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Abstract. It is proved that for an ideal quantum measurement the average entropy of
the reduced states after the measurement is not greater than the entropy of the original state.

Consider a quantum state described by a density operator W in
Hubert space

W=W*^Q, ΎτW=ί.

Then there exists an orthonormal set {|f>} such that

W = ΣwiWi

where Wί = |ί> <i|, W i > 0 , Σw^-1.
Let O be an observable with eigenspaces defined by projections Pk;

If 0 is measured the value ωk is obtained with probability pk = Tr WPk

and W is then replaced by

The average over all possible outcomes gives a density operator

(sum over all k such that pk Φ 0).
The entropy of a state W is defined as

S(W) = - Tr W log W = - Σ w£ log W; .

It is well known that S(W)^S(W) [1] (the transformation W-*W is
"dissipative") with equality if and only if W = W. [A simple proof: use
Tr W log W = Tr W log W and Klein's inequality Tr ( WlogW-W log W1)

It was conjectured by Groenewold [3] that the average of the en-
tropies of the states Wk is not larger than S(W):



246 G. Lindblad:

If entropy is identified with "missing information" the difference may be
interpreted as the average information gain in the measurement process.

It is the object of this paper to prove this inequality (Theorem 2).
The proof uses a subadditivity property of the entropy which is proved
in Theorem 1.

Theorem 1. Let A,B be positive operators of trace class and let

S(A) = — ΎΐA log A if A log A is of trace class
= oo otherwise .

Then S(A + £) ̂  S(A) + S(B).
If S(A) or S(B) = oo then S(A + B)=oo. If S(A) and S(B) are finite

then the equality holds if and only if A B = 0.

A proof of the inequality (formulated differently) has been given by
Lanford and Robinson [4]. We give an elementary proof which also gives
the condition for equality.

Lemma. // A, B are positive trace class operators such that S(A) < oo
and A^B then

with equality iff B \ Range A = A\ Range A.

Proof. Let {|^>}, {|£>/>} be complete orthonormal sets of eigenvectors
for A and B. We first show that Ίτ(B~l A2)<^ΊτA.

A^B implies that A + εl ̂  B + εl for every ε > 0. Then A + εl and
B + εl have bounded inverses and ([2], p. 28)

Hence <αί| (A + εI)(B + ε/Γ1 (A + ε/) α*) g <at\ (A + εl) \aty = a, + ε.
Taking the limit ε-»0 we obtain

Hence Ίτ(AB~v A) =
A^B implies that <αf | ί>7 > = 0, if at φ 0 and bj — 0. For αf φ 0 we have

= Σ l<a l. |fc j>|2

f c Φ O

since logxrgx— 1 for x>0, with equality only for x=ί.
As <αf I (A log A - A logB) \ aty = 0 for at = 0, we get

Ύr(A log A - A logB) ^ Tr^'1^2 - A) .

Equality holds iff (at \ b^ Φ 0 => a{ = 0 or a{ = bj.
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This condition is equivalent to

for all a{ φO. But Ranged is spanned by {|<^>; fljφO} so we get

£ I Range ,4 = ,4 1 Range ,4.

If this condition is fulfilled then obviously Ύr(B~1A2 - A) = Q and the
lemma is proved.

Proof of Theorem 1. Substitute A + B for B in the lemma, then inter-
change A and B and add the two inequalities. Then, if S(A) and S(B)
are finite

with equality iff (A+B)\ Range A=A\ Range A and (A -f B) \ Range B
= B I Range B which is equivalent to A - B = 0.

If S(A) or S(B) = oo then S(A + B)=oo from the concavity property
of the entropy ([2], p. 28).

Corollary. Let A, {A^ be positive trace class operators. If A = ΣAt then

If S(A) < oo then the equality holds iff A{ - Aj = 0 for i Φ /.
n

Proof. Let the eigenvalues of A(n) = £ Ai be {a(f} arranged in
i = l

decreasing order. Then by [6], Chapter 2, Lemma 1.1. a(

k

}^a(

k

} f°r

n^n', all k. From Ίτ(A -A(n})-^0 and monotonity follows that the
eigenvalues of A are αk= limα^. Let h(x)= — xlogx. For k sufficiently

n

large (αk<e~ί) and n^ri we have h ( α ( f ) ^ h ( α (

k

Ί ) and the convergence
/z(4n)) -> h(αk) is monotone, hence lim S(A(rί>) = lim Σ h(α(f] = Σ h(αk) = S(A).

n oo oo

Then S(A(n)) ^ Σs(Aί) implies that S(A) ^ Σs(Aίϊ If S(A) = Σs(Aί} < °°>
1 1 1

then equality holds in S(A) ^ S(Aj) + S ί ̂  At\ ^ Σ S(At) and Aj - Σ Ai = 0,
\ i * J / i*J

hence Ai - Aj = 0 for i Φ /.

Theorem 2. Lei W be α state with S(W)< oo, W and Wk as defined
above. Then

Equality holds if and only if S(Wk) = S(W)for all k with pk Φ 0.

Proof. The statement is trivial if W is pure: S(W) = S(Wί) = Q all k.
Let W = Σ Wf Wi9 Wt pure, Wt Wj = 0 for i Φ; and put s{wj = - Σ wf logwf .
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s{wJ and

where pi>k = p^1 ΎrPk Wi and W >k = (ΎrPk W^1 Pk WtPk. By the corollary
of Theorem 1, noting that all W ίk are pure

} (1)

k k

Use the fact that s{ } is a concave function and Σp f c =l, ΣPk = I:

(2)

If s(Wk) = S$V) for all k such that pk φ 0 then the equality obviously holds.
Conversely, if ΣpkS(Wk) = S(W), then equality holds in (2). This implies
that for each i, Wipifk are equal for all k such that p k φO ([5], §3.8)
i.e. Wipi j f c = α ί5 hence

Summation over k gives αf = w ί? i.e. pί)k= 1 and

Tr(PΛ^) = <i|Pk | i> = p f c.

Furthermore we must have equality in (1):

/,k) = 5{wJ = S(W)
i

and the theorem is proved.

Remark. Equality in (1) implies by Theorem 1

WUWj'^Q for iφ;

hence Tr(P f c^P f c^)-|</iniOI2 = 0 for fφ./.

This and the condition pt^k= 1 can be summarized by

<i\Pk\J> = Pkδij or WίPkWj = pkδijWi.

Introducing Pw = Σ Wt (the support of W) this condition reads

PwPkPw = pkPw for all fc,

which is an equivalent condition for equality in Theorem 2.
This relation is obviously satisfied if W is pure. If Pw = I the con-

dition implies that Pk = I and pk = ί for one k. If the observable com-
mutes with W then PkPw = pkPw, hence Pw^Pk and p fc= 1 for one k.
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There are also nontrivial cases provided the dimension of Pw is not
larger than the dimension of / — Pw.
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