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Abstract. For gravitational fields with metrics which admit of groups of motions
multiply - transitive on 2-dimensional space-like invariant varieties, the exact solutions
of the Einstein gravitational equations are given for the case when the sources of the gravita-
tional field are dust-like matter and a magnetic field. A magnetic field is orientated along a
direction orthogonal to transitivity hypersurface. The solutions contain arbitrary functions.
In the case of transitivity hypersurface of positive curvature and in the absence of a magnetic
field, the solution is reduced to the Tolman spherically symmetric solution for dust-like
matter. The conditions are studied under which the solutions with a magnetic field become
asymptotically isotropic and approach the flat and the open Friedmann models. The case
of transitivity hypersurfaces with signature (H—) is also considered.

1. Introduction

The paper deals with exact solutions of Einstein equations in General
Relativity for metrics which admit of multiply transitive groups of
motions on 2-dimensional transitivity hypersurfaces V2. Exact solutions
are given for the case when the sources of gravitational field are dust
(incoherent matter) and a magnetic field, the direction of which is ortho-
gonal to V2. These solutions contain arbitrary functions. The cases con-
sidered are those in which the signature of V2 is (+ +) and (H—) [1,2].

In the case of space-like V2 with positive curvature and in the absence
of a magnetic field these solutions are reduced to well known Tolman-
Bondi solutions for spherically symmetric gravitational fields [3,4].

A study of gravitational fields, the sources of which are matter and a
magnetic field, is important in the theory of anisotropic cosmological
models with a primordial magnetic field [5-10] and also is of interest
for the problem of gravitational collapse in a magnetic field. Considered
solutions include a homogeneous anisotropic model with euclidian
co-moving space and also contain a class of inhomogeneous solutions
which asymptotically become isotropic and approach the Friedmann
solutions in the flat and in the open models.
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The general case of gravitational fields, whose metrics admit of
3-parameter groups of motions G3 on V2, is considered. Lie algebras
A3 of these groups allow extensions [11]. On the one hand, there exists
a central extension of A3 to AA with a space-like additional Killing vector.
It leads to a group G4 which acts on a hypersurface V3, which is the direct
topological product of V2 and a line of a direction of a magnetic field.
Such metrics have been considered previously [12,13, 5-9]. They are
consistent with the presence of a magnetic field. On the other hand,
there exists noncentral extension of A3 to A4 which leads to a homo-
geneous anisotropic model with a co-moving 3-space of constant
negative curvature. Also, there exist non-central extensions of A3 to A6,
which lead to the Friedmann models. The non-central extensions,
however, prove to be impossible in the case when a directed magnetic
field serves as a source of gravitational field.

2. Metrics with Groups of Motions on V2

Metrics which admit of 3-parameter groups of motions G3, which
act on space-like transitivity hypersurfaces V2 with coordinates x2, x3,
can be written in a synchronous system with geodesic lines of time
τ(x° = cτ) in the form [1,2,15]

ds2 = (cdτ)2-dl\ (2.1)

dl2 = X2(x\ τ) (dx1)2 + Y2(x\ τ) ί(dx2)2 + f2(x2) (dx3)2] . (2.1a)

V2 is a 2-space of constant curvature, which may be zero, negative and
positive, and the values in (2.1a) respectively are

fix2) = 1, (2.2a)

f(x2) = sinhx2 , (2.2b)

f(x2) = sinx2 . (2.2c)

Generators Xa of a group of motions G3 are defined by Killing vectors
ξ[a) by Xa = ξ\a)d/dxι (Latin indices i, fc,... run from 0 to 3). For these
operators the commutation relations [Xa,Xb] = cc

abXc are valid with
structure constants which may be written in the form [14] (Latin indices
a, b, c run from 1 to 3; eabc is a skew pseudo-tensor, eί23 = 1)

cc

ab = eabdn
dc + δ%aa - δc

aab, nabab = 0, nab = nba. (2.3)

For (2.2a) the group G3 is of type YΠ0 according to Bianchi-Behr classi-
fication [1, 2,14,15] with the values in (2.3)

aa = 0, nab - δa

2 δ\ + δ% δ\ , (2.4)



26 I.S.Shikin:

and with Killing vectors

ί{i) = x'δ^-x'δl ξ\2) = <52, ξ{3) = δl Xa = ξ^d/dx*. (2.4a)

For (2.2b) the group G3 is of type VIII [2] with

aa = 0, rc*6 = δ\δ\ + S« S2 - δ%δ\ , (2.5)

and Killing vectors are

ξ;υ = cosx3<52 - sin*3 cothx2<53, ξ\2) = S^/Sx 3 , ξ(3) = <5'3. (2.5a)

For (2.2c) the group G3 belongs to type IX [2] with

aa = 0, nab = <$;<$? + (3fl

2(5
b

2 + ^ , (2.6)

and Killing vectors are

£ | υ = cosx3£>ι

2 - sinx3 cotx2(53, ξ(2) = S^/Sx 3 , ξ\3) = δ^ . (2.6a)

Lie algebras A3 of generators of the groups G3 (2.4), (2.5), (2.6) may be
extended [11,16,17]. Central extension is carried out by addition of the
generator X4 which commutes with the generators of Λ3, whereas for
non-central extensions the generators, which are added, do not commute
with the generators of Λ3. A central extension is given by addition a
Killing vector (with £(

2

4) = ξ(

3

4) = 0), space-time character of which may
be arbitrary [11]. A time-like additional Killing vector would lead to
static solutions which contain in particular the Reissner-Nordstrom
metric. We confine ourselves to a central extension given by a space-
like additional Killing vector

&) = <$!, X4 = δ/3x\ (2.7)

which leads in (2.1a) to

X = b{τ)9 Y = a(τ) (2.8)

for all possible values of f(x2) (2.2a), (2.2b), (2.2c) [5-7,9,12,13,18].
For f{x2) = 1 this central extension leads to the group G4 which in

virtue of (2.4a) and (2.7) contains the abelian subgroup G3 of X2, X3, X4..
This subgroup G3 is simply transitive on 3-dimensional transitivity
hypersurface x1, x2, x 3 and belongs to Bianchi type I with aa = 0, nab = 0
in (2.3). Such model is of interest in anisotropic cosmology [1,19]. Lie
algebra A4 with (2.8) for /(x2) = 1 is extended to A6 by addition the
Killing vectors

pi _ v-3 si v l si μi v l si V 2 si
ζ ( 5 ) — χ O1—X O39 ζ ( b ) — χ ό 2 ~ X °1

It leads in (2.1a) to X = Y = a(τ) and yields the flat Friedmann model.
For /(x2) = sinhx2 the central extension of (2.5a) by (2.7), (2.8) leads

to the group G4 which contains subgroup G3 (with 2Xι, (X2 + ^3 + XO/2,
(X2 + X3 - X4)/2), which is simply transitive on 3-dimensional space
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x \ x 2 , x 3 and is of Bianchi type III with aa = -δa

u nab = δa

2δ
b

2 -δa

zδ\
in (2.3) [20].

In both cases (2.2b) and (2.2c) Lie algebras A4 of the groups G4 with
(2.8) do not allow a further extension to algebras A6, so (2.1a), (2.8) with
(2.2b) and (2.2c) can not be reduced by a further specialization to the
metrics of isotropic Friedmann models.

Consider non-central extensions of A3. For f(x2) = 1 there exists the
non-central extension of algebra A3 (2.4a) to A4 which is given by addition
the Killing vector

£}4) = δ[ + x2δ2 + x3<S3, X4 - ξ^δ/dx1. (2.9)

It leads to the group G4 [21] of the type G4V according to Petrov [2],
which contains the subgroup G3 of X 4,X 25^3 This subgroup is simply
transitive on 3-space x1, x2, x3 and is of Bianchi type V with aa — — <5J,
nab = 0 in (2.3). The extension (2.9) gives in (2.1a)

X = b(τ)9 Y(x\ τ) = exp(-x 1 ) α(τ); f(x2) = 1. (2.9a)

Algebra A4 (2.4a), (2.9) is extended to A6 by addition the Killing vectors

ξ{5) = 2x2δ\ + [(x2)2 - (x3)2 - expβx 1)] δ\ + 2x2x3(5 ι

3,M 5 ) •

q 6 ) = 2x3<5[+2x2x3,5'2 + [ - ( x 2 ) 2 + (x 3 ) 2 -<

and it leads to the open Friedmann model in (2.1a) with

χ = α(τ), Y = exp(-x 1 )α(τ) ; /(x 2 ) = 1. (2.10)

For /(x 2 ) = sinhx2 a non-central extension of A3 (2.5a) to A4 is
impossible. There exists the non-central extension of (2.5a) to A6 given
by addition y. Λ ? _. t ,

^t . u . ^ ^ _ tanhx
2 ci tanhx1 cosx3

si λ i 2 cί x i 1 λ i 2 ci t a n h x cosx CJς ( 5 ) = smx"3 sinhx^di — tanhx 1 smx 3 coshx2(52

 Γ1Γ~2 ^ 3 '
smn x

It leads to the open Friedmann model in (2.1a) with

X = a(τ\ Y-coshx 1 ^!); /(x2) = sinhx2. (2.11)

6

For /(x2) = sinx2 there exist non-central extensions of (2.6a) to A
which yield the Friedmann metrics in the flat, the open and the closed
models in a usual form [3] respectively with the values in (2.1a)

X = a(τ)9 Y=xίa(τ), sinhx1 α(τ), sinx^ίτ); /(x2) = sinx2. (2.12)

Formulae (2.12) are well-known while the expressions (2.10) and (2.11)
for the open Friedmann model are more unusual.
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Now consider Einstein's field equations (without /1-term)

R* - (jR/2)<5? = (8π/c/c4) T* (2.13)

for the metric (2.1), (2.1a) (the notations are those of [3]). In terms of

δ/δτ = '; d/dx1^'; hx=XjX, h2 = Ϋ/Y, λ1 = X'/X, λ2=Y'/Y , (2.14)

the non-zero components of (2.13) become

Rl-{R/2)

8πfc τ 0 (2.15a)

R2

2-(R/2) = Rl-(R/2)

— (^ + h2 + hf + h2 + hi h2) + -~γ ( — λ'2+ λγλ2 ~ λ\)
C JL

8 π / c τ 2 .

°; R°2=R°3=0. (2.15d)

c
2

? [ 2 ( i 2 ) 2 ] ΐi

c c

The non-zero components of Rucci 3-tensor in the space (2.1a) are

2

Weyl tensor for the metric (2.1), (2.1a) in a general case is of type D; in
special cases (2.10), (2.11), (2.12) it is reduced to zero.
In the cases when the signature of transitivity hypersurfaces V2 is
(H—), two forms for an interval are possible

ds2 = Y2(x2, x3) ί(dx0)2 - f2(x°) (ί/x1)2]

-X2(x2,x3){dx2)2-(dx3)2,

ds2 = Y2(x2, x3) [ / V ) (dx0)2 - (cix1)2]

- X 2 ( x 2 , x 3 ) ( d x 2 ) 2 - ( d x 3 ) 2

with the functions (2.2a), (2.2b), (2.2c) of the respective arguments.
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For / = 1 in (2.17a), (2.17b) the group G3 [2] is of type VI0 of Bianchi-
Behr classification with the values in (2.3) and with Killing vectors
given by

αα = 0, nah = δ\δ\-δa

2δ\\ ξ | 1 ) = δ{), ξ[2) = δ[, ξ{3) = x1 δ\> + x°δ[. (2.18)

In the case/(j;) = sinhy in (2.17a), (2.17b) G3 is of type VIII with (2.5) and
Killing vectors for (2.17a) are given by

>ΐ, &) = #, ξU^dξydx1. (2.19)

For f{y) = siny in (2.17a), (2.17b) G3 is also of type VIII and for (2.17a)

ξju = coshxMj, - sinhx1 cotx°<5j, ξ{2) = δ[, ξ\3) = dξydx1 . (2.20)

Killing vectors for (2.17b) are given by (2.19), (2.20) with the permutation
of x° with x1 and of ξ° with ξ\

The central extension of A3 for (2.17a), (2.17b) is given by addition
the Killing vector ξj4 ) - δι

2. It leads in (2.17a), (2.17b) to

X = X(x3l Y = Y(x3). (2.21)

Weyl tensor Ciklm for the metrics (2.17a), (2.17b) is also of type D
with the equal eigenvalues of COaOβ {COaβγ = 0) in the orthonormal
tetrad in x2, x 3 directions.

3. Gravitational Fields in a Model with Dust and a Magnetic Field

We shall consider solutions of the Einstein equations under assump-
tion that the energy-momentum tensor in (2.13) is the superposition of
that of dust-like matter and that of electromagnetic field:

Tϊ = (T*)1 + (7^)". (3.1)

The energy-momentum tensor for dust (pressure-free matter) is

(7?)1 = euiU\ u^ = 1, (3.2)

where u{ is the 4-velocity and e — ρc2 is the energy density of matter. The
invariance of the metric leads to the invariance of the 4-velocity in (2.13),
(3.2) under transformations of the groups G3 (2.4), (2.5), (2.6), so the
operator tfd/dx1 must commute with the generators of the groups. It
gives for (2.1), (2.1a)
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and in the case of the extensions with (2.8) and (2.9a)

M° = M°(T)> M1=w1(τ). (3.4)

The conservation laws are

(T?);k = 0. (3.5)

We shall assume for the electromagnetic field that the Lorentz 4-force is
reduced to zero i.e.

(Tffk = 0. (3.5a)

For dust Eqs. (3.5) in virtue of (3.5a) give the continuity equation

ui(Tl

k)\k = (euk);k = 0, (3.6)

and the equations of momentum

(Tl% = eu\ui);k = 0, (3.7)

which mean that the world lines of dust are geodesic.

Eq. (3.7) together with uιui;k = 0 lead to the equation for vorticity

uίωik = 0, ω i k = M i ; k-M k ; i 5

which is reduced under condition (3.3) to

ω.k = 0, a. = dφ(x°, x^/dx*.

Thus, in the case under consideration a motion of matter is irrotational.
On account of this the system of coordinates (2.1), (2.1a) can be trans-
formed into the synchronous and comoving system by means of the
transformation

(x0)' = φ(x°, x1), umd(xa)'/dxm = 0, α = 1, 2, 3 .

In such a system the geodesic lines τ are world lines of matter.
In the further consideration with groups G3 we imply that the system

(2.1), (2.1a) is co-moving, so in (3.3), (3.2)

u° = uo = l, uι=0; (Tϊ)ι = eδ°δk

o. (3.3a)

Electromagnetic field can be described in terms of space-like
4-vectors ti and eι which are defined through the electromagnetic field
tensor Fίk and the 4-velocity uι by [22,23]

K = ίE^uΨ", ek = uT ί f e j h% = e% = 0 ,

h% = - \ h \ \ Jet =-\e\2\ Fik = Uiek-uke{ -Eίklmuιh™ ,

where Eiklm = eiklm( — g)ί/2, eiklm is a skew pseudo-tensor with e0123 = 1.
The energy-momentum tensor of electromagnetic field is written in
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terms of h\ eι and uι by

(TIT =
1

~4π

1
ϊ) (\h\2 + \e\2)-hth

k-ete
k-utv

k-ukvt (3.8a)2

Vi = Eiklmekhιu"'.

Maxwell equations with aid of (3.8) are written

pi* = (uiek _ ukeί _ Eiklm

Uιhm\k = -4πf/c . (3.10)

The invariance of the metric (2.1), (2.1a) under the groups of motions
G3 leads to the invariance of the vectors hι and e{ in (3.8a) under these
groups. It yields similarly to (3.3)

In the case of the co-moving system (2.1), (2.1a) with (3.3a) the ortho-
gonality conditions (3.8) lead to

ft'^V. Oδί, ei = e1{x\τ)δ\. (3.11)

Consideration of Fik with (3.11) in an orthonormal frame yields

\h\2 = X2{h1)2 = ί ί 2 , \e\2 = X V ) 2 = E2 .

It shows that in the co-moving system (2.1), (2.1a) there exist the collinear
magnetic and electric fields, which are directed along x1 and have
intensities H and E.

Maxwell equations (3.10) show that the 4-current / is equal to zero
in accordance with (3.5a) whereas (3.9) for (3.11) gives

hi K* ex K2

~^ = H = -γτ> Ύ^E^~Y2' Ki= const,
(3.12)

K
K2 = const; eι = — - \ΐ .

Non-zero components of (3.8a) in virtue of (3.12) are given by

\1o) — K 1 ! ) — \ λ 2 ) — I J 3 ) — yy — — , — o T Λ 4 .
Ύπ 8^Γ 4 ? (3.12a)

K2 = K2 + K2

2 = const .

In the case of the central extension of A 3 to Λ4 with (2.8) the Eq. (2.15d)
yields JR01 = 0. It shows due to (3.8a), (3.2) that in this case also uι = 0,
so (3.3a) and (3.12), (3.12a) with H = H(τ), E = £(τ) remain valid.
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For the metric (2.1), (2.1a) with (3.3a) one obtains

cu\k = h^lδl + h2{δ2δ
2

k + <5l3<5fe),

so a motion of matter is described by expansion with the scalar
Θ = (hx+ 2h2)/3 and by shear for hx + h2 while rotation is absent.

Now consider the integration of the Einstein gravitational equations
(2.15), (3.1) in the co-moving synchronous system (2.1), (2.1a) for dust with
(3.3a) and electromagnetic field with (3.12), (3.12a). The case when both
a magnetic and an electric field are present and the case when only a
magnetic field is present are distinguished in (3.12a) merely by the value
of a constant K. For the sake of simplicity we shall speak only of the
presence of a magnetic field, which is physically reasonable for many
problems.

The continuity Eq. (3.6) gives

e=Ψ(x1)/XY2. (3.13)

In the case
λ2 = 0, Y=Y(τ), (3.14)

the Eq. (2.15d) (with T? = 0) is satisfied identically. In this case Eqs (2.15a)
and (2.15c) with (3.12a) lead to the relation X = φ^x1) X{τ) which can be
written with the aid of possible transformations of x1 in the form

X = X(τ). (3.14a)

Thus, λ2 — 0 corresponds to the group G4 with (2.7). The result of the
integration of the Einstein field equations for dust and a magnetic field
under conditions (3.14), (3.14a) is given in [7] (also [6,18]). It must be
pointed out that this solution becomes isotropic asymptotically as
|τ|—>oo only for the value f(x2) = 1, this being in agreement with the
possibility in this case of the extension of Λ^ to A6, which corresponds
to the flat Friedmann model. The solution of the Einstein equations for
(3.14), (3.14a) in the case when only matter is present is considered in
[12,13,24].

The condition λ2 + 0 corresponds to a group G3 for (2.1), (2.1a) (and
to the non-central extensions). In this case Eq. (2.15d) gives

X = ψ{x1)Yf. (3.15)

We shall use an arbitrary function φ{xι) defined by

l/ψ2(x1)=±a2 + φ(x1)9 (3.15a)

where T α 2 - d2f(x2)/f{dx2)2 (3.16)

with the functions (2.2a), (2.2b), (2.2c), so a2 = 0 for (2.2a), α2 = 1 with the
lower sign for (2.2b) and α2 = 1 with the upper sign for (2.2c). Eqs. (3.15a)
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and (3.16) lead to the inequalities

/(χ 2 ) = l : φ ( x 1 ) > 0 , (3.17a)

/(x 2) = sinhx2: φ(x1)>l, (3.17b)

/(x 2) = sinx2: φ(x1) + l > 0 . (3.17c)

Eq. (3.15) by virtue of (3.15a) becomes

χ=± Y'/lφix1) ± α 2] 1 / 2 . (3.15b)

The combination R\ — R\ of the Einstein equations is reduced (for
T? = 0) due to (2.15c) and (2.15b) to the relation

which is the component of the conservation laws (3.5) with i = 1 and is
satisfied by (3.3a), (3.13) and (3.12a). The combination (JRg-jR})/^
+ 2(RQ — Rl)h2 of the Einstein equations is reduced (for I f = 0) to the
relation

which is the component of (3.5) with ί = 0 and is also satisfied by (3.3a),
(3.13) and (3.12a).

The Eq. (2.15b) together with (3.15b), (3.3a) and (3.12a) yields after
the first integration

— Ϋ2 = ψix1) - —T- + - 4 r Λ # 2 = —4~ = c o n s t > (3.18)

with an arbitrary function ^ ( x 1 ) . The further integration of (3.18)
depends upon the sign of function φix1).

In the cases f(x2) = 1 and f(x2) = sinhx2 with the conditions (3.17a)
and (3.17b) the result of the integration of (3.18) can be given in a para-
metric form with a parameter η which depends upon τ and x 1:

cτ = cτo(x1) + F(xι) {± [1 + ΰ 2 χ(x 1 ) ] 1 / 2 sinh*/ - η},

Y = [^(x1)]1/2 Fix1) {± [1 + B2χ(xι)f12 cosh?/ - 1}, (3.19)

Fix1) = Ft i

where τo(x1) is an arbitrary function. Two signs in (3.19) corresponds to
two types of the solutions [7,13]. Formulae (3.19) give

Y - 2 φ Y 2 ψ F 2(l+B>χ)+ Y

• {F'[B2χ + (1 + B2χ)112 η siting] + (1 + B2χf/2 cτ'osinhη

+ FB*χ'χl2(l + B2χ)y1}. (3.19a)

3 Commun math Phys , Vol 26
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For X the formulae (3.15b) and (3.19a) are valid with the values (3.16),
(3.17a) and (3.17b). The substitution of (3.19), (3.15b) into the equation
RQ — (R/2) gives the expression for e (3.13) in the form

4πkY2T \2 φ F) " %πk Y2T ' [ }

(3.19), (3.15b), (3.19a), (3.20) and (3.12) give the complete solution for the
values (2.2a) and (2.2b) in (2.1), (2.1a). The presence of a magnetic field
manifests itself in a nonzero value of a constant B. The solution contains
arbitrary functions τo(x1), Fix1) and also φix1) with the conditions
(3.17a), (3.17b).

In the case f(x2) = sinx2 a function φ{xι) in (3.18) may be positive,
zero or negative. For φ{x1)>0 Eqs.(3.19), (3.19a) and (3.15b), (3.20)
remain valid with (3.16), (3.15b). For values of φix1) in (3.17c) in the
interval

-l<φ{xι)<0 (3.21)

the result of the integration of (3.18) is given in a parametric form

cτ = CToix1) + Fix1) {η-\Λ~ B2χ(x1)f12 sin*?} ,

Y = Fix1) Iφix'f12 {1 - [1 - B2χix1)']112 cosη} , (3.22)

Fix1) = F^yil-φix1)]312, χix1) = 1/FV) φ2tf),

with an arbitrary function toίx1). Formulae (3.22) give

k) (3.22a)
{F'[B2χ + (1 - B2χ)ll2η sin^] + (1 - B2χ)1/2cτ'o sin/7

X is given by (3.15b) with the values (3.16), (3.21) and with (3.22a). For e in
the case (3.21) the formula (3.20) remains valid. In virtue of (3.22), (3.22a)
an arbitrary function χix1) for (3.21) must satisfy the inequality
χix^^l/B2, i.e. F2φ2^B2.

Finally, in the case fix2) — sinx2 for

φix1) - 0 (3.23)

the result of the integration of (3.18) is given by

cτ = cτoίx1) + J - Fι (x1) A3 + — ^ B2λ,
1 (3.24)
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Eqs. (3.24) and (3.15b), (3.16), (3.23) give also

X=±Y\

i A R2\ D4 _̂ I 2ρ p'T1 (χ^λ f3 24a)

F[
e = 8π/c Y2Y'

The energy density of a magnetic field W is given by (3.12a). If a
magnetic field is present (#φθ), then in all possible cases due to (3.19),
(3.22) and (3.24) a value of Y never is reduced to zero. So W remains
finite for all moments of time. The moment τ* when X becomes zero,
being obtained from (3.15b), (3.19a), (3.22a) and (3.24a), corresponds due
to (3.20), (3.15b) to a singularity with e = oo. In a general case of a metric
(2.1a) with groups G3 a singular state is achieved for various points x1 at
various moments τ*. Near a singular state η = ^ (x 1 ) , τ = τ^x 1 ) the
dependence of X and Y upon τ has a structure

X = [ τ - τ * ^ 1 ) ] F2{x1l Y = Y^x1) + (τ - τ*) F3(x1).

For f(x2) = sinx2 and (3.21) the dependence of Y upon τ due to (3.22)
has an oscillating character with a limited amplitude, while an amplitude
of an oscillating function X of τ increases with increasing time. In the
cases f(x2) = sinhx2 and f(x2) = 1 and also in the case f(x2) = sinx2

with φ ^ 0 values of X and Y approach infinity asymptotically as |τ| —> oo
in the following way

φ > 0 : 7 ^ [ φ ( x 1 ) ] 1 / 2 c τ , X « Yφ'βφ(φ ± α 2 ) 1 / 2 , (3.25)

φ = 0: 7 « (9FX/4)1/3 (cτ)2 / 3, X % ± YF[βFι. (3.26)

The non-central extensions of algebras A3 of the groups G3 keep the
condition λ2 Φ 0. The noncentral extension of ,43 to AA for /(x2) = 1 with
the metric (2.9a) corresponds to a homogeneous axially symmetric model
with a co-moving 3-space of constant negative curvature in accordance
with (2.16). For such a metric an energy density of a magnetic field in
virtue of (2.15b) would depend only upon τ in the contradiction with
(3.12a) and (2.9a). Thus, such a non-central extension becomes impossible
when a magnetic field is present *. If only matter is present (B = 0), such
an extension is possible, and in this case in the system with (2.9a) one
obtains that # i φ θ and M1(τ)Φθ in (3.4). The integration becomes
possible after a transformation from (2.9a) into a synchronous and
co-moving system with a metric (2.1), (2.1a) [21], and the result is given by

1 The fact that homogeneous Bianchi type V space-times cannot admit a magnetic
field is shown in [25].
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(3.19), (3.19a), (3.15b), (3.20) with the values of functions

1) = exp( — 2X1), F = const, τo(x1) = Kox
1 + const, Ko = const; B = 0.

In the case when only matter is present (B — 0) the further extensions
to G6, which lead to Friedmann models, are possible with a certain
choice of arbitrary functions in the solutions. For (2.2a) one obtains
from (3.19), (3.19a) the open Friedmann model with (2.10) for F = const,
τ 0 = const and

/(x 2) = l :φ(x 1 ) = exp(-2x 1 ) . (3.27)

For (2.2b) one obtains in (3.19) the open Friedmann model with (2.11)
for F = const, τ 0 = const and

f{x2) = sinhx2: φ(xx) = c o s h V . (3.28)

For (2.2c) one comes in (3.19) to the open Friedmann model if F = const,
τ 0 = const and

f{x2) = sinx2: φix1) = s i n h V , (3.29)

obtains the flat Friedmann model in (3.24) if τ 0 = const and

fix2) = sinx2: φix1) = 0, F1 (x1) - const^x1)3 , (3.30)

and has in (3.22) the closed Friedmann model if φix1) = — sin2x1,
F = const, τ 0 = const.

In the case when matter and a magnetic field are present for the
groups G3 the choice of arbitrary functions in the solutions with ^(x1) ^ 0
is possible for which the solutions become asymptotically isotropic as
|τ —>αo.

For φ > 0 according to (3.25) such solutions, which approach the
open Friedmann model as |τ| —>oo, are given by (3.19), (3.19a) with the
functions φix1) which are chosen due to formulae (3.27), (3.28), (3.29) and
with arbitrary functions ^ ( x 1 ) and τ^x1).

For φ = 0 according to (3.26) the formulae (3.24), (3.24a) give solutions
which approach with |τ|—»oo the flat Friedmann model for Fι(x1) being
chosen due to (3.30) and for an arbitrary τo(x1).

In the case when the signature of V2 is (H—) and a metric has a form
(2.17a), (2.17b), the construction of gravitational fields with matter
becomes impossible since the invariance of the 4-velocity with respect
to the transformations with (2.18)—(2.21) would lead to a physically
senseless condition of vanishing of zero component of the 4-velocity.
Nevertheless, in this case gravitational fields may be considered the
sources of which are collinear magnetic and electric fields directed along
x1 with the energy-momentum tensor given by (3.12a). Calculations
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similar to the previous give for the metric (2.17a)

X = ± [ + α2 - φ(x2)Y1/2δY/dx2, + α2 = d2f{x°)/f(dx0)2 ,

and for the metric (2.17b)

X=±l + ot2 + φ(x2)T1/2δY/dx2, Toe2 = d2f{xί)/f(dx1)2 ,

with an arbitrary function φ(x2), which obeys corresponding inequalities.
In both cases (2.17a) (2.17b) the expressions for Fare given by (A = const)

φ>0: x3 = Φ(x2) + [φ(x2)T312 [±(Ά2 + B2φ)1/2 sinhη -

φ < 0: x 3 = Φ(x2) + |φ(x 2 ) |" 3 / 2 [ ^ - (^2 - B2φ)1/2 sin??] ,

y = ^ ( x 2 ) ! " 1 [A - {A2 - B2φ)112 cos??]

2 λ(A2λ2 + 3B2) A2λ2Λ-B2 λAΦ\x2)

φ _ U . x -Φ(x)+ — , ϊ- — , Λ-+ γ ,

where Φ(x2) is an arbitrary function.
In the case of the group G4 with (2.17a), (2.17b), (2.21) the solution

for / = 1 is given by [7]

x 3 - η(A2η2 + 3B2)/6A, X = constη/Y. (3.31)

For/(x°) = sinhx0 in (2.17a), (2.21) and for/(x1) = sinx1 in (2.17b), (2.21)
the solution is

Y = ± {A2 + 5 2 ) 1 / 2 cosh?7 -A, x3 = ± (A2 + £ 2 ) 1 / 2 sinh^ - Aη ,

X = const sinh?7/y.

For /(x°) = sinx° in (2.17a), (2.21) and for / ( x 1 ) ^ sinhx1 in (2.17b),
(2.21) the solution is given by

Y = A-(A2- B2)112 cosη, x3 = Aη - {A2 - B2)1'2 sinf;,
; / v /, ( 3 3 2 )

X = const sinη/Y.
For the metric (2.17b) one thus obtains the static solutions for

magneto-gravitational configurations. In this case formulae (3.31) and
(3.32) with A — B are reduced to previously studied solutions [26, 27].
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