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Abstract. An approach to quantization of general relatively using a reformulation
of the classical theory in which the events of space-time play essentially no role is discussed.

1. Introduction

An event in physical space-time becomes, when idealized in general
relativity, a point of some four-dimensional manifold. Such an ideal-
ization is natural in classical physics because, in this case, it is possible
in principle to make arbitrarily precise observations whose effects on
the system observed can be made arbitrarily small. The fundamental
role of the events in the mathematical formalism of general relativity
reflects this potential for precise measurement. In quantum theory,
on the other hand, the influence of the measuring apparatus on the system
being observed cannot, even in principle, be made arbitrarily small.
Furthermore, in a quantum theory of the gravitational field, one would
expect the metric itself to be subject to quantum fluctuations. But the
metric is the primary tool for isolating individual events [1]. Thus, it is
perhaps reasonable to expect that, in a quantum theory of gravitation,
the mathematical formalism will, at some point, suggest a "smearing
out of events".

In the various approaches to quantization of the gravitational field
[2-7], one retains, at least in some form, the events of space-time. It is
presumably intended that these events will lose their significance in the
final theory. Although it might seem more natural to adopt an approach
in which events play a secondary role from the beginning, this turns
out to be difficult, for the set of events, i.e., the underlying manifold,
is central in the standard treatments of classical general relativity.

The purpose of this paper is to point out that, by a judicious choice
of definitions, the entire content of general relativity can be so formulated
that the underlying manifold plays practically no role. This version
of the theory may offer a convenient starting point for quantization.
The smearing out of events, which is to be expected in the quantum



272 R. Geroch:

theory, is already reflected (by the virtual disappearance of events) in
our formulation of the classical theory.

In Section 2, we write down a set of definitions of tensor fields, the
metric, the Ricci tensor, etc., on a smooth manifold M. We then observe,
in Section 3, that the original manifold M is used in these definitions at
just one minor point. This observation is made more explicit by the
introduction of what we call an Einstein algebra.

2. Differential Geometry

In this section, we recall some facts from differential geometry [8—10].
Let M be a smooth (C00) manifold, and denote by J the collection

of all smooth (real-valued) functions on M. Since (pointwise) sums and
products of elements of J> are again elements of,/, this J> has the structure
of a ring. Let 01 denote the subring of J> consisting of the constant
functions, so J* is isomorphic with the real numbers.

A derivation on (</, 0ί) consists of a mapping ξ\J-*J with the
following properties: i) ξ(f + g) = ξ(f) + ξ(g), ϋ) ξ(fg)=fξ(g) + ξψg,
and iii) if fe 01, then ξ(f) = 0. The collection 3) of derivations is precisely
the collection of smooth contra variant vector fields on the manifold M.
If ξ and η are derivations, and geJ,we define a new derivation, (ξ + gη),
by (ξ + gη) (/) = ζ(f) + gη(f) Hence, S is a module over the ring J>.
Furthermore, if ξ and η are derivations, then {&ξη){f) = ξ{η(f)) — η{ξ(f))
defines a new derivation &ξη, the Lie bracket of ξ and η.

Denote the dual module of 2) by ®*. Thus, an element μ of 2)*
associates, with each ξe@, an element, μ(ξ\ of«/, where this action is
linear: μ(ξ + gη) = μ(ξ) + gμ(η). The module ^ * is precisely the collection
of smooth covariant vector fields on the manifold M.

A metric on M consists of an isomorphism g from the module 2)
to the module ^ * which is symmetric, i.e., which satisfies g(ξ, η) = g(η, ξ)
for all ξ, η e 2, where we have set g(ξ, η) = \_g{ξj] (η).

A tensor field of rank n is a multilinear mapping α: Q) x ••• xΘ-^J
(n factors). (These are the covariant tensor fields. Since g gives an iso-
morphism between 3} and ^ * , there is no need to consider contravariant
tensor fields.) For example, a metric defines a tensor field of rank two.
The tensor field of rank n clearly form a module over «/. Furthermore,
if α and β are tensor fields of rank n and m, respectively, then α(£,..., τ)
β(λ,...9η) is multilinear in ξ,...,η, and so represents a tensor field,

α x β, of rank (n + m). This is the outer product operation on tensor fields.
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We next define the (covariant) derivative. Let c e § , μ e ^ * . Then
the right side of

LVξμ] fa) = i {ίg'liμf] (g(ξ,η)) + ξ(μ(η))-η(μ(ξ))

)}

is linear m η e&). Hence, Eq. (1) defines a tensor field, F μ̂, of rank one.
More generally, if α is a tensor field of rank n, we define Vξa by

α(ι/, ...^"H^W)).

It follows immediately from the definition that the derivative satisfies
all the usual rules: i) additivity (Vξ(a-\~ y) — Vξa + Vξy), ii) Liebnitz rule
(Vξ(a xβ) = axVξβ + {Vξ<ή x β\ iii) linearity in ξ(Viξ+gη)a= Vξa + gVηa),
and iv) the vanishing of the derivative of the metric tensor field.

To define the Riemann tensor, note that, since the right side of

R(ξ, η9 τ, λ) = [Vξ Vng(λ) - Vη Vξg{λ)\ (τ)

is linear in ξ, η, τ, λ e @, this equation defines a tensor field R(ξ, η, τ, λ).
The algebraic identities on the Riemann tensor (R(ξ,η,τ,λ)=^ —R(η,ξ,τ,λ)
= -R(ξ,η,λ,τ) = R{τ9λ,ξ9η)9R(ξ9η9τ9λ) + R(η9τ9ξ9λ) + R(τ9ξ9η9λ) = 0)9

as well as the Bianchi identity, follow directly from (1), (2), and (3).
Finally, in order to obtain the Ricci tensor from the Riemann tensor,

we must introduce the contraction operation on tensor fields. It suffices
to define contraction on tensor fields of rank two. The contraction,
C(α), of an α of rank two is to be an element of </, where C has the
properties: i) linearity (C(a+fβ) = C(α) + fC{β)\ and ii) outer product
rule (If μ, v e ^ * , then C(μ x v) = μ(g~ί(v)).) Since our tensor fields are
on a manifold, we have

Contraction Property. There is precisely one contraction operation C
satisfying i) and ii) above.

Thus, fixing ξ and τ, S(η,λ) = R(ξ,η,τ,λ) is bilinear in η, λ. Then
C(S) is bilinear in ξ, τ, and so defines the (rank two) Ricci tensor.

We now have the machinery for writing any equation, and for
carrying out any calculation, involving smooth tensor fields on the
manifold M.

3. Einsteins Algebras

In the previous section, we stated a sequence of definitions, leading
from a smooth manifold M to a metric on M and finally to all the tensor
operations on M. We now make the following observation: the manifold
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M entered the discussion of Section 2 at only one point: in the construction
of the ring J of smooth functions on M and the subring M of the constant
functions. All constructions and definitions thereafter were purely
algebraic ones on (</, ^ ) .

We are thus led to the following definition. An Einstein algebra
consists of i) a commutative ring J, ii) a subring 01 of J>, isomorphic
with the real numbers (and such that the identity 1 of J* is the identity
of J\ and iii) a metric g, such that the contraction property is satisfied
and the Ricci tensor vanishes. More generally, one could introduce
Einstein algebras with sources (e.g., electromagnetic fields, fluids, etc.)
by introducing smooth tensor fields to represent the sources, and suit-
ably modifying Einstein's equation. Thus, an Einstein algebra is a purely
algebraic object, making no direct reference to a manifold. Of course,
every space-time which is a solution of Einstein's equation defines an
Einstein algebra. One could just as well take, as the underlying mathe-
mathical framework of general relativity, an Einstein algebra rather
than the usual smooth manifold with smooth metric tensor field.

In fact, one could even regard Einstein algebras as representing a
theory of gravitation, a theory which includes general relativity as a
special case. Such a point of view would be difficult to maintain, how-
ever, unless it can be demonstrated that this "theory of gravitation" is
capable of making experimental predictions. It appears that such pre-
dictions can indeed be made: it is only necessary to formulate the pre-
diction in terms of tensorial properties of smooth tensor fields. For
example, to describe the perihelion shift of Mercury, one would require
that the Einstein algebra have a smooth fluid stress-energy (representing
that of the Sun), and that the solution have the usual properties (spherical
symmetry, et.) associated with the solar system. The planet Mercury
would be described by a second smooth stress-energy field, which is
conserved, but which is not inserted into Einstein's equation. The
conservation equation would guarantee "geodesic motion". The peri-
helion shift would then be interpreted in terms of the behavior of the
stress-energy field of Mercury relative to the Killing fields.
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