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Abstract. This paper investigates mathematical properties of a finite-dimensional real
algebra of linear operators which are generated by an orthomodular lattice of filters in the
sense of Mielnik [4]. Properties of filter decomposability and a representation theorem
for the vector space underlying the algebra mentioned are derived.

I. Introduction

The physical background and the motivation of the subsequent
mathematical investigations are the papers by Ludwig [3] whose axiom
system was, together with the most important mathematical conse-
quences, restated in [2] in a way more adapt to our mathematical
considerations. So, referring to [2] for detailed mathematical notes, we
will here only sketch basic mathematical concepts in a contemporary
language.

A comprehensive and careful analysis of all current attempts of an
axiomatic foundation of physical theories has been given by Mielnik [4]
who has subordinated the lattice-representing operators TE of [2] to the
physical concept of filters.

11. Preliminaries

We start from a dual pair (B, B'} of two real topological vector spaces.
As in [2] B (and hence B') are supposed to be finite-dimensional, say

1. B has an order base K which is convex and closed. The elements
of K are denoted by K, the elements of B in general by X.

2. In B there exists a proper positive generating cone B+ generated

y ' LC' B = B+-B+,B+= (J λK.
λER,

3. B' is partially ordered by

Yί ^ Y2 :<^><F, 7,> g <F, Y2> for every J/e K .

* This paper leans on a report presented to and supported by the Deutsche Forschungs-
gemeinschaft.
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4. B' has an order unit 1 with L:= {Y|0:g Y^l} . L is convex and
closed. Its elements are denoted by F. <F, 1> = 1 for every Ve K. (In [2]
L was denoted by L.)

5. B' is generated by a proper positive cone B'+ generated by L, i.e.

B = B'+ - Bf

+ , β'+ = (J 1L .
λelt +

6. The canonical bilinear functional < , •> over B x B' is the extension
of the (physical motivated) function μ over K x L restricted by

)^l for all (V,F)eKxL

separates points in K and L respectively.

7. B is a real Banach space by

\\X\\:=sup{\μ(X,F)\ F e L} for each X e B .

B' is the dual Banach space by

\\Y\\:=sup{\μ(X,Y)\ XεB and ||*|| = 1} for each YεB'.

8. The extreme points £ of L form an orthomodular lattice G with 0
and 1 as zero and unit element, respectively. For every £ e G the ortho-
complement E1 of E is defined by E1 — 1 — E.

A(G] denotes the set of all atoms P of G, A(W) the set of all atoms of W
(see 10.).

9. With the notations

= f foral l F e / } , i = o;l and any I g L ,

= ί fora l l 7efc}, / = o;l and any / c g K

there exists a lattice isomorphism between G and U\= { L Q ( k ) \ k £ K }
and a dual lattice isomorphism between G and W:= {K 0 (/) |/£L}.

10. ί/K is the set of all extremal sets of K and equals the set of all
facets of K ([2], Theorem 2 and corollaries).

11. Throughout this paper Nn denotes the interval [l;rc]n]V for
any HE N.

III. Further Properties of the Operators TE

As in [2] &(B') denotes the fl-algebra of all linear (bounded) operators
over B'.

and

is a proper positive cone in &(B'} ([2]). There we defined

{TE\TEE<T and £eG}
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with TE uniquely determined by <F, Γ£F> - <F, F> for all VeK^E).
TE was proved to be idempotent and ^(G) was shown to be an ortho-
modular lattice isomorphic to G.

This section is mainly devoted to the answer of two open questions
at the end of [2] (questions 4 and 5). Results similar to those concerning
perpendicular projectors on Hubert space will be obtained.

Theorem 1. For all TEί, Γ£2e^(G): TEί^2= TEι TE2 iff TEl TE2 = TE2 TEi.

Proof, (i) If F£ l Λ j E 2 = Γ£lΓ£2, then TEίTE2 = TE2TEί because of
γ _ y
/ £ 1 Λ £2~ I £ 2 Λ£r

(ii) Suppose TEίTE2 = TE2TEί. Since TEι (/ = 1;2) are idempotent,
so is TEί TE2. According to the isomorphism Theorem 16 from [2] there
holds TEl Λ£2 = TEl Λ TE2 thus, on the one hand, < V, TEl λE2 F> - < K, F>
for all VeKί(Eί/\E2) = K 1 ( E ί ) r \ K 1 ( E 2 ) and, on the other hand,
<KT E l T £ 2 F> = <7,T£ 2T£ lF> for all VeK. So there holds especially:

for all VeKι(E2).
Therefore <F, TEl Γ£2F> - <F, F> holds for all Fe^ 1(£ 1Λ£ 2),

i.e. <F, Γ£ lΓ£ 2F> = <F, Γ£ l Λ £ 2F> for all Fe Kl(El Λ £2). This is, ac-
cording to Theorem 9 in [2], sufficient for TEl TE2F = TEι/^E2F for all
FeL because of ΓEl TE2F ^ £t Λ £2 ^Y hypothesis. Hence we obtain

Corollary. Lei τ fee any yϊmte swhsef o/ ,T(G)\ /\ TE=Y\TE iff τ

consists of pairwise commuting elements.

Proof. By induction. |
In [2] we considered the Sasaki-projection Φe defined by Φe(g)

= e Λ (g V eL] for all g of an orthomodular lattice and any e therein.
This projection Φe was compared with the projector TE. With the
compatibility relation "el

(£e2 iff e1 =(e1 Λ e2) V (eί Λ ̂ Γ there holds
due to Nakamura [5] in any orthomodular lattice "el

(£e2 iff ΦeίΦe2

= φ φ "
^ P 2 6Ί '

Concerning Γ£ the validity of this equivalence was the open question 4
in [2]. The next theorem answers this question in the affirmative.

Theorem 2. For all El,E2eG\El <$E2 iff TEί TE2 - TE2 TEι.

Proof, (i) Given £1? E2 E G such that E1 % E2 is valid, i.e. Ev

= (E, Λ E2) V (E! Λ E$). Then Γ£ lF = Γ(£lΛ

, hence TE2TElF ^E^ Λ £2 for all FeL. Since TEl^EjTE2TEl
we conclude from the definition of the Γ£-operator

2 TE2 TEl F> = < V, TE2 TEι F> = < V, TEίλE2 F> = < V, F> for all
Λ £2) and any F e L. Then Theorem 9 of [2] gives, because of

by Theorem 1.
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(ii) Supposing TEίTE2=TE2TEί, we obtain TEί TE2 = TE^E2 by
Theorem 1. Since Eί/\E2^E1 orthomodularity of G implies
Eί = (E1 Λ E2) Ϋ (E1 Λ (E1 Λ E2)

λ). To prove the assertion means to
prove E1 /\(E1 Λ E2)

L = El Λ E2. This will have been verified when
Eί Λ (E1 Λ E2)

λ <L F! Λ E2 has been verified because E1 Λ (E1 Λ E^
^F! Λ F 2 holds always. To this end we observe that TEiTE2 = TEί^E2

implies TE2TEiT(E^E2). -0. This means <F, TE2TEί Γ(£lΛ£2>ι F> = o for all
F e K and any F e L; thus, in particular <K, Γ£2 Γ£l T(E^E^ F>
= <F, TE^T(E^E2γ Fy = o for all P/eK1(£2) and any FeL. This implies
TEJ(Eί,E2).FεL0K1(E2) = L0K0(Eλ

2) for all FeL, hence Γ£ lΓ ( £ l Λ £ 2 ) i F
^ Fi for all F 6 L.

Consequently there holds especially TEl Γ(£lΛ£2^ El Λ (F! Λ E2}
L

= El Λ(Fi ΛF 2) 1^Fi. This yields F! Λ (Fj Λ F^1 ̂  F! Λ F^ and so

Definition 1 ([6]). (i) Two idempotents Il,I2e^(B') are said to be
orthogonal iff I ^ 12 = 1211= 0.

(ii) An idempotent ί e &(B'} is called primitive, irreducible or minimal
iff it cannot be decomposed into a sum of two orthogonal idempotents
of 3S(B').

Next it will be shown that the orthogonality relation from the
preceding definition if restricted to $~(G) is equivalent with the lattice-
theoretical one defined in Theorem 16 of [2].

Theorem 3. For all T E ί , TE2 e ^(G): TEί ^ (ΓE/ iff TEl TE2 = TEl TEl = 0.

Proof, (i) Suppose TEl £(TEf=TΆ, i.e. TEί = Γ£i TEl = TEl Γβ. By
Corollary 1 to Theorem 13 in [2] TETE,=0 for all EeG. Therefore
TE2 TEl = TE2 TE, TEί = 0 and TEl TE2 = T£t Γ£i TE2 = 0.

(ii) Supposing Γ£lΓ£2 = ΓE 2Γ£ l=0, we have TEJE2E2 = TElE2=Q,
i.e. <F,Γ£ι£2> = <K,£2> = o for all VeK^EJ, thus K^E^QK^E^
= K1(E2), hence £^£2- Then the isomorphism Theorem 16 of [2]
yields T^

Theorem 17 in [2] expresses that TE < TE implies TE g TE The
y 3~(G)

converse of this theorem was formulated as an open question in [2]
(question 5) the answer of which shall now be given.

Lemma 1. For all TEe^~(G): if TE is orthoadditively decomposable
into TE = TEl + TE2, then TE = T£ l γ £ 2.

Proof. As a consequence of £t 1 £2 : TE ΓEj + £z = (Γ£l + TE2) TEl+E2

= Γ£ lΓ£ l + £2 + Γ£2Γ£ι + £2 = Γ£ι + T£ 2=Γ£, thus Γ£^Γ£ l + £2. Besides,
TE(E1 + E2) = T E l ( E 1 + E2) + TE2(E1 + E2) = Et+E2^E, thus TEl +£2
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Theorem 4. For all £ 1 ? E 2 e G : "TEl^TE2<>TEι ^ Γ£2", iff G is
Boolean. *~ ^(G}

Proof. The implication "TEl :g T£ => TEί ^ Γ£2" holds by Theorem 17
gr 2 3~(G)

of [2] in any orthomodular lattice G. Therefore the converse must be
shown.

(i) Let G be Boolean. TE ^ TE implies E1 ^ E2 and so
&(G)

£2 = E! V (E2 Λ £|). G being Boolean, Theorem 18 of [2] gives

Γ£l + ̂

(ii) Let TE ^ TEj => TEl ^ TE2 be valid (for all £x ̂  £2). Since E ̂  1
.T(G) ^

for all E e G, so Tj - T£ ̂  0 and then 0 <; 7\ - T£ g 7\. This implies
.r $~ ^

(Γj-T^FeL for all FeL; because of <K,(Γ1 - Γ£)F> = o for all
Ke #! (£), (T! - Γ£)F e L^K^E) - L0K0(Eλ). Hence (Γ, - Γ£)F ̂  E1 for
all F e L. Consequently, each F e L is reduced by any £ e G and from the
proof of Theorem 18 in [2] there follows that G is Boolean. |

Theorem 5. // TEo e 3~(G) is orthodecomposable, then the segment
G(0, £0) is a reducible lattice.

Proof. G(0, £0) is orthomodular with E0 Λ E1 as the orthocomplement
for any E^E0. By hypothesis, TEo = TEι 4- TE2, Lemma 1 implies E0 = E!
+ £2 = £ι +£0 A£|. Then, according to Theorem 4, each F e LEo is
reduced by £1 and £0 Λ £[, which, therefore, belong to the center of
G(0, £0) thus being reducible. |

Corollary. // G is irreducible, then there exists no proper ortho-
decomposition of Tl.

Remark L Given the hypothesis of Theorem 5, there holds for every
EeG(0,E0):

£ = (£ Λ £0 V (E Λ £0 Λ £[) = (£ Λ E,) V (E Λ £|) ,

which means that also in G E^Ej^ holds for all E 6 G(0, E0). Now we wish
to investigate when all segments G(0, E) of the orthomodular lattice G
are irreducible, i.e. when no TE e 3~(G] is orthodecomposable. We first

illustrate this situation by the example of Hubert space from Remark 4
in [2] thereby correcting i t :

Let 3? be a finite-dimensional real Hubert space and G the lattice
of all perpendicular projectors on Jf . L is then the set of all self-adjoint
operators E with O ^ E g l . TE is given by TEF = EFE for any E e G
and all E E L. G is modular and we suppose it to be irreducible. Assume
the existence of E e G such that EFE = (E1 -f £2)F(£1 + £2) = E^FE^



114 G. Dahn:

+ E2FE2 with E^ _L E2 E1FE2 being positive, we obtain E1FE2

= E2FE1=ΰ. Every FeL has a decomposition F= Σ tf Pf wu"n

ieJVn

pairwise orthogonal atoms Pf and /if eR^. Let #ι = Σ P/, £2 = Σ A2

jeΛΓw k e W z

be atomic orthodecompositions. Then Σ ^j1 Σ ^f ̂  Σ Pk=® ^m~
jeNm ie]Vn ke^!

plies, again by positivity, P/ P P^2 = 0 for all i E Nrt,j 6 Nw, keN^G being
irreducible, the last equation cannot be valid for all F E L: let us consider
Xj E ImP/, yk E ImPk

2, zf e ImPf. Since PjPk = 0, so Xjl.yk. PΛjPZιPykh = 0
for all heJj? implies (x^z^ (zt\yky (yk\hy = o for all heJf, hence
(x^lz^) = o or (zt\yky = o. This contradicts the fact that in the 2-dimen-
sional subspace generated by x , yk not all vectors z are orthogonal to Xj
and yk, respectively. This statement should be inferred from our general
frame.

Theorem 6. // G is modular and irreducible, no TEE^(G) is non-
trivially orthodecompo sable in 3~(G).

Proof. Assume the existence of TE φ Tl with TE = TEι + TE2 and
TEiλTE2. By Lemma 1, TE= TEί+E2 holds First, we assert the existence
of PεA(G) such that P<Eί+E2 and P£Et for each ϊ e Λ T 2 ;
i.e. P Λ Ei = 0. Let P1 and P2 be atoms of Eί and £2, respectively. El^E2

implies P^ V P2 = P^ -f P2. G being irreducible and modular, there exists
P e A(G) with P<Pl+P2 and P φ Pf for each i e ΛΓ 2 . Orthomodularity
of G insures the existence of Q e A(G) such that Q1P and P + Q = P1 + P2.

P^El or g ίg £, for each / e N2 shall now be shown :

(i) P^Eί leads to the dichotomy
1. β^£ l s which implies P2 -P + β -Pi E B^E^nB^E^ a contra-

diction to B'(E) = B'iEJφB'^).
2. Q^E2, which implies, because of the uniqueness of the representa-

tion of P + Q by components of B'(Eι), the contradiction P = Pί9 Q — P2 .
So 1. and 2. have the consequence: P^EV=>Q^EΓ

(ii) P^E2 admits only Q^Et by similar arguments as in (i). The
discussion for Q^El for each i e N2 is in a completely analogous way
so that finally

i or Q^Et for each ieN2.

Without loss of generality let us suppose P^Ei for each ieN2; i.e.
P Λ £ f = 0. Since P<E1+E2, so TElP + TE2P= TEl + E2P = P and thus
TEιP^P for each z e N 2 . From this there follows ΊEιP^ P Λ Et = Q,
hence TEιP = Q with the contradiction P = 0. |

We can sharpen Theorem 6 by

Theorem 7. If G is irreducible and modular, then no TE E ̂ ~(G) is
non-trivially orthodecomposable by idempotents of 2Γ C
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Proof. Assume the existence of T^φΓj with TE=Ίl + T2, 7\ Γ2

- T2 T; - 0, Ύf = Tt e 9~ and Tt φ 0 for each / e ΛT 2 .
These assumptions have the immediate consequence TtF^E for all

£eL and each ieN2. Moreover, TίE<E since, otherwise, T±E = E for
instance would imply Γ2 £ — 0.

Then, because of 0 ̂  T2 F ̂  E for all F e L, Γ2

2 - Γ2 implies T2 F - 0
for all F e L, hence Γ2 — 0 contrary to Tt φ 0 for each / e N 2. An analogous
argument excludes T2E = E. From TtE<E for each / 6 JV2, there follows
K0(£)C K0(TtE\ Determining £f e G for each i e N2 by K0Cξ£) = ̂ o(£i)
(see [3]), we get £ f<£. T f £^£ f <£ has the consequence T^^i;^
rg ϊ]£, hence !]£; = 7]£. To show !]£,. = £ί? ϊ]£ < £. must be excluded,
for TEιEi^Ei holds by construction of Et. Assume !)£,<£;: then, by
Lemma 7 in [2], there exists VieK1 (Et) such that <^, Γ ,̂.) < <K t ϊ £f> = 1.
Therefore, K^E^cK^E^ and orthomodularity of W gives K^E^
= K^E,} V (KΛfi.) Λ KoίΓffii)) - ^lίi Jε/) V (^i(£f) Λ K0(^ ))? whence
the contradiction K1 (£f) Λ K0(£f) φ 0.

So Γ^f - £f for each / e N2 holds and thus E = EV+E2 and Γ£ι 1 Γ£2.
Any F f e l m Γ i satisfies ^<£, i.e. F ί == η^ ̂  Γ f£= T^— £f <E! Con-
sequently, Fj e LO KQ(E^ C Im Γ£ι, which implies Γ£ι T) = T]. Since
TE=Tl + T2, so TE=TETE=TETί + TET2. In particular, TEi = Tl

+ Γ£ι Γ2 and Γ£2= T^Γj -f- Γ2. Multiplying these equations by TE2 and
Γ£ι, respectively, and using TEl _L Γ£2 give TE2 Γt — Γ£l Γ2 — 0. So finally,
TE = Tt for each / e N2 and thus TE = TEi + Γ£2 contrary to Theorem 6. |

We conclude this section by a statement on chains in ^"(G).

Theorem 8. Any chain in 3~(G] is linearly independent.

Proof. It suffices to consider only proper chains in &~(G). They are
finite, since B' is finite-dimensional. Let (TE)ieNn be an ascending finite
chain with neN and suppose ]Γ ^-7^ = 0, ^-e/?. Orthomodularity

ίe/Vn

of ^(G) implies TEn= TEn_ι V Γ£ n Λ £ i._1 whence, by the chain property,
TEl^-TEnf,E^-1 f°r a^ ' e^«-ι Applying Theorem 13 and its Corollary 1
of [2], we obtain

ΪΈnΛi*- , Σ ftΓEl = /5,,TE n Λ £ ( l_1Γ£ n = /ϊ I IΓ£ B A £,_1 = 0.
iε^Vn

From (TE)ieNn being a proper chain there follows βn = θ. The same
procedure applied to TEn_l verifies the assertion by recursion. |

IV. The Algebra 3S(B')

Remark 2. Theorem 21 in [2] is incorrectly formulated. Its correct
version is: "If G is irreducible, then «s/(G) = <%(B'}*\ This means that, if G
is irreducible, there exist no invariant subspaces of B' except (0) and B
for the fl-algebra j/(G) generated by 3~(G) (see [2]). In this case s/(G) is
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called strictly irreducible [6]. The correction consists in only substituting
e£/(G) for s4 in the Theorems 20 and 21 of [2]. However since we had
only outlined the proof of Theorem 21, a complete proof is thought to be
necessary. The proof of Theorem 20 shows that the commutant ^(G)'
of ec/(G) is isomorphic with the reals R, which is a sharpening of Schur's
lemma.

Definition 2 [6]. (i) An algebra ^ of linear operators over a vector
space ΘC is said to be k-fold transitive on 3C iff for any k linearly independent
xtE^(iENk) and k y^3C there exists Γej/ such that Txi = yi holds.

(ii) j/ is called strictly dense on 3£ iff s4 is fc-fold transitive for any
kεN.

Remark 3. (i) i-fold transitivity is equivalent to irreducibility.
(ii) If s4 is 2-fold transitive, then s$ is already strictly dense ([6],

Lemma (2.4.3)).

Definition 3 [1]. Let M be an ^/-module.
(i) M is said to be faithful iff αM φ (0) for every a e j/\{0}.

(ii) M is said to be irreducible iff M and (0) are the only .j/-sub-
modules and j/M= and mt e M, rceNJΦ(O) holds.

ί

Definition 4 [1], A ring j/ is said to be primitive iff there exists a
faithful irreducible ^/-module M.

So we are prepared for the formulation of Jacobson's density theo-
rem [1] : If «£/' = Hom^(M, M) is the centralizer of a faithful irreducible
^/-module M, then s4 is strictly dense in Hom^, (M, M). («*/' is, by Schur's
lemma, a field !)

Remark 4. Concerning B' we observe that
1. B' as j/(G)-module is faithful for j^(G) g ̂ (F).
2. G irreducible implies B' is irreducible for j/(G), which is, since

dimB' = N < oo, equivalent to the strict irreducibility of jB' for sd(G}.
3. j/(G); is isomorphic to R, thus j/(G)" = $&(B'\ We have only to

prove ,5/(G) = j/(G)" and Theorem 21 in [2] will then be verified in
detail:

By the above density theorem j/(G) is strictly dense in <&#(G)" = 3S(B').
For any ΓE J>(F) and any basis {Yt ieNN} of B1 we define TΎl=Ύi

for each ieNN. Since j/(G) is dense, there exists Ae^/(G) such that
/I Yt- = Yj. Therefore T and A coincide on the basis choosen, hence T = A.
This proves β$(B'} g j/(G) and completes the proof of Theorem 21 in [2].

Remark 5. Using Mielnik's terminology [4], we see that the set of all
physical filters TE determines the K-algebra of all linear operators of B'
which is generated by the set of all physical decision effects £.

Let <&(&*) and $($/} denote the left and right annihilator, respectively,
for any ^Q^(B'). Being the algebra of all linear operators over B',
.%(Bf) satisfies
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r l9 2.
for all ί/ ς gg(B') and ll, I2 idempotents of 3S(B').

1. and 2. are the defining properties of a Baer-ring. By Remark 5 ,δ/(G)
is such a ring and there even holds that &(B'\ being a Banach algebra,
is an annihilator algebra, which can be inferred from a theorem by
Rickart [6]:

1. 3$($) being an annihilator Banach algebra is equivalent with the
Banach space ΘC being reflexive. From the textbook [6] we need 4 other
theorems:

2. For each minimal right ideal .̂  of an algebra j/ with .̂ 2 =t= {0}
there exists an idempotent eε s/ such that ^ = es^ and estfe is a field
with unit element e (this e is minimal!).

3. For each minimal idempotent eεsd es4 is a minimal right ideal,
sίe a minimal left ideal.

4. For each minimal idempotent of a Banach algebra there holds

(i) et$0e is isomorphic either to the reals or the complexes or the
quaternions.

(ii) If ec/ is complex, estfe = e.

5. In a semisimple annihilator algebra is (0) the only right ideal
which contains no minimal right ideals.

Consequence. By Theorem 20 in [2] .$tf(G) = @t(B') is simple, hence
minimal idempotents exist and 2.—5. give a biunivocal correspondence
between the minimal idempotents and the minimal right (and left) ideals
(respectively).

We are now prepared for an investigation of all minimal idempotents
(and hence all minimal right ideals) in 3β(B')\ Reίlexity of B and Br implies
the canonical isomorphisms: B'®RB = $(B)', B®RB' = $(B'). So we
may define the following linear operators over B and B', respectively:

(Y®X)X = (X, YyX fora l l XeB and any YeB'.XeB

(X®Y)Ϋ=(X,ΫyY foral l ΫεB' and any XεB.YεB'.

LQiX®Y be positive, i.e. (X® Y) [β'+] £#'+, then (X®Y)ΫεB'+ for
all YεB'+. There are two cases to be distinguished:

(i) 7e-F4 implies <*, f > g o foral l ΫεB'+, thus Xe -B+.

(ii) YεB'+ implies <Z, F> ^ 0 for all Fe B'+ thus X E B+ .
Summerizing we can state

Theorem 9. 3Γ^ := {X® Y\X εB+ and YeB'+} is the set of all
positive operators of rank 1 in &(B').
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Lemma 2. Every idempotent I e 3$(B'} with rank 1 is minimal.

Proof. Assume I = ll+l2 such that lv I2 = I2Iι=Q and It φ 0 for
each / e N2 Then we have Im/ = Iml^ ©Im/2, hence d imlm/
= dim Im/i + dim Im/2 ̂  2, contrary to dim Im/ = 1.

Theorem 10. Every positive minimal idempotent I e 2$(B'} has the
representation

X®Y with <Z, 7> = 1, XεB+ and YeBf

+.

Proof. According to [6], p. 65, a right ideal of $(B'} is minimal iff
it consists of elements of rank 1. From Theorem 9 and Lemma 2 there
follows for such an idempotent / that I = X®Y, XEB+, Y^B'+ and
idempotence of / requires

Y)2 Ϋ = <x, y> <z, F> y = <x, y> (x® y) y = (x® y) F

for all F e B'. This is satisfied iff <AΓ, y> = 1. |

2. and 5. of Section II admit the representations: every X e B+ can
be written as X = aV, α e / ? + and Ve K; every y e β+ can be written as
Y = βF, βeR+ and F E L. Therefore, any / from Theorem 10 can be
represented as I = αβV®F with j8<K,F> = 1. If y = βF then β can be
choosen so that K1(F] Φ 0 because K is compact. This leads us to

Theorem 11. Every positive minimal idempotent I e &(B'} can be
represented by l = βV®F with β<K,F> = l and K1(F)±0.

Corollary. V®F is a minimal idempotent iff VeKl(F). As an im-
portant consequence of Theorem 1 1 we may verify

Theorem 12. Every atom TP e ^(G) (i.e. TP E A3~(G}) is a positive
minimal idempotent satisfying

TP=VP®P, PεA(G) and {VP} = K 1 ( P ) .

Proof. Per definitionem of Z/~(G) TP is idempotent and operates by
reason of the preface to Theorem 20 in [2] as TPY= <7P, y>P for all
ΎeB', thus TP=Vp®P. |

From 4. of the quoted theorems in Rickarfs textbook [6] there
follows in particular that each TPeA,T(G) satisfies TP&(B'}TP = RTP

= TPR. Of course, we would have been able to calculate this equality
directly, ignoring, however, its connexion with irreducibility of idem-
potents in @(B'\

The next step leads to a linear order isomorphism between B, B' and
minimal ideals of &(B'}. To this purpose we show
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Theorem 13. For arbitrary but fixed P £ A(G) the sets

mp\={X®P\XzB} and 3>P: = {VP®Y \ YeB'}

are minimal right and left ideals, respectively, satisfying

Proof. The ideal property is obvious. Besides, each element of the
ideals has rank 1. We have only to prove £?P = $(B')TP, the verification
of $p=Tp&(B') is then in a completely analogous way and will be
omitted. Let {Xt\ie NN} and { Ύj j e NN} be bases of B and F, respectively.
Then every Te^(B') admits the representation Γ= £ ί^®^.;

thus, for all YeF, there holds TT py = T(VP®P)Y= £ t^X^ Py
i,jeΛΓN

• (VP® Yj) y, whence, with 7:= £ ί f j<X., P> y j9 ΓFF®P = FP® Ye^p,
ί,jeΛΓN

i.e. 36(B')Tg<eP. Consequently, for every VP® YE ̂ P : (VP® Y) (VP®P)
= <Vp, > < F p , P > y = < F p , > y = Fp®y since <7P,P> = 1. Hence

Corollary. TTiβ correspondences B-^ &p and B'-^^P are linear
bijections.

4. of the Rickart-theorems quoted yields <%P&P = TPgS(B')3S(B')TP

= TP3S(B')TP = R Γp, which leads because of (X® P) (VP® Y) = <X, Y> TP

to the existence of a bilinear functional Γ over &P x 5£P given by
Γ(X®P, VP®Y)=(X, Yy=μ(X, Y). Γ is, therefore, the canonical
bilinear functional over fflpX^p, because <•,•> has this property on
B x B'. This enables us to formulate

Theorem 14. (i) The bijections from the preceding corollary are order
isomorphisms.

(ii) The sets LCB\ GcB', KcB are represented by

G} and tfp = {VP®P\ FeK) ,

respectively.

Remark 6. According to Theorem 10 any minimal idempotent
XQ®YO with <X0, yo> = l can be substituted for ΓP in the preceding
theorem, for it leads to equivalent representations.

Open remains the question of what algebras posses a bilinear func-
tional Γ satisfying all postulates of μ (and its extension) and of what
subsets of these algebras represent LcB', G C B' and KcB, i.e. satisfy
all the axioms postulated of L and K. Theorem 14 suggests to attempt
a characterization of the dual pair (B, B') by the algebra &(Br). The
following considerations prepare this task.
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Lemma 3. In (β(β'\ || | b,N) as a Banach space there exists an
additional norm defined by | |Γ||L:= sup{| |ΓF|| FeL}, b'N denoting the
N -dimensional unit ball of Bf.

Proof. Verification of the norm axioms: 1) || Γ||L ̂  o for all Te &(B').
2) ||Γ||L = o implies ||ΓF|| =o for all FeL, hence ΓF-0 for all FeL.
Since L is generating in Bf, so Γ — 0. Immediately from the above defini-
tion there follow

3. | | j8T| |L = 10 l | |T | | L for all βeR and

4 ll^-f Γj^llJ^-t- |Γ2||L. I

Remark 7. Concerning this norm $(B') is as a finite-dimensional
vector space complete and the two norms || | |b'N and || ||L determine
the same topology in 38(B'\ hence they are equivalent. Therefore, all
TE$(B') are already distinguished sufficiently sharp by the effects
FeL. This is the physical meaning of the norm || ||L.

We can even strengthen Lemma 3 by

Theorem 15. (Θ6(B'\ ||L) is (just as (@(B'\ \\ - \b,N)) a Banach algebra.

Proof. Since ||ΓF|| ^j8L | |F|| with βLeR*+ for all FeL, we have in
addition to the norm properties in Lemma 3,

||Γ1Γ2||L = sup{||Γ1Γ2F|| FeL}^| |Γ 1 | | L | |Γ 2 F| |^ | |Γ 1 | | L |Γ 2 | | L .

Moreover, there holds || Tj || L = \idB, || L = sup { || F | | F e L} = 1 . |

We intend now to tackle the problem of how to make (3S(B'\ || ||L)
a ^-algebra with &~(G) as a subset of the set of all elements remaining
fixed under the involution *. Remark 5 gives an appropriate hint:

jtf(G) is the smallest jR-algebra containing &~(G). Thus it contains
the β-algebra of all finite linear combinations of all finite products of
elements of &~(G). By Remark 5 it equals $(B'\ Consequently, each
Te£S(B') has a representation by finitely many TEe^(G] because of
dim^(J5') = N2 < oo. Without loss of generality these TE may be selected
to be linearly independent:

r= Σ ί(ωrE l l+ Σ ί O Ί ί 2 ) r £ ι ι τ E i 2 - f - . .

m e N, ik e Nl for all k e Nm, where / ̂  dim$t(B') = N2.

We define for every me N:

3-(GΓ = { Γ£iι Γ£ι? . . . TEim I ΓEιι e ^-(G) and k e Nm}
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Then we regard on (J $~(G)m the relation * defined by
m<=N

This confronts us with the question when the defining property for * to
be a mapping holds: "For any T1? T2 e^(G)m : 1\ = T2=>Tf - T2*.
Since TE — TE TE implies Tg = TE for each TE E 3~(G) the defining property
of * is obviously valid for all TE E 2Γ(G) being a subset of the set of all
fixed elements under *. Let us consider 3~(G)2 and assume Γ£l T£z = Γ£3 Γ£4.
The question is whether "TEl TE2 = Γ£3Γ£4 implies Γ£2Γ£ι = Γ£4Γ£3" holds.

Theorem 16. For all i e N4 and TE e 3T(G): Γ£ι TE2 = T£3 Γ£4

5 l-F. * J F. , ~ J-F.Λ J-F. ,-

Proof. From Γ£l TE2 = Γ£3 Γ£4 there follows Γ£l ̂ (E! Λ E2) - £t Λ £2

= Γ E 3 T £ 4 ( E 1 Λ £ 2 ) g £ 1 Λ E 3 and Γ£l T£2(£3 Λ £4)= T£a T£4(£3 Λ E4)
= E3 Λ £4 ̂  E! Λ £3. E1

(^E2 is, by Theorem 2, equivalent with Γ£l Γ£2
==TE2TEl. Applying then Theorem 1, we obtain T£ιΛ£2(E3 Λ E4)
= Γ£3 Γ£4(£3 Λ £4) = £3 Λ £4 ̂  E! Λ £2. Γ£ l Λ £ 2 £i - Γ£3 Γ£4 £i = 0
implies <F, Γ£ l Λ E 2Ei> - <F, E^> = o for every VeKί(El f \ E 2 ) , hence
ICJEi Λ £2) X0(£i) - K!(£4), thus E! Λ £2 g E4. Γ£i T£ ι / v £ 2

= Ϊ£4 Γ£3

 Γ£4 = ° implies Γ£i E t Λ E2 - 0, i.e. 0 - < F, Γ£J3 Et Λ E2>
= <F,£! ΛE 2 > for every KeK^E^), hence K1(E^)-X0(E3)gK0(E1 ΛE2),
thus E! Λ E2 g E3 . This completes the proof of E! Λ E2 = E3 Λ E4 from
which Γ£ l Λ £ 2-Γ£ 3 Λ £ 4-T£ 3Γ£ 4 results and thus Γ£3 Γ£4 - Γ£4 Γ£3 . |

Physically speaking, the above implication was only verified for
commensurable decision effects. Generally, however, the above implica-
tion is valid for

Theorem 17. For all ΓPl, TP2, ΓQl, ΓQ2 e Af(G): TPί T?2 = TQί TQ2

implies Tp2TPl^TQ2TQί.

Proof, (i) If TPl TP2 - TQl Γβ2 - 0, then P^Pa and QiJ-Qz and the
implication is true.

(11) If TP 1TP 2ΦO, then TPlΓp2=<7Pl,P2>7p2(8)P1 = <KQl, Q2>VQ2®Ql

with <FP l,P2> φoΦ<F Q l , Q2> implies Pι=Qι. Moreover, for every
atom P g P^ we obtain TQ2 TP = 0, hence P g Qi . For every atom Q g Q2

we obtain Γp2ΓQ = 0, hence β^Pa . So, V 6 = 62^^2= V ^^Gi,
whence P2 = Q2. | Q-Qi p-Pi

Suppose * is a mapping, then * is obviously involutory on IJ $~(G)m

meN

and the question arises whether * can be linearly extended to &(B') to
give an algebra involution. A necessary condition for * to have such an
extension is:

"For every Te (J ^(G)m : Γ* = 0=> Γ = 0."
meN
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Obviously, this implication is true if Ei.λEi._ί for at least one
jeNm\{l}. Let us consider TEιι ... TEim e^(G)m such that (TEιι ... TEJ*

= TE ...Γ£ι =0. This implies <K, TEimTEι ι . . .T£ i ιF> = o for every

F e L and every Ve X; particularly, <7, Γ£im Γ£ ... T£ιι F>

= < K, Γ£i |w_ t ... Γ£iι F> - o for every V e K^J = K0(E^J. Since

— LO K0(Eim_ 1 Λ £^). We failed to prove the desired implication generally
though it holds in an important special case.

Theorem 18. For every Te (J A^(G)m : Γ* =0=ί>Γ = 0 .
meJV

Proof. By the above consideration we get the following dichotomy:

(i) f*im_ ! Λ /^ = P ίw_ 1 9 hence Pίw t g ̂  and the implication is true.

(ii) P^Λ/^0 leads to TPim^ . . .Γ P ι j =0. To ΓPim ̂  . . .Γ P i ι =0

the same procedure applies and we arrive at least at one j e Nm\{ί}
such that Pf ±Pf which states the validity of the implication, (i) and (ii)
express the existence of at least two orthogonal atoms being neigh-
bouring factors of the product in question. |

There remains the open question whether for instance modularity
of G guarantees the existence of an involution * on 3S(B'} which makes
<%(B') a C*-algebra with 5~(G) in the set of all fixed elements under *.
The converse of this question (the open question 3 in [2]) will be answered
in a subsequent paper in the affirmative.
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