization on their respective
layers lθ9ll9 ...,/„, the asymptotic decrease obtained coincides with the
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strong decrease of Partl.C. [However we do not obtain the precise
bound (9).]

For a general localization x0, x1 ?..., xn of Ao, Al9..., An the asymptotic
decrease is, at least, of the type e~χD where D is the diameter of the
configuration ( x o , x l 5 . . . 5 x J 5 / D = Max |x£ — X/|V and is thus better

I i,j = 0 , . . . , π / D

than the "weak decrease" of part I A, which provides essentially e χ n ([1]).
However it is not yet sufficient to derive analyticity.

Acknowledgments. We are very grateful to Drs. J. Ginibre, J. Lascoux, J. L. Lebowitz,
E. H. Lieb and D. Ruelle for most interesting discussions. (However none of them should
be held responsible for our "mystical" belief in the properties of the truncated functions.)

Notes added in proof: 1. In various cases, a factor of the type Nλ\ ... Np\ is to be
included in our bounds (for physical reasons) when the points κ1 ... κn are not all different
from each other. This factor does not change the derivations of analyticity.

2. The "strpng decrease properties" assumed in this paper have in actual fact been
proved in some situations, as described in a following paper by the same authors.
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