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Abstract. The energy as function of entropy and the free energy as function of tem-
perature is calculated rigorously for nonrelativistic fermions with

e' e" ~κM' M"

interactions. It is shown that in the appropriate thermodynamic limit the corresponding
Thomas-Fermi equation becomes exact.

I. Introduction

In this paper we evaluate the thermodynamic functions for matter
in the limit of many particles. By "matter" we mean nonrelativistic
fermions interacting with Coulomb- and Newton potentials. For
definiteness we consider two species of equally many fermions (electrons
and protons, say) with masses M1? M2 and opposite charges ±e. The
reason why the thermodynamic functions can be calculated is that for a
large number N of particle pairs the system is compressed by gravitation
to such an extent that the Thomas-Fermi equation becomes exact. The
present results generalize those of a previous paper [1] in two respects:

a) Electrostatic forces are also included. Our results show that for
N-+OO they cannot prevent the compression of the system. This is in
accordance with the folklore that for

3/2

atoms are squashed and one obtains a high-density plasma. For the
ground state this fact has been demonstrated by Levy-Leblond [2].

b) We also show that if one calculates the energy as function of
entropy in the microcanonical ensemble the relevant Thomas-Fermi
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equation becomes exact. This result had been anticipated when a nu-
merical calculation of these quantities in the purely gravitational case
was carried out [3]. There it turned out that the phase transition which
occurs in the canonical ensemble corresponds to a region of negative
heat capacity in the microcanonical ensemble. This phenomenon has
been found for models of stars [4] and of hadrons [5] and it is encountered
for the good old 1/r-potential as well.

For those values of the energy where the heat capacity is positive
(a Legendre transformation from entropy as a function of energy to the
free energy as a function of temperature can then be defined) the micro-
canonical and the canonical ensemble give the same thermodynamical
functions. There is, however, a region where the two ensembles are not
equivalent.

More specifically, we study the limits

lim AT 7 / 3 ~ £ Ev(N,L) = Σ(s,l) (1.1)

and -lim N~113 — log Y e~β'E^N L) = Φ(/j, /) (1.2)
*-** P v = ι

where EV(N, L) denotes the v-th eigenvalue - in ascending order - of a
Hamiltonian describing the 2N interacting particles which are enclosed
in a cubic box of length L. The powers of N in the above expressions are
the same as in the purely gravitational case and are dictated by the
following considerations: For noninteracting nonrelativistic fermions
one has a_ one-parameter family of equivalent limits ΛΓ-> oo with N~yL,
ΛΓ 2 y ~ 5 / 3 £, N2 / 3~2 yβ', and N"1 logΩ approaching constant values /, Σ, /?,
and s respectively. Since in our case the ground state energy E^N)
= lim E1(N,L) goes like JV 7 / 3 [2] we have to choose y= —3- to assure

L-> oo

lim limits, /)= lim ]V~7 / 3 E^N). This law of corresponding states can
/-»oo s-»0 N->ao

also be inferred from the Thomas-Fermi equation with 1/r-interaction.
In this paper we shall demonstrate only that the (temperature

dependent) Thomas-Fermi equation becomes exact, for a discussion of
its numerical solution we refer to an earlier paper [3].

In our proof we cast into exact mathematical bounds the usual saying
which goes along with the Thomas-Fermi equation: Since the singu-
larity of the 1/r-potential prevents its uniform approximation by step
functions we use our previous result to show that it can be removed
without changing the thermodynamical functions significantly. We then
subdivide the cube into sufficiently many small cubes and approximate
the now continuous potential by another which is constant as long as a
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particle remains within a small cube. This will change the thermo-
dynamical functions by a negligible amount only. Next the small cubes
are separated by infinitely strong ^-function barriers. Here the method
of Ref. [1] turns out to be too cumbersome \ we adopt an idea of Griffiths
and Robinson [6] instead: to each state of the system without walls a
state of the system with walls is associated such that the expectation
value of the Hamiltonian is only slightly larger. Now the problem is
reduced to studying noninteracting fermions within boxes having an
additional potential energy which depends on occupation numbers of
boxes only. One has to find the distribution of particles among boxes
which minimizes the mean or free energy for fixed entropy or temperature
— this is equivalent to solving the Thomas-Fermi equation. Our final
result is that the thermodynamical functions are, in the appropriate
limit, those of noninteracting particles which move in a selfconsistently
determined external potential.

Instead for a spherical vessel - as in Ref. [1] and [3] - we prove the
above assertions for a cube. It is, however, evident that they are correct
for any vessel form which can be approximated by cubes.

II. Formulation of the Problem

We want to investigate the statistical behaviour of two species
(α = 1, 2) of equally many fermions of opposite charge (et = e, e2 = — e)
and with possibly different masses Mα (M = Mt Ξ> M2, say) which interact
by gravitational and electrostatic forces. The 2N particles are confined
to move within a cubic box ΛL= {xe R3 :0<xr<L(r= 1, 2, 3)}. This
means that the Hubert space 3tifNiL under discussion is made of (the
equivalence classes of) square-integrable, complex-valued functions
φ(x11? ...,x1 N, 3c21, ...,x2#) which are antisymmetric in the first N
variables x l f , antisymmetric in the remaining variables x2i and have
support in ΛLx ΛLx ••• xΛLCR6N. Denote by ^N,LC^fNyL the set of
absolutely continuous functions, vanishing at the boundary of
ΛLx ALx -" x ΛL and having partial derivatives in 34?NjL, and by VΛi the
gradient with respect to the α/-th variable. We define the following
sesqui-linear form $N,Lx ^N,L^C'

____ βk
1 Indeed, Eq. (4.12) of Ref. [1] is an oversimplification and is valid if the radial

contributions to the free energy are taken into account only. Including the angular quantum
numbers, although trivial, leads to very messy formulae.
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x E R6N stands for (xί ± , . . . , x2N) and Σ' means that terms with (α, z) = (β, k)
are to be discarded. The form is hermitian and bounded from below [2],
i.e. there exists a number b such that (Φ, Φ)H = (Φ\H + b\Φ)^(Φ\Φ)
holds for Φe^N L. With this || ||H-norm &N>L is a Hubert space which
means that it is also complete. It is || || -dense in J^N,L

The theorem of Riesz says that to any Φ e ^^corresponds a ψ £$N L

such that (Φ, χ) = (tp, χ)H holds for all χ^^N L. One easily verifies that
Φ -> φ, considered as a mapping J^N L -> JfN L is linear, injective, hermitian,
bounded and has range @NtL which is dense in &N,Lin the || ||H-norm and
consequently dense in J^N>L in the usual norm. Therefore its inverse is
self-adjoint on the domain @N>L and is equal to b + the Hamiltonian H
of the system under discussion, which is formally given by

U- V A^ 4- 1 V e,eβ-κMaMβu - ~ L 777- + y L j j 5-] ^ A)
αi ^^^α z αi l ^iα ^fc/ϊ l

/3/c

H has a discrete spectrum only, we label the eigenvalues in ascending
order by EV(N, L, e2, K). It plays a secondary role only and we will never
have to specify its domain ^N L explicitly. The reason is that the mean
energy E and the free energy F can be obtained from the form H :

,L9e
2,κ) = Ω-1 inf Y (Φ|H|Φ) (2.3)

<F- Φ^Ωand

,β,L,e2,κ)= -β~l logsup ^ e-^(φ|H|Φ) > (2.4)

is a set of ί2 (finitely many) mutually orthogonal and normalized
vectors of ̂ N L. Since ̂  L is dense in &NtL in the || ||H-norm and (Φ | H \ Φ)
is per definition continuous in this topology the infimum or supremum in
(2.3), (2.4) can be restricted to all 3F C @NiL without changing the result.
Then, by standard results, there is a relation with the eigenvalues of H :

_ Ω
E(N,Ω,L,e2,κ) = Ω~l £ Ev(N,L,e2,κ) (2.5)

v = l

is the mean value of the first Ω eigenvalues of H and

F(N,β,L,e2,κ)= -β'1 log f) e-β*vW< *2 «) (2.6)
v= 1

is the usual free energy.
The following statement is a consequence of the behaviour of the

kinetic and potential energy with respect to dilatations x-^>N7x:

,NyίN-ίl?>-ye2,N-1/?>-yκ) (2.7)
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and

do not depend on y.

Our aim is to calculate

and

for s>0, />0,

Σ(s, 0 - lim Σ(N, Ω, I)

Φ(βJ) = lim Φ(N,β,1)

(2.8)

(2.9)

(2.10)

III. Substituting 1/r by a Regulated Function

From now on we will employ the JV-independent volume version of
(2.7) and (2.8), i.e. choose 7 - 0.

(3.1)
a i - β k

are hermitian operators: @NJ-+3^Nj. (Recall that M is the larger of M1

and M2.) We also define the kinetic energy operator

(3.2)

The region Λl within which the particles are confined to move is now a
cube of length /. We subdivide it into g = h3 small cubes Aa

l/h of equal
length l/h (a= 1, 2, ...,#). The centre of cube Λa

ljh is denoted by lξa, its
characteristic function is

Ί '
1/2

1/4

1/8

lo.

> if x is <

inside

on the surface of

on an edge of

a corner of

v outside

Λa

llh. (3.3)

The operator for the number of particles of species α in cube Aj/h is

(3.4)
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With the μ, 0-dependent onumbers

^ '

we furthermore define

βb

Vμg is an approximation - in the sense of inequalities (3.13) - to the
original interaction VQ. , +VQ, + λΌ, + λUμ and +Vμg are
self-adjoint operators: &Nj-^^Nj if μ>0 and λeR. They correspond
to sesqui-linear hermitian closed forms T, Γ+F0, T + /Lt/0, T+λUμ

and T+Vμg'. $NJ x $Nj-+C which are defined in analogy with (2.1).

Levy-Leblond's result [2] and Eq. (2.11) of Ref. [1], in the case of
two species of identical fermions, read now :

2 , (3.7)

0 ̂  Uμ ̂  μ"l'5(T + a2 N) μ > 0, a2 = 4M3/2(e2 + κM2)512 l ί / 2 . (3.8)

These bounds are valid for the operators as well since @N,ιC&Nj

For arbitrary ε>0 there is an integer g0(£,μ) such that

-» -» - ^ l?'-l?"l
_ g - 0 l £ « - £ b l { _e i ' '

(3.9)
αb

holds for x', x" e Λl and gf ^ gf0(ε, μ). Therefore

^ τ J- , ^ _ 1 \—1 , ^ „ - , , -L ί̂

and
(3.11)

with α3 - ί^'2 + — L- — — J /~ 1 and ε = εΓ1(e2 + κM2) results.

From (3.8), (3.11) and a consequence of (3.7):

0 g T ̂  T + (T - 2 ί/0) + 4^ N ̂  2(T + FO) + 4^! N (3.12)
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we deduce the desired approximation:

. T+Vμg + cN
o^-i—-..-I/* > (3-13)

l + 2 μ ~ J / D

where c^ε + N~lμa3 - fμ~ 1 / 5 α 2 + 4μ~ 1 / 5 α 1 can be made arbitrarily
small by choosing N, 0, and μ large enough.

We have to show next that such an approximation of forms (or
Hamiltonian operators) is carried over to an approximation of the
corresponding thermodynamical functions. Consider the mappings of
hermitian sesqui-linear forms A into JR, defined by

(A)%C = Ω-1 inf X (Φ\A\Φ) (3.14)

(A)c

β = -β-llogsup £ e-
β(φwφ), (3.15)

where ^Ω(^) is a set of Ω (finitely many) orthonormalized vectors in the
domain of A. (m.c. (c.) stand for microcanonical (canonical) average.)
Both mappings are increasing:

A^B implies ( A ) ^ ( B ) 9 (3.16)

c-number additive:

(A + λ) = (A) + λ for λ e £ , (3.17)

and (. )m c is linear for λ>0:

(λA)m c = λ(A)m c . (3.18)

We define
Jo" (3-19)

and
'Jβ (3-20)

and note that the quantities of Eqs. (2.7) and (2.8) are given by

0)S
 C , (3-21)

0)J . (3.22)

(3.13) then implies

i^_csr(«,aos4«!ϊ4«+c ,3.23Il + 2μ ip 1 — 2μ p

and
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We have thus achieved our first goal: to replace the 1/r-potential by a
step function with arbitrarily little effect on the thermodynamical
functions.

IV. Separating the Cubes by Walls

In this chapter it is demonstrated that separating the small cubes
Aa

l/h by impenetrable walls changes the specific mean (free) energy
Σμg(Φμg) by a vanishing amount, if N-* oc.

Besides the previously defined yNJ we have to deal with another
pre-Hilbert space where the wave functions vanish at the walls:

' 9%ι= Φ e f N . ( ] Φ ( x ) Φ θ implies xαί e (J ΛyVα, ί) . (4.1)
I a=l )

(Recall that the Λa

l/h are open sets.)

We shall have to compare the system without walls, volume /3, with
a system with walls, volume Γ3 = (/ + 2(h — l ) b ) 3 . 2(h — l)b will eventually
be chosen to be N ~ 1 / 6 / .

βk *(χ) ψ(x)
<xα i,k
βb

defines forms T+ Vμg : 9NJ x ^f/->C, Tw +V*:9%tlx9%tl-+C and
T'w + V'^'.^i' x fS™λ,-+C. The corresponding self-adjoint operators
are f+Ϋμg:®Ntl^jέNj9 fw +V%,:®%tl-+jrNJ and f'w+V£ :®%tl,
->^v,r T 4- Kμ0 describes particles which are confined to move within
a cube of length I, each particle feels a potential which remains constant
as long as it moves within the same small cube. Tw + V^g describes the
same situation except that the particle current across the surface of any
small cube vanishes. T'w + V'μ^ describes the latter situation except that
all lengths are scaled by a factor \ + 2(h— l)b/L

Since ̂ z C &NJ we immediately obtain an estimate

Σμg(N, Ω, /) ZN-^T" 4- Or = iyg(N< Ω, /) (4.3)
and

Φμg(N, βJ}^N~i(T+ V?$ = Φΐg(N, β, I) . (4.4)

The following discussion, the purpose of which is to obtain an estimate
in the opposite direction, pertains to values of b such that 4(h — l)b < Z.
Since 4(h— l)b = 2N~1/6l and the limit N-+OO is performed first, #->CG
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Fig. 1. The mapping R from Av to Al for h = 3

next, this poses no problem. Consider the (discontinuous) mapping
R\ΛV->Λ1 defined by:

if (4.5)

where r=l ,2 , 3 labels the three spatial dimensions, n~ 0, 1, . . . ,/ι the
walls (including those of the original cube) in a given spatial dimension,

and ζn = n — — l)b the location of such a wall.

This mapping can be depicted in a given dimension (for h = 3 as an
example) as shown in Fig. 1.

Consider next a function / : [0, ί + 2(h — 1)6] ->R with the following
properties: / is once continuously differentiable, / 2(x)^l; for
w = l , 2 , . . . , h - l : /(x)Φl for x e [Cπ - 2b, ζΛ + 2ft] only; /(ζπ) = 0;
ξ-^/(ζn + ξ) is even for \ξ\^2b /2(ζn+ ξ) + /2(ζn-f 26- ξ)= 1 for

^ ξ ̂  fe; (/7(χ))2 ̂  — y One can then show by an elementary calcula-

tion [6] that Γ. Nj', defined by

αi r = 1

is an isometry:

An example is

(4.6)

(4.7)

V2

j
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Since Vμg and V^ are constant as long as a particle moves within a
small cube one deduces as above

holds for Φe@Nl where B = ̂ £ l^α'psl does not depend on jV. The
αα

/?&

first term in curly brackets estimates the change in kinetic energy, the
second takes into account the ί"1-factor in (3.5). This demonstrates in
particular that /^v.jC^Jvj' (Recall that the conditions on / imply
y'(ζπ) = 0.) Therefore, if ̂  = {Φ1? Φ2,...} is a set of normalized and
mutually orthogonal vectors in the domain of the form T+Vμg the
set 13F — {/Φ1? IΦ2> •"} is an orthonormal set of vectors in the domain
of T'w -f V™, from which property the estimates

Σ?g(N9 Ω, / + JV- 1 / 6 0 ̂  Σμg(ΛΓ, Ω, /) + d , (4.9)

(4.10)

follow for N>2 6 with d= ——(-7-7- + -ττ-| ^~1/3 + BN

With (4.3), (4.4), (4.9), and (4.10) we have reached the goal of this
chapter.

V. Distributing Particles Among Cubes

We now want to show why, in the thermodynamic limit, just one
particular distribution of particles among cubes Λ"/h is all we have to take
into account. For the canonical case this will be obvious, but for the
microcanonical mean energy of the first Ω levels we need a somewhat
painful analysis.

First of all it is clear that one obtains a higher mean energy by taking
all Ω eigenvalues for one particle distribution than minimizing over all
possibilities. However, since Ω is much larger than the (finite) number
of distributions the absolute minimum is larger than the one for a fixed
distribution and Ω divided by the number of distributions. But in the

limit N-+OO for s= — In £2 such a factor does not matter.
N

To sharpen these ideas denote by 0<ε! rgε2 ̂  ••• the points of the
(discrete) spectrum of the kinetic energy operator ί(1) describing one

particle in a cube 0 :g xr ^ — (r = 1, 2, 3).
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We define the following sets of partitions (with α = 1, 2; a= 1, 2, . . .,g;

with

PΠfl' = {X" IX" CX'CX, X" contains Ω' elements} (5.2)

forΩ'εN,

αj = M for n G Y , (5.4)

and
(5.5)

_ _ _
Note that C? and 7 are finite sets; Y = , Each partition

neY \ g-1 ) ^

v e X corresponds to precisely one eigenvalue of Tw + V^g of the
preceding chapter, namely to

- + N-1 X v^^^v^,. (5.6)
αβj

Note that Fermi-Dirac statistics has been taken into account by allowing
vΛaj = 0 or 1 only.

The quantities under discussion here are

OV,Ω,/)=-τ^- inf Σ £v (5.7)
μ9 NΩ X'e[X]n vtχ'

and

P^ veX

They will be replaced by

ΣZ(N °<^™? x'^-M £.E* (5'8)

and

(5.9)

respectively.

™9W,β,D< V V e-βEv<e-βNΦ%,(N,β.i) y (5.10)
neY veX n nc-Y
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we deduce immediately

1 ίN ± n — 1\ 2

(5.11)

ΐf, in the case of the microcanonical ensemble the minimum over ω e (9 in

inf £ £v = min £ inf V Ev (5.12)
X'e[*]« veϊ' ωe^ neYX"^*^ veX-

'lS restricted to those ω where ωn vanishes for all but one n e Y, the estimate

Σ%(N,Ω9D^Σyg(N,Ω9l) (5.13)

follows immediately.
On the other hand, the minimum over ω e Θ in (5.12) is attained for

a particular ω° 6 Φ. Denote by Y0 the set of those particle number
distributions m e Y for which

neY

is satisfied. Note that 0 < δ ~ V —— < — is a consequence. The sum
~~ n^0 Ω ~ N

over neY in (5.12) splits into two parts:

1 "̂^ * r V^ τ-> -̂  V~^ n ' c V -^ rt /c Λ Λ\> inf V Ev> y —-inf—^> B (5.14)
NΩ niγQX'ε(Xn\ω° v^χf nff 0 Ω veX N ~ N ^ '

- with B = ̂  ̂  l^αα.^bl as in Chapter IV - and a sum over HE Y— Y0.
αα

1 v β •
Now, since Ω" -» inf y ΛP2/3 y αfl7 7 increases, so does

x'e[Xn]n- Ω" ̂  £. 2Mα

Ω" -> inf —— Σ ^v f°r fiχed w. Consequently

Σ £ v >

so that D
(1 - δ) Σ%g(N9 Ω', ΐ) ^ Σ*(N9 Ω, 0 (5.16)

N
has been established.
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Recall that B does not depend on N9 0 ̂  δ ̂  — . Since

we have lim — logΏ = lim — logΩ'. (5.11), (5.13) and (5.16) say that,
N->αo N N-+CO N

in the limit JV-» oo, all but one particle distributions n e Y give negligible
contributions.

VI. The Thomas-Fermi Equation

Consider sequences ΩN, βN9 1N with N"1 logΩ]V-^5>0, βN-+β>0
and 1N-+1>Q. In this chapter we shall derive an explicit expression for

Σ μ g ( s 9 l ) = \imΣyg(N9ΩN9lN) (6.1)
N-> oo

and

Φμd(βJ)^ limΦyg(N9βN9lN). (6.2)
N-> oo

The problem now is to interchange this limit with taking the minimum
by which ΣM and ΦM are defined. For this purpose we introduce the
fraction zαα = nΛJN of particles of species α in cube a. In other words, we
rewrite the minimum over particle distributions as a minimum over the
simplex

(6.3)
α J

and, in the limit N-+CO, over

(6.4)

For a particular z e ZN with corresponding n = Nz e Y we define

εa(N,Ω,l,z)= . i n f . ~̂ - V N-2/3 Y ̂ 1, (6.5)

φg(N, β, /, z) = - -- log X β 2M. , (6.6)
P iV veXn

and

Wμ^(Z) Ξ I Σ Zαα ^α«,^ Zβb . (6.7)
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Recall that the dependence of ε and φ on / results from the dependence
on / of the eigenvalues BJ of t(l\ εg(N, Ώ, /, z) (φg(N, /?, /, z)) is the mean
(free) energy per particle pair for two species of noninteracting fermions
(JV each), with entropy logΩ (temperature β"1), if the containing volume
Nl3 is subdivided into g equal cubes and if there are Nzaa particles of
kind α in cube a.

If ZN e ZN is a sequence of particle distributions which converges
towards z e Z (component-wise), the limits

ε,(s,/,z)= limεg(N9ΩN9lN9zN)9 (6.8)
N-+ CO

φg(β9l9z)= Hmφg(N9βN9lN9zN) (6.9)

are known to exist [7] and are given by the Legendre-transforms of the
grand-canonical ensemble expression:

ε^)=4 Σ ί^ ~- - ? - . (6.ιo)
9 αα (2π) 2Mα β~-βμ*al+e 2M7

with j8, μαα as unique solutions of

and

S=
(2π)3 2Mα β-ϊ-

1 +e 2M,

Likewise:

(6.13)

where the μaa are to be determined from

Z*a== ~~ J 3 ~

With definitions (6 1), (6.2), (6.5), (6.6), and (6.7) we can rewrite (5.8) and
(5.9):

Σ (s,l)= lim mm{u (z) + ε(N,ΩN,lN,z)}, (6.15)
N— » oo zeZpf

Φμg(β, I) = lim min {Mμί(z) + </»9(N, ̂ , /w, z)} . (6.16)
—
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Let us abbreviate the expression in curly bracket in (6.15) or (6.16) by
χN(z). Since z-+uμg(z) is continuous we conclude with the remarks before
(6.8) and (6.9) that χN(zN) converges towards χ(z) for any sequence ZN e ZN

which converges towards a zeZ. An inspection of (6.7), (6.10) to (6.14)
shows that z—>χ(z) is continuous and hence infχ(z) is attained for a

zeZ

certain z. lϊzN e ZN is a sequence which converges towards z we conclude:

inf χ(z) - lim χN(zN) ^ lim sup mmχN(z). (6.17)
zeZ ]V-»oo N-»oo zeZjv

On the other hand, there is a sequence ZN defined by minχ]v(zjv) = χN(zN).
zeZN

Since Z is compact there exists an ascending sequence Nt of integers such
that ZN converges with i-+oo. Consequently HmχN.(zN) = χ(limzN}

1 ί-*co l l v i-»oo '

^ inf χ(z), and therefore
zeZ

lim inf minχΛΓ(z) ̂  inf χ(z). (6.18)
N-+OD zeZjv zeZ

(6.17) and (6.18) together imply

lim minχN(z) = min lim χN(z). (6.19)
N-+OO zeZjv zeZ N-+CQ

We have thus established:

Σμ,(s, 0 = inf {Wμ0(z) + c (5, /, z)} (6.20)
zeZ

and

Φμ,(j8, 0 - inf {Uμg(z) + φg(β9 /, z)}. (6.21)

The particle distribution z where the infimum of (6.20) or (6.21) is attained
is not a point on the boundary of Z 3. Consequently the variation of the
expressions in curly brackets in (6.20) or (6.21) must vanish somewhere
in Z.

Because of (6.11) and (6.12) we have

β-1δs = δεί-'Σιμ,aδzaa, (6.22)
aa

so that for a variation of Σ at constant s we calculate

δz > Σ^« = o (6 23)
3 The functions on the right hand side of (6.20) and (6.21) are explicitly known and

are seen to be differentiable in the interior of Z, the partial derivative with respect to zαfl

at the boundary turns out to be positive infinite.
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with μαα the local chemical potentials corresponding to zαα. The solution
of (6.23) is

&« = μ.-Σ^.«.Λ (6.24)
βb

The minimizing particle distribution is a solution of (6.11) with (6.24):

/3 - d3q 1
=

α (2π)3

J

where μ1 ? μ2 and β are to be determined from

Σz α β =l (α=l,2),

2Λ1

(6.25)

(6.26)

(6.27)

ϊ J W
2Ma

If this system of Eqs. (6.25) to (6.27) should allow more than one solution-
the foregoing discussion has shown that there is at least one - we must
choose that for which

v rΣί
1

(2π)3 2Mα
ί+e

Q

2Mα

ΣW*:

_

βbZβb Mα

(6.28)

is a minimum. The minimal expression (6.28) coincides with Σμg(s, I).

In the case of the canonical ensemble the same analysis yields: The
minimizing particle distribution z is a solution of (6.25) and (6.26). This
system of equations has at least one solution, if there are many solutions
we have to choose that for which

1 /3

; /» ̂ j -log(l
—- + Σ
2Λ1 ft

(6.29)

is a minimum. The minimal expression (6.29) coincides with Φμg(β, /).

The system of Eqs. (6.25) to (6.28) is the Thomas-Fermi equation in
the case of the microcanonical ensemble, (6.25), (6.26), and (6.29) in the
case of the canonical ensemble.
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VII. The Final Result

We shall now put together the estimates of Chapters III to V and
combine them with the explicit expressions for (6.1) and (6.2). Note that
(6.1) and (6.2) contain arbitrary converging sequences N"1 logΩN, βN,
and 1N. With definitions (2.9) and estimates (3.23), (4.3), (4.9), (5.13), and
(5.16) we conclude:

Σ(sJ)=\im ]imΣμg(s9l), (7.1)

from (2.10), (3.24), (4.4), (4.10), and (5.11)

Φ(β, I) = lim lim (7.2)

The expressions on the right hand side are to be calculated by solving
the corresponding Thomas-Fermi equation. We shall not demonstrate
in this paper that the limits g-+co. μ->oo on the right hand sides of
Eqs. (7.1) and (7.2) exist and are to be calculated by solving the Thomas-
Fermi equation with υ(x', x"} = \x! — x'Ί"1 instead of

ab !W~ <sί>! 1

We refer the reader to the proof given in the appendix of an earlier paper
[3]. We shall state the result only:

For given β>0, / > 0 there are solutions of the Thomas-Fermi
equation

ρ"(S) = * T£F ^ (7'3)

with 1 +

which are normalized

J d3 xρa(x)= 1 (α= 1, 2).
Λι

One then calculates

(7.4)

(7.5)

(7.6)

0 = f d3 Y f
^Γ ~ β \ ]
a (. r ΛI

, (7.7)

C = M + Σ f d 3 χ j

α ΛI

and
(2π)3 2Mα

s = β(ε-φ).

1 +e 2M,

(7.9)
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If (7.3) to (7.5) has more than one solution that which minimizes φ has
to be chosen, and the minimal φ coincides with Φ(/?,/). From β-^s,
β-^ε the graph ε(s, /) is constructed by choosing the smaller one of two
possible ε's. φ, /) coincides with Σ(s, /). From (6.22) and (7.9) it follows
that the microcanonical and the canonical thermodynamical functions
are Legendre-transforms of each other if the Legendre-transform is
possible, i.e. for those values of the entropy s where

52Σ(sJ)
~~37~~>0'
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