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Abstract. It is shown that a torsion free linear connection is determined by a metric
of given signature if and only if its holonomy group is a subgroup of the orthogonal group
corresponding to the signature.

§ 1. Introduction

It is well known that a Riemannian metric g on a manifold M
determines uniquely a torsion free linear connection Γ on M, called the
Levi-Civita connection of g [1]. This connection is determined by the
condition that parallel transport with respect to Γ should preserve the
scalar product defined by g. The existence and uniqueness of Γ can be
proved in various ways1. With respect to a local coordinate system (xl)
the Christoffel symbols of Γ are related to the components of the metric
tensor by

0ji |k) (1)

which is because of Γ£z = Γ}k equivalent to

0hj\r = 0hiΓjr + 9jlΓhr (2)

The purpose of this paper is to answer the following question: What
are the necessary and sufficient conditions for a torsion free connection
to be the Levi-Civita connection of a metric?

The most straight forward approach to this problem is to start with
the differential equations (2) and write down the integrability conditions
for the existence of a solution gik of (2) 2. These integrability conditions
form a system of functional equations Fv(gίk, Γkh Γkl\Sl . ) = 0, v = 1, 2 . . .
whose consistent solvability are necessary and sufficient for the existence
of a solution of (2).

1 A very elementary proof: calculate — (gik(xl(t)) al(t) bk(t)) = 0 for a\t\ bk(t) parallel

propagated along x(t). Using — - -- h Γl

klx
kal = 0, — - -- 1 — one gets (2).

at at
2 This was done in some unpublished work by Muller zum Hagen.
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Very little insight however is gained by this method into the geomet-
rical meaning of the integrability conditions and the restrictions imposed
by them on the connection.

A more geometric approach is the following: Given a connection on a
manifold M one can parallel propagate frames. For any path τ between
two points of M parallel transport along τ defines a linear mapping L(τ)
between the tangent spaces of the two points. This linear map is an
isometry if the connection is a Levi-Civita connection.

The holonomy group Φ(x) of a point xeM is the group of linear
transformations in the tangent space of x defined by parallel propagation
along loops starting at x. For connections on connected manifolds the
holonomy groups of different points are isomorphic.

It is obvious that a connection can only be a Levi-Civita connection
of a metric g, if the holonomy group is a subgroup of the generalised
orthogonal group corresponding to the signature of g.

In the next Section I will show that this condition is also sufficient.
The basic idea is to extend orthonormal frames determined by the
holonomy group at one point onto the whole manifold by parallel
transport.

In the last section some comments are made on the relations between
the infinitesimal holonomy group, which can be calculated from the
Riemann tensor and its derivatives, and the holonomy group.

§ 2. Proof of the Theorem

Theorem. Let Γbea torsion free connection on a connected manifold M
whose holonomy group Φ keeps a non degenerate quadratic form gQ

invariant. Then Γ is the Levi-Civita connection of a metric which has the
same signature as g0.

Proof. The holonomy group Φ(x) of a point x e M keeps g0 in-
variant. Therefore we can define at x a scalar product gx(X,Y) which is
invariant under Φ(x). For any y e M there is a path τ joining x and y.
An unique scalar product gy(X, Y) is defined at y e M by the condition
that L(τ) is an isometry. If σ is any other path from x to y then L(τ) L(σ~l)
is an element of Φ(x), hence an isometry. This implies that L(σ) is an
isometry. Therefore gy is independent of the particular path joining x
and y. In this way we define a metric on M which is C°° if Γ is C°°.

Now it is easy to see that parallel transport with respect to Γ preserves
g(X, Y) defined above: Let τ be a path joining two arbitrary points y
and z. Then there is a path σ from x to y and a path λ from z to x. This
implies L(σ) L(τ) L(λ) e Φ(x). From the definition of g we know that
L(σ) and L(λ) are isometries, hence L(τ) is an isometry.
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Now we have constructed a metric g on M with the property that
parallel transport with respect to Γ preserves the scalar product g.
On the other hand we know from § 1 that the Levi-Civita connection
of g is the only connection having this property, hence Γ is the Levi-
Civita connection of g and the proof is completed.

A Levi-Civita connection determines the metric not uniquely.
Obviously g and ug have the same Levi-Civita connection if α is constant.

The theorem above shows that every g0 invariant under Φ(x) defines
a metric whose connection is Γ. To get all metrics we have to calculate all
non degenerate quadratic forms invariant under Φ(x).

Suppose for example that there are two complementary subspaces
of TX(M) invariant under Φ(x) and orthogonal with respect to g0. Then
α#ι + β02 is also invariant under Φ(x) if gl9g2 are the restrictions of g0

on the subspaces3.

This situation however occures only in a very restricted class of
spaces, because it implies that the Riemannian space is at least locally
the direct sum of two spaces [1]. Hence a Levi-Civita connection in
general will determine the metric up to a constant conformal factor.
To enter the classification of the particular cases in which there are more
metrics is beyond the purpose of this paper.

§ 3. Determination of the Holonomy Group of a Connection

The holonomy group decides whether a connection is a Levi-Civita
connection or not. How can we find the holonomy group of a connection
and the quadratic forms invariant under it?

Let us first consider a connection on a simply connected manifold.
In this case Φ(x) is a connected Lie subgroup of the group of linear trans-
formations in the tangent space of x. Therefore Φ(x) is uniquely deter-
mined by its Lie algebra Φ(x) and the metric gx(X, Y) is invariant under
Φ(x) if and only if

0 (3)

holds for any A e Φ(x). Hence if M is simply connected we can reformulate
the assumptions of the Theorem in § 2 as assumptions on Φ.

Suppose for example Γ were analytic. Then it is shown in [1] that
the linear maps

Vk R(X, Y V,... Vk\ X, 7, Vt e TX(M) (4)

or equivalently the matrices

jR* <^77mVSl VSk (5)JV fcίm s i . .SkS '/ v ••• v Vy/

It is still possible that some of the metrics agl + βg2 are isometric !
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span the Lie algebra of the holonomy group. Therefore we can calculate
Φ(x) from the Riemann tensor and its derivatives if the connection is
analytic.

For C°° connections the linear maps (4) form still a Lie algebra Φ'(x)
and the group generated by it is called the infinitesimal holonomy group
Φ'(x). In general however Φ' is only a subgroup of Φ. Consider as an
example a connection with the property that the Riemann tensor and
all its derivatives vanish at one point x but not in an open set containing x.
Then Φ'(x) is trivial but Φ(x) not.

In [1] it is proved that dim Φ' = const implies Φ'( x) = Φ(x). Hence the
Riemann tensor and its derivatives at one point determine Φ(x) in
this case.

The following example serves as a counter example to two conjec-
tures:

(A) There is always a point x in which Φf(x) = Φ(x) holds.

(B) If any point has a neighbourhood such that Γ restricted to this
neighbourhood is a Levi-Civita connection, then Γ is a Levi-Civita
connection.

Consider the following three parts of R2, where (ί, x) is a global
coordinate system:

I I = {(x,ί);ί>0}

We define Lorentz metrics in I and III by

ds2 =-dt2 + R2(t) dx2, ds2

u = -dt2 + S2(t) dx2 . (6)

The only non vanishing Christoffel symbols are

RR9— for I, SS,— for III. (7)

Suppose R(t) and S(t) are C°° functions satisfying

"° £ n-1,2,.... (8)

lim S(t) = α Φ 1 lim —— - 0
ί->-ι ί->-ι at

We define a connection on R2 by Γ^ = 0 on — 1 ̂ ί^O and the Levi-
Civita connections of the metrics (6) on I and III.
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Let us now check whether this connection is a Levi-Civita connection:
It is clear that u( — dt2 + R2 dx2) is the most general metric on I. For any
constant α there is an unique continuous extension of this metric on II,
namely oc( — dt2-\- dx2\ such that Γ is the Levi-Civita connection on I u II.
Similar β( — dt2jrS2dx2) is the general metric on III and its unique
extension to get the right connection on II is β( — dt2 + a2 dx2). Therefore
we get a contradiction on II because a2 Φ 1. The connection we defined
is no Levi-Civita connection and it contradicts (A) and (B).

Despite of the fact that in general we can not calculate the holonomy
group from the Riemann tensor and its derivatives one should keep the
following in mind: The set of points with dimΦ'(x)^fc is always open
[1]. Therefore one can find open submanifolds on which Γ determines
possible metrics. For practical purposes — if this problem arises at all —
one can consider these open submanifolds separately and then try to
join the metrics.

Let us finally turn to connections on manifolds which are not simply
connected. Then the holonomy group is not necessarily connected.
If Φ0 is the connected component of Φ then Φ/ΦQ is a subgroup of π1(M),
the first homotopy group of M.

The connection Γ on M defines uniquely a connection Γ on M, the
universal covering space, by the condition that the projection π : M-*M
is an affine isometry for sufficient small open sets in M. The holonomy
group of Γ is Φ0. Hence Γ is a Levi-Civita connection if this is the case
for Γ.

Suppose conversely that Γ is a Levi-Civita connection on M. Then Γ
is a Levi-Civita connection if and only if Φ/Φ0> which acts as a trans-
formation group on M, is a group of isometrics of the metric on M.

An example of a connection on S1 which is only a Levi-Civita connec-
tion on the universal covering space is the following: ds2 = exdx2 is a
metric on R1. The map x-*x + 1 is an affine transformation but not an
isometry. By identification we get a connection with the desired property
on S1.
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