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Abstract. We give a totally 3-covariant formulation of the gravitationally coupled
electromagnetic field (with a source) in terms of physical 3-covariant variables, keeping
the correspondence with the A.D.M. formulation of the problem. We introduce a 3-
covariant time derivation which allows us to discuss the spreading of the transverse
and longitudinal components of the electromagnetic field.

Then we present the second-order propagation equation and the Hamiltonian 3-
covariant equations in a complete electromagnetic gauge independent fashion using the
well-known elliptic operator Δ(gίj] and we also discuss the dynamical impossibility of
disentangling the transverse and longitudinal modes.

Thereafter we extend the 3-covariant formulation to the gravitational field and
consider the problems of the initial conditions for the full system, as done by York for
the vacuum case.

Finally, we apply the formalism to the merostatic sourceless problem, showing the
connection between the merostatic and the static cases.

I. Introduction

Recently [1] it has been shown in a 4-convariant formalism that one
cannot have both a simple propagator and a simple auxiliary condition
to determine the gauge.

On the other hand, from a dynamical point of view, it seems very
natural to analyse this point, following the lines applied by Arnowitt,
Deser and Misner [2] to study the interaction of the electromagnetic
field with the tensorial gravitational one; emphasising the role of the
physical variables (A?, $?) of the Maxwell field and the gauge covariance
(or invariance) at the different levels of the reduction process.

Thus, in the next sections we shall carry out the process of reduction
of the 4-covariant action in a totally 3-covariant way in order to obtain
the equation of propagation of the electromagnetic transverse waves in
terms of the 3-metric g i j f Moreover, we shall study the dynamics and the
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206 C. Aragone:

initial value problem of the full interacting system emphasising conformal
techniques. Arguments supporting the introduction of 3-covariant
decomposition (C-covariant) against the physically satisfactory non-
covariant (N-covariant) have been given by Deser [3], where the under-
lying 3-metric has been pushed down throughout the formulation of
the dynamics of general relativity. In the last two sections we give al-
ternative fully covariant formulations of the "canonical" field equations
and we apply them to the merostatic problem of the coupled system,
discussing the connection between merostaticity and staticity.

II. Lagrangian Formulation, C- Variables, C-Decomposition,
and C-Time Derivation

We start from the first-order action for the electromagnetic field
given in [2]

IM=ϊ{Aμ,^
μv+τPμvF*βgμΛgvβ(-gΓ* + Aμ/'>}d*x (1)

where Aμ is the vector potential, ̂ μ" the contra variant skew symmetric
field strength density, /μ the conserved current density1.

We shall consider the 3 + 1 decomposition induced on the hyper-
surfaces Σ = {x° = const} which have the unit normal vector nμ = nδ°μ,
n = ( — g°°)~^. These hypersurfaces have the induced metric #^ = 4.0^,
and the evolution of the co-ordinates outside Σ is determined by the
Lagrangian multipliers Ni = g0i [2]. Whenever necessary we shall use
the prefix 4 to indicate every four-dimensional quantity, so that all
unmarked quantities are understood as being three-dimensional.

Then, for the full metric 4gμv9 4<fv (Nl = gίhNh, gihghj = δ^

4Sfoo = Λ f ί Λ r ί - π 2 ; 4g°° = -n-2, (2a)

4g
0i = n~

2Nl; 4g
ij = gij - n~2NlNj . (2b)

The description of the electromagnetic field will be given in terms
of the I'-intrinsic quantities2

Ah = 4Ah9 A° = nμA
μ = n 4A\ (3a)

(3c)

1 {gμv} has the signature (- 1, +1, + 1, + 1), Rμv = daΓ«v - dμΓv + Γμ

α

vΓα - Γa

μβΓ^.
2 By Σ-intrinsic quantities we mean geometrical objects under the group of trans-

formations GΣ = {x01 = φ°(x°), xif = φ l(x j, x°)} which leave Σ invariant

(x° = const -> x°' = const').
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which are, respectively, in (3 a) a vector and a scalar, in (3b) an anti-
symmetric tensor and a contra variant vector density; while in (3c) the
current is a covariant vector density and the charge ρ is a density.

Any 3-vector can be decomposed uniquely in a covariant way into
its transverse part and its longitudinal part by means of two projection
operators ^τ, &L (Vh is the covariant derivative with respect to the
metric^):

Ah = Al + A% = ̂ (g)Al + ̂ (g)Al, (4a)

where

(4b)

(4c)

It is worth while mentioning that there exists a "parametrization" of
both functional spaces. Every transverse vector can be written as the
rotational of some other vector (not in a unique way) and, as is evident
in (4b), any longitudinal vector is a gradient of some function. So it is
possible to write the decomposition in the form (sijk is the sign of (ijk)
with respect to (123):

Variation of a over a certain space of functions describes the full
space of longitudinal vectors, and free variations of Ck give the full
space of transverse vectors.

Just as in the action principle there enters a 4-differential d4x, so
the invariant 4-element of volume Ϋ^-^gd^x splits into the product of
the 3-element of volume ]/gd3x times the invariant element of line

(— 4g)^d4x = dx° /\g*d3x . (5)

In order to achieve a Σ-covariant formulation of the action principle
one needs the Σ-covariant extension of the non-covariant operator d0

which allow us to study the whole dynamical system without specifying
(π, JV;) as one usually must do (4). First we define the new time derivative
(which we denote by β0) for a scalar function φ:

dQφ = n~1d()φ — Nln~ldίφ=~nμdμφ. (6a)

The last expression in (6a) shows that d0φ is certainly a new scalar
under GΣ. For a covariant vector Vi9 employing the standard [2]
momenta for the gravitational field {ntj = ]fg [_Ktj — gtjK] Ktj = n 4Γ^},
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we extend the above definition thus :

i - K\V> - dn - V°
(6b)

) - Vj .

The definition shows explicitly that dQ Vh is a covariant vector because
it is the sum of three covariant vectors3. The second expression of dQVh

depends only upon the vector Vh itself (through its spatial and time
derivatives) and on the 4 Lagrange multipliers (n, ΛP); there is no reference
to the metric gtj. At this stage, by application of the Leibniz rule to
φ = WlVi, we obtain dQWl (which again does not depend on the induced
metric gtj)

d0W
l = n-^doW* - n'^WdjW* + n~ΐ(djN

ί)Wj . (6c)

(Actually we define d0 W
l by means of (6c) and then we verify the validity

of the Leibniz rule because either d0W
l, δ0F ί5 80φ have been defined

independently).
Following this procedure one can obtain the value of d 0TJ};;;j™ f°r

any m and n. In the case of a symmetric tensor of rank two :

dQtij = n~1dQtij-n-lNldltίj-n-idjN
ltil~n-ίdiN

ltlj. (6d)

When tij = gίj Eq. (6d) gives for d0gψ §Qgij and d Q ] / g :

2Kίj, (7a)

(7b)

^~1 . (7c)

The last Eq. (7b) permits us to extend §0 to a 3-density σ. In fact, from
the Leibniz rule, we get for the value of d0σ:

80σ = σK + g-d0[_σ^g~^ = n~1d0σ-n-1di(Nίσ). (7d)

As δ0σdx° Λd3x = [δ0σ — ^(ΛP'σ)] d4x is an exact co-ordinate divergence
times d4x, we are able to discard terms of this type in the action in
order to obtain the field equations.

Because of Eqs. (7a-b) which say that d^g^ φ 0, the "time" derivative
of a covariant vector Vt does not coincide with the "time" derivative of

The first two terms are obviously covariant vector. The last term,

can be regarded as a scalar (nμV
μ) times the covariant vector dh\ogn since logn is an

intrinsic scalar.
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the contravariant component V1 of the same vector, i.e.,

.Vj. (7e)

Applying the definitions given throughout this section we can write
the first-order action in the explicit C-form, showing the pq — H structure:

I(A, £/> AQ, gip n, N<) = J { - g^A, V JVj - ϊ M

+ A° [dig1 - ρ] + Aj] dx°Λd3x.

In this form we already recognize A° as the Lagrangian multiplier
associated with the Maxwell differential constraint dhS

h = ρ. The standard
method to "solve" this differential constraint is the T — L decomposition.

As the metric gtj with which we are dealing will not, in general, be
flat, and as the d0 operator does not commute with the covariant
derivatives Ϋh, there will be some modifications in the usual properties
which involve [3Λlogn] and d^g^. Moreover, in the following section,
we shall estimate the non-vanishing commutators [̂ τ, <50] = — [̂ L, δ0]
which tell us that under <30 - time evolution a transverse (longitudinal)
vector generally acquires longitudinal (transverse) parts.

III. Kinematics of the T+ L Decomposition

In Ref. 3 the orthogonality between a longitudinal vector and a
transverse density has been pointed out, i.e.,

^Vi

Li^Tίd3x = Q. (9)

Now we shall calculate the value of the same products, but integrating
over the full 4-space. In this case we have for 1^=^-1-5^;

j V^τίdx° Λ d3x = - j v(dilogn) i^τίdxQ Λ d3x (lOa)

or equivalently:

^n~ίdίlnv']i^Tidx0Λ,d3x = Q (lOb)

because for a contravariant density ϋ^1

\ V^^dx0 Λ d3x = - j υn-1di[nifi'] dx° Λ d3x (lOc)

holds.
Better results are obtained when considering the product

/\ d3x; in this case orthogonality holds for some mixed
inner products. The full set of inner products, with a 4-dimensional
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integration, is:

J TT Γl δ0 l^dx0 Λ d3 jc - 0 , (1 1 a)

ί ^LA Cr ̂ Tί] 9~^dx° Λ d3* = 0 , (lib)

JΊr L '3 0 ^ Γ rfx°Λ^ 3 jc-2jιr L 'π ί j F
Γ ^-"^ ( ) Λrf 3 Jc ? (lie)

J iSTSo KLdx° Λ d3x = - J Si-ϊSr' - d0vdx° Λ d3* . (lid)

The relations (10) can be applied to simplify the last term in the action
(8), taking into account the current conservation which holds as a
consequence of the 4-covariant field equations dμ/

μ = 0.
The 3 + 1 version of the current conservation is :

0, (12)

and then, by means of (7d), (lOc) and (12), the last term in (8) becomes:

-ρd0a)dx()Λd3x. (13)

Now we come to the problem of transverse and longitudinal mixing
modes of propagation which, as we shall see, stems from the lack of
commutation between the spatial derivation operator dt and the time
evolution operator δ0.

There are two relations which provide the clue to the mixing problem
of a vector. The first concerns the time evolution of a longitudinal
vector

[5093J/ = (ahlogw).5 0/, (14a)

which can also be written

showing that the time evolution of a longitudinal vector dhf differs by
(dh\ogn)d0f from being longitudinal4. The second gives the connection
between the evolution of the divergence of a contravariant vector density
and the divergence of the time (50) derivative of the same object,

[^o^jTr^ίδilognJδoTr1' (15a)
or,

<30 diif1 = n-ί.drn d0 irί (15a')

which is the same.
In particular, Eqs. (15) show that the time evolution of a transverse

vector density i^Tl has a non-vanishing source for its longitudinal
component 8ild0i^

τί'] = - (dίlogn) d0i^
Tί.

4 The source of the T-component of the time evolution of a longitudinal vector FjL

is Sl = έ'k d} d0 Vk

L = fi"* d0 V^ ldk logw].
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More precisely, we can exhibit the spreading of the transverse and
longitudinal components of a vector Vl = (g)~^i^Tl i gljdjv calculation
the "mixed" projections, i.e.,

^ logn) - d0T
Tj , (16a)

= iogn0v-iA-1g--djlg-gjh(dh\ogn)^()v^,

while the L-projection of <30K
 L is:

&LiJdQVf' = didΌυ + diAϊig-*djg*gsl dllogn'dQv. (16c)

It is interesting to point out the different role played by n with
respect to the remaining three Lagrangian multipliers Nl . It is sufficient
to choose co-ordinates so that n = l (not necessarily gaussian) to regain
formally all the flat properties, as one can easily check by going through
this whole section, even if this assumption does not make dQ coincide
with δ0.

IV. Dynamics of the Electromagnetic Field

By introducing δτi\ <$Li = g* gije^ A] and A\ = a9i into the action (8),
using (13) and substituting &r

ij = g*(diAj — djAi), we obtain:

Γ m (gip n, N\ δτ\ SL\ A], A\, A°)

a)ld^Li-Q^+/A^-^gijg-- (17)

(AT)'] dx° Λ d3x

(where ̂  = iεijk/jh(gΓ^
In terms of these variables, gauge electromagnetic invariance of (17)

means invariance of (17) under the transformation (χ is an arbitrary
function)

δLi-*g'Li = gLi, gτi-><gιτi = £τi, (18a)

Aτ

i-^A'τί=Aj, a->a' = a + χ , (18b)

A°->A0f = A°-δ0χ (18c)

and is then trivial to check. The choice of a gauge means determining
in a specific way the value of the longitudinal component of A{. Con-
sequently, as the gauge scalar a = (A° + d0a) is determined by the field
equations, once one chooses α, A° is fixed. In fact, performing independent
variations of aS>Li = gijdje in the action (17) we obtain the equation

=(). (19)
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Variations of either a or ^4° only contribute to vary the Lagrange
multiplier α, so both give the same equation, which is the differential
constraint of the system

dβ l = d^Li = dtg
ijg*dje = ρ . (20)

The dynamics is contained in the two sets of equations obtained after
independent variations of (Ai9 $j) in (8) (which is equivalent to varying
Aj, Sτί if (19) and (20) are taken into account),

, (21a)

(21 b)

Splitting At as (A? + dta) and using (Ha'), we find the evolution of the
transverse electromagnetic potential :

Introducing ^ into Eq. (21 b), taking the value it has in Eq. (21 a'),
we arrive at the second-order propagation equation for the transverse
electromagnetic potential A?

"-1 W*] - doWJ8oAjl = -/ + d0[n-lg*gVdj(n*f] . (22)

The first term on the left-hand side can be transformed by intro-
ducing the value of /ji = g*gjhgik[βhAl — SkA^~\ and using the law of
interchange of covariant derivatives, i.e.,

(23a)

In doing this, the first term becomes

n~1dj[_n/jί^=g^(djlogn) [DjATi-DiATJ] +g^ Δ]ATj , (23 b)

where Alj is the De-Rham operator acting on a 3-vector which has been
considered extensively by Lichnerowicz [5].

A}ATj ΞΞ DjDjAτί - R]Aτj . (23 c)

Substitution of the first term in Eq. (22) by its value (23 b) gives for the
propagation of Af

(24)

where the Lagrange electromagnetic multiplier α = (A° + d0 a) is de-
termined by the constraint Eq. (19), which can be put in the more ex-
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plicit form :

+ n i g - g j n = .

It should be noted that / has to be understood in Eq. (24) as

/Π +/Lί(/Γ> Q) where /Lί Ξ 9^9iJdjβ is determined by Eq. (12), i.e.,

+ §0ρ = 0 . (12')

Conversely to what happens in the flat case where the transverse
modes decouple from the scalar mode (— /f + <303 ίαΞΞθ), the existence
of a gravitational field avoids the disentangling of both modes and this
is reflected in the non-vanishing of — /Ll + 300*0ί / 'w~ 1 d / Hα.

Actually, these problems already exist at the level of the first-order
formalism and can be traced in the spreading over the space of longitudinal
vectors of the variations in time of a pure transverse co variant vector A?.
The system (21), together with the constraint (19), can still be read:

§0AT = -g~*<$? - dte - n~ldinu, , (25 a)

do*τi = ~/Ti -VLί - do9*9ijdje ~ n"ld^ji , (25 b)

We assert that the contribution of the 2 longitudinal vectors in (25 a)
dt [e + α] as well as the contribution of the 2 longitudinal pieces in (25 b)
—(/Lί + g^gίjdjdQe) do not vanish just because of the coupling to the
gravitational field and are not merely due to the kinematic distorsion
caused by n φ const.

To see this, let us assume n= 1. In this case [e + α] and [_d0e + β~]
(which are determined by the constraints of the system) turn out to be,
respectively, the non-null quantities

-2A-1g-*diπ
ίjAj, (26 a)

2A-1g-ίdiπ
ijdje. (26b)

V. Gauge Independent Field Equations for the Transverse Modes

In order to achieve the explicit time evolution of the transverse mode
of the electromagnetic field, we shall often use the existence of the
inverse Δ ~ l ( g ) of the curved 3-laplacian elliptic operator acting on a
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scalar /, [6]
g ί j d j f , (27 a)

. (27 b)

Then the value of the coulombian mode of the electric vector, in view
of Eq. (20), is given by

ρ, (28a)

while from (12') we obtain, for the potential of the longitudinal part of
the current density, ̂ Ll. To express β as a function of the transverse
current /Tl and the charge density, we have to make use of the technique
of the conformal mappings of space-like three-geometries [6] to get rid
of the dependence upon n. It is found that (n2 g means the tensor
(n2g)ij = n2gij):

n2g-A(n2g)f^n-1dίg-ng^djf7 (29 a)

and consequently β is:

β=-Δ-ί(n2g)ln-2g-*(dΌρ+sτidilogήj]. (28 b)

By dealing with Eq. (25 c) in a similar way, we obtain the value of the
scalar mode

dtnπl}AT}. (28 c)

Another useful relation is the explicit value of dQe, which can be found
by taking the time derivative of Eq. (20) and introducing, where necessary,
the value of e (28 a):

We note that (28 d) does not depend upon either Af,$? or α. The
same property holds for β, as is shown by Eq. (28b), while, conversely,
the scalar mode α is a functional of the 4 electromagnetic dynamical
variables (A?9 δ?\

At this point we can reformulate the dynamics of the transverse
modes (25) by introducing the values of e, β, a and δQe defined through
Eqs. (28a)-(28d), respectively. Thus, the final equations for the physical
electromagnetic fields a) in the presence of a source, b) in a complete
3-co variant fashion and c) gauge independent, are

δo#τί = ~/Ύi ~ g*gijdjβ(n, g, ρ,/) - g^n^djίnd^n, g, π, ρ)] (29b)

+ 2π%[J;1^-*ρ]-n-13J.[n^VVΠ[3m^τ-MΪ]]. (29 c)
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Gravitationally coupled electromagnetic waves can be seen as excitation
of the canonical variables (A] , <^τ). Because of the linearity of Eqs. (29)
with respect to these variables, it is equivalent to considering the sourceless
equations which, due to this, look simpler than the above set. In such
a case they are:

§0AT = -g~*$? + n-ίdiΆ-ί g~* . [<?Tίδίn + 2dinπijAj'] , (30a)

dQ*Ti=-n-ldjng*g'lgikίdlAΪ-dkAΓ] . (30b)

It is interesting to point out the choice of a specific gauge does not
contribute to the structure of either set (29) or the set (30).

VI. Covariant Formulation of the Full Interacting System

We can also formulate the gravitational action in a full covariant
way by means of the covariant time derivative operator δ0. Starting
from the reduced 6 + 6 form of the action given by Arnowitt, Deser and
Misner [2], discarding a total time derivative and a 3-divergence and
introducing <30, one obtains for the gravitational field:

(31)

(where the action depends upon n through the square bracket times dx°
and upon Nl through d^g^dx0).

The total action for the gravitationally coupled electromagnetic field
is the sum of (31) and the reduced electromagnetic action (17). Varying
the gravitational variables (π0, 00 ) in the total action I = IG + Γm, we
regain the Einstein equations for the gravitational field in a canonical
and fully covariant fashion5

δl/δπij = 0*±0*3000. = 2π0 - ngtj , (32a)

ππij-2π[π j-yj(±π2-π'xπ^

lDhn (32b)

The gravitational constraints arise from independent variations of
(n, N1}. Variations of n yield the 0-constraint:

) , (33a)

while variations of N1 give the vectorial constraint :

2Din

lj = ρAj - δ%Al = ρAj - εjlm<?l^m = ̂  . (33b)

5 Although variations of gtj include in principle variations of — SLl = g^gl}c}e and
Aτi as functionals of gtj those do not contribute by virtue of the Maxwell Field equations.
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Of course, the remaining equations are (20) and (25). Notice that «9^ does
not contain gtj. Eq. (33) are not concerned with the time derivatives and
so they have to be the same that appear in A.D.M. paper although (30)
looks like very different.

In view of the simple form taken by the constraints (33) and the
P = f(P> #) Eq. (32 b), Deser gave [3] an alternative formulation for the
system assuming, as principal variables, the two symmetric tensors (π17, Rtj)
instead of the natural choice (πlj, g^). As we are working in a full-co variant
way using the "co variant" time derivative δ0, we need only evaluate
d0Rij to obtain the new set of equations. This can be done by means
of the Palatini identity for the Ricci tensor. This identity yields the change
δRij of the Ricci tensor when the metric gtj changes δgtj. In the present
situation we take δg^ = d^g^ dx°, and consequently δRtj is δR^ = ^R^dx0,
without any sort of restriction on the co-ordinates we are dealing with.

For arbitrary variations δgij9 the Palatini identity reads:

2δRtj = -Δ δ9ίj + Dkiδgkj + Dkjδg* - D.jδgί . (34a)

Substituting δRtj by doR^dx0; δgtj by ^g^dx0, and introducing (32a)
to eliminate these last time derivatives we obtain for the time evolution

oRij = -A ntj + $(gtjA - Dtj)n + Dkiπ
kj + Dkjπ\ . (34b)

As the constraints (33b) give the value of the divergence of π f j and
as we cannot introduce this value directly into Eq. (34b) because co-
variant differential operators acting on a symmetric tensor do not
commute, it is convenient to give another expression by interchanging
the differential operators in the last term. Taking into account the
specific relation which exists between the Riemann tensor and the Ricci
tensor in a three-dimensional space, i.e.,

Rijki = 9nRjk ~ QjiRik + gjkRn - gikRjt - ?R(gngjk - 9ji9ίk} , (34c)

and the two relations which arise from contracting Eqs. (32a) and (34b)
with the metric tensor

.)-yiA^ (34d)

= Di

 QAj - PΔ^

one obtains for the evolution of the three-Einstein tensor:

g*80G
ίj = - Δgπ

ij + {(gijΔg - Dij)π

j) - 2Gπίj + gij(πG- π'xG.x) .
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In a recent letter York [6] introduced the conformal part of the
spatial metric tensor Rijk to study the gravitational degrees of freedom
and the initial value problem in the case of a sourceless gravitational
field. Finding attractive the idea of splitting the spatial metric into its
conformal part gtj and a conformal factor φ4 which determines it
g.j = φ4~g.j7 we shall evaluate the evolution of the conformal part. (As
we shall see, the factor φ4 is fixed by the 0-contraint (33a).)

The 3-dimensional conformal tensor Rijk is defined by:

Rijk = DkRtj - DjRίk + ±(gikDj - gijDk)R . (35)

Variations of the metric tensor gij^^g^dx0 entail corresponding
variations of the conformal tensor δRijk = dQRίjkdx0 which can be
evaluated by means of Eqs. (32a), (34b), (35) and the knowledge of
δΓi] = τ(Diδglj + Djδgl - Dlδg^. Thus, one obtains for δRijk,

(3oa)
lkD} - δβijDk)R

which shows that the time evolution is given by

d0Rtjk = Dkd0RtJ - Djd0Rtk

(36b)

n - Dtd0glk) .

Inserting <30K;j =- Δgπi} + i(0yJ9 - D0 )π + 3(πi;^ + πβRb
+ R(gίjπ-πlj)-2gίjπ.xR'x~2πRίj + Dί^'j + Dj^'i and d0g(j into this
formula we get for the evolution of the 3-conformal tensor

tjk = DjΔgπki - DkAenjt +ftp}, D^D^ + ̂ g^-g^D^Δ^

kffiπj, - 2Djπn - D;πy] - Rj[A π,; - 2Dkπn - D,nik]

j - D^ J + ̂ gtjR
l

k - gikR
l^D,n (37)

+ lDkiδ'j - Dμδ[ + Dkjδ\ - Djkδ% ̂  .

Also in this case the requirement that πij be traceless [7] (π = 0)
allows us to solve the problem of the initial conditions, assuming the
conformal law of transformation : gί} -> φ*gi} — gtj, π ί j -*ψ~ 4π i j = πij given
by York. To do this, one gives an arbitrary metric gί} and constructs
a symmetric density π'j so that, besides being traceless (π = 0), verifies
the vectorial constraint (33b) with respect to the given metric, namely

D]πi = Djl5nπit]=y, (38)
16 Commun. math Phys., Vol 26
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Then we must determine φ in order to have a complete set of initial
conditions {gij = φ4gij,π

lj = φ~4πlj} which still verify the traceless
character of πυ (π = 0).

In fact, under the conformal transformation C, π' is a scalar quantity,

π}^π'=π}, - (39 a)

and, moreover, the transformed π] solves the vectorial constraint
{because π = π = 0}

0^ = 0^ = ̂ . (39b)

Then, if one introduces gij = φ4'gij into the scalar constraint (33a), one
obtains an elliptic equation which fixes φ. In the present case it turns
out to be:

- ^ ' - - j

VII. Applications

We shall apply the present formalism to prove that a sourceless
(̂  = 0), merostatic, asymptotically flat-null electromagnetic-gravita-
tional interacting system consists of a Lorentz flat 4-space and a null
maxwellian field. By merostatic system we mean an electromagnetic
gravitational system such that there exists some family of hypersurfaces
where it is verified that do A? = 0 = δ00ί<7 in the whole 4-space.

It will be sufficient to see < that the electromagnetic field vanishes
because, if this is so, the problem has been reduced to the pure gravita-
tional and sourceless case, and then we can follow essentially the same
argument given by Arnowitt and Deser [8], although ours will differ
slightly.

The key to this result is a theorem given by Lichnerowicz [9] for
elliptic operators on a riemannian space which says that a harmonic
function u(Ag(u) = 0) which converges uniformly to a constant k in the
infinity of an elliptic riemannian manifold, coincides identically with this
constant (u = k).

In the assumed merostatic conditions there is no $Li (e = 0) because
we can apply to Eq. (20) (ρ = 0) the above-mentioned theorem. As it
follows from Eq. (32a) that 7^ = 0, the Maxwell system (25) becomes:

Q = gτί + g*gVn-ldjnQi, (41 a)
τi - - l j i T ( 4 1 b )

L = 0. (41c)
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Introducing Sτ\ given by (41 a), into (41 c), we find for the scalar mode α,

dig*gijn-ίdjnu = Q9 (42 a)

which, by making the conformal transformation gtj -> gtj = n ~2Qij achieves
the final equivalent form:

Δg[noi]=09 (42 b)

where gtj keeps the elliptic structure oigtj. Then, again applying Lichnero-
wicz's theorem, we obtain the vanishing of nα and, consequently, of α.
Now, Eq. (41 a) says that εTl = 0. We have still to consider Aj, which
now obeys

dj[ng* gjiglh(dtAΐ - dhAfi\ = 0. (43a)

This equation can be recast in the form:

ΔljATj + l(Dhlogn)δlj - ghlDj\ogri] DhA
Tj = 0, (43b)

which, by extension from the scalar case, we shall assume (together with
the corresponding asymptotic conditions) gives uniquely A? = 0. Then,
as the electromagnetic field vanishes, we are in the condition of a pure
merostatic gravitational field which, as can easily be seen, is a flat 4-space.
In fact, πtj implies, (33a), that the 3-space curvature R(gtj) = Q.

Contracting the field Eq. (32b) we obtain for the last variable n:

Λgn = V, (44)

and here again Lichnerowicz's theorem allows us to assert that n=l.
Finally, instead of finding the hidden Lagrange multipliers N1 we can go
to the full Riemann tensor and prove its vanishing. As we have Ktj — ntj

= Rij = 0 = n—l, we can see that all its different components have
already vanished. In fact, the Gauss-Codazzi equations give the vanishing
of 4Rijkl,

 4Rijk° (because Kl} = 0 = 3Rtj)

4^-ijki = ίR ijki + 9 ' ( K ί k K j , —KnKjk) = Q , (45a)

tRvf-DjKn-DίKj^Q (45 b)

and because the last set of components of the 4-Riemann tensor are

4ΛI

δ

JX = o^κo = n"1A^ ϊ (45c)

the value n = 1 implies their vanishing and consequently the flatness of
the 4-spaces with which we are dealing.
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Throughout all the sections we have seen the very different role
played by n compared with the other 3-multipliers Nl. There is still
another interesting property in connection with this point and this
concerns the intrinsic definition of a static space. If one calculates the
Killing tensor of the normal to x° = const. (nμ = nδμ), one finds that
Θμv = Dμnv + Dvnμ has the 3 + 1 decomposition:

Θij=-2Kij', <9δδ = 0, (45a)

(46b)

Thus, ntj = 0 = log n is equivalent to saying that nμ (which by definition
is hypersurface orthogonal) is a Killing vector, and then this coincides
with the static case. However, πij = Q = Kίj alone does not imply the
vanishing of the Killing tensor of nμ (or the Killing tensor of any collinear
vector) and the assumption of merostaticity is weaker than the assumption
of staticity.

VIII. Discussion

We have obtained a C-formulation of the gravitationally coupled
electromagnetic field by means of a C-time derivation generalizing
previous results. This has allowed us to characterize the dynamical
properties of the different variables involved in a total gauge independent
way. We have seen the reasons for the mixing of transverse and lon-
gitudinal components of the fields, which are essentially dynamical as
Eqs. (26) have shown and are not of merely kinematical origin ("bad"
choice of co-ordinates). Then we have given the explicit formulation of
the Maxwell field equations in terms of the 2 + 2 canonical variables by
means of the well-known inverse of the elliptic operator A(g) and con-
formal transformations. We have applied the full C-formulation of the
interacting system to study the initial value problem where we determined
the 3-conformal factor on the assumption of maximal embedding (π = 0).
Finally, we have studied the sourceless-merostatic interacting system
and the relation between merostatic and static fields. All results are
given without any reference to the spatial Lagrange multipliers N\ while
the role played by n is emphasised.
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