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Abstract. We investigate the general monomer-dimer partition function, P(x), which is
a polynomial in the monomer activity, x, with coefficients depending on the dimer activities.
Our main result is that P(χ) has its zeros on the imaginary axis when the dimer activities are
nonnegative. Therefore, no monomer-dimer system can have a phase transition as a
function of monomer density except, possibly, when the monomer density is minimal
(i.e. x = 0). Elaborating on this theme we prove the existence and analyticity of correlation
functions (away from x = 0) in the thermodynamic limit. Among other things we obtain
bounds on the compressibility and derive a new variable in which to make an expansion
of the free energy that converges down to the minimal monomer density. We also relate
the monomer-dimer problem to the Heisenberg and Ising models of a magnet and derive
Christoffell-Darboux formulas for the monomer-dimer and Ising model partition functions.
This casts the Ising model in a new light and provides an alternative proof of the Lee-Yang
circle theorem. We also derive joint complex analyticity domains in the monomer and dimer
activities. Our considerations are independent of geometry and hence are valid for any
dimensionality.

I. Introduction

A monomer-dimer system is specified by a graph, G (also called a
lattice in the physics literature), together with a family of weights (or
Boltzmann factors) assigned to the edges of G. The precise definition of
a weighted graph is given in Section II, but for the present we shall assume
the reader is familiar with the concept. Dimers can be placed on the edges
of G so that no vertex has more than one dimer. Uncovered vertices are
called monomers and have a fugacity which we call x. One can also define
related problems, such as the monomer-trimer problem, and although
the history of these various problems are intertwined we shall consider
only the monomer-dimer problem in this paper.

We shall answer the question whether, as the monomer concentration
is varied, a phase transition can occur for an infinite system. Our answer,
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which is independent of the geometry of the graph, is that the only place
a singularity can possibly occur is at minimum monomer density (which
is zero for lattices normally considered).

Although this paper is mathematical in nature and is not a survey
paper, it might be useful to begin with a brief historical sketch (with no
pretense of completeness, and therefore with apologies to the authors we
have unintentionally omitted) to show how monomer-dimer systems are
related to chemistry and physics.

The problem of placing nonoverlapping dimers on a lattice goes back
at least to 1935 when Roberts [1] considered the problem of absorption
of oxygen and hydrogen on a tungsten surface. His assumptions were
based on kinetic considerations: If oxygen molecules are absorbed on the
surface in a single layer with the two oxygen atoms of a molecule covering
two neighboring tungsten atoms, how does the chance of finding two
neighboring tungsten atoms both unoccupied depend on the density
of absorbed oxygen and what is the average maximum density? Roberts
attacked the problem by a straightforward Monte Carlo calculation
[1—3] and later theoretically by applying the Bethe approximation [4].
More extensive Monte Carlo calculations were undertaken after the
appearance of high speed computers [5, 6], and the problem has been
given rigorous mathematical treatment in one dimension by McQuistan
[7-10]. It should be noted that since it is assumed that molecules once
absorbed do not move or leave the surface, then the statistics of this
problem differs from the statistics of the ordinary, equilibrium monomer-
dimer problem treated in the present paper and we shall deal no further
with it. It is a pecularity of the Bethe approximation that the two problems
are equivalent in first order.

The earliest treatment of the equilibrium monomer-dimer problem
is due to Fowler and Rushbrooke [11], who took up the problem to
settle a question raised earlier in 1937 by Guggenheim [12], namely
whether deviations in the properties of a binary mixture from those of an
ideal mixture could be caused solely by a difference in size of the two
components. The Fowler-Rushbrooke paper discusses approximations
valid at low dimer density and treats the pure dimer covering (i.e., no
monomers) problem by finding eigenvalues for the transfer matrix for
narrow strips.

The monomer-dimer problem was soon attacked in the Bethe
approximation or random mixing approximation [4,13—17], in which
cases it is easy to include an interaction between neighboring vertices
both of which are occupied by dimers. Almost simultaneously, the more
general problem of monomer-polymer mixtures was attacked in the
same approximations [18,19, 21, 22] and in the slightly cruder approxi-
mations of the Flory-Huggins theory [23]. A description of these methods
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and the results can be found in Guggenheim's book on mixtures [24].
Rushbrooke et al. [25] attacked the monomer-polymer problem by
series expansions valid at low polymer density.

Newer and more accurate results on the monomer-dimer problem
have been obtained by series expansions valid at low dimer density
[26-29] (the results of our paper show that the choice of expansion
parameter in [27] actually makes the expansion valid at all dimer densi-
ties which are lower than the density of the pure dimer covering; for a
proof of this fact see Chapter IX). Other results have been obtained by
finding the largest eigenvalue of the transfer matrix either numerically
for narrow strips [30] or by a variational procedure [31]. A numerical
comparison of the entropy of mixing as calculated from the different
approximations can be found in [32]. Monte Carlo calculations have
also been performed [33].

The application of monomer-dimer systems as models for real,
physical systems is rather limited. Fair agreement has been obtained for
binary mixtures like benzene-diphenyl [34-36], benzene-diphenyl-
methane [35] and benzene-dibenzyl [35]. Mixtures like hexane-cetane
[37], do not fit the model because of the flexibility of the "monomer"
(hexane) [38]. Other possibilities are mixtures of monovalent and divalent
ions two examples are absorption of sodium and cupri-ions on a sterate
film on water [13] and melted Li2O-NiO mixtures [39]. The monomer-
dimer theory has also found application in the cell-cluster theory [40]
and in improvements of the Debye-Hϋckel theory when some of the ions
are large [41].

The first rigorous results on the monomer-dimer problem were
mostly of a negative nature [42,43], and the earliest breakthrough came
in the related dimer-covering problem (i.e., zero monomer density). The
theory of this problem received a great impetus when the exact solution
for planar lattices was discovered by Kasteleyn, Temperley and Fisher
in 1961 [44-46]. We shall only mention the dimer-covering problem
briefly in this paper, primarily because the nature of the pure dimer
problem is dependent on the geometry of the lattice, while our main
concern is with results independent of the structure of the lattice part
of the succeeding development of the dimer covering problem can be
found in references [47-53].

The solution of the planar dimer-covering problem made it possible
to calculate the monomer-monomer correlation function in the case of
only two monomers [54, 55], Other rigorous results on the monomer-
dimer problems are lower bounds on the free energy obtained by Bondy
and Welsh [56] and Hammersley and Menon [57, 58], and Hammersley's
proof [59] of the existence of the thermodynamic limit in the sense of
Van Hove for simple cubic lattices of arbitrary dimension.
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Apart from the numerical computation of the monomer-dimer
partition function for specific simple lattices, the central theoretical
question to be answered is this: can a monomer-dimer system have a
phase transition? The numerical work previously cited had led to the
conjecture that a monomer-dimer phase transition did not occur on
simple lattices but a proof was lacking. (It is worth pointing out that
similar conclusions were also drawn about monomer-trimer systems, but
we now have an example of a special monomer-trimer system that can be
proved to have a phase transition [60].) It is the purpose of this paper
to prove that a phase transition cannot occur for any lattice and, since
our results are quite general, no mention is made of lattice geometry
except insofar as it is necessary to prove the existence of the thermo-
dynamic limit (Section VIII). (Our method of proof is different from
Hammersley's [59].) In Section II we give the basic definitions and in
Section III evaluate the monomer-dimer partition function for some
simple lattices by way of illustration. In Section IV we give our main
results on the zeros of the monomer-dimer partition function, when
considered as a polynomial in x, for positive edge weights. The zeros lie
on the imaginary axis. This result can be generalized to non-positive
(complex) edge weights (Theorem 4.9). One practical consequence of
locating the zeros is that by changing the variable from x to some simple
function of x one can make a Taylor expansion of the free energy for all
non-zero monomer densities and hence can undertake numerical
calculations with greater confidence than before, including bounds on
the error. This is shown in Section IX.

Section V relates the monomer-dimer problem to various magnetic
systems and Section VI gives Christoffel-Darboux formulas for the
monomer-dimer and magnetic system partition functions. In Section VII
we use our knowledge of the location of the zeros to give bounds on the
compressibility and show that these are stronger than the bounds derived
using Ginibre's general method. In Section IX we prove the existence and
analyticity of correlation functions and of the free energy.

A preliminary report of this work was given in Heilmann and
Lieb [61]. Shortly thereafter Kunz [62] and Gruber and Kunz [63], in
their work on the general monomer-polymer problem, announced
several of the same theorems, notably the one on the location of the zeros.

To conclude this introduction we wish to draw attention to the fact
that our monomer-dimer result is related to another problem in statistical
mechanics - the nearest neighbor exclusion (or hard core lattice gas)
model. Suppose that G is an unweighted graph on whose vertices
particles may be placed provided no edge has particles at both of its
terminal vertices. We might expect a phase transition to occur as the
particle density is varied. Indeed, Dobrushin [64] has shown this to be
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the case for the square and cubic lattice and Heilmann [60] has extended
this conclusion to the planar triangular and face centered cubic lattices.
If, however, G is the line graph of a graph G* (i.e., the vertices of G are
the edges of G* and two vertices of G are connected if the corresponding
edges of G* have a common vertex) then the exclusion problem on G is
the same as the monomer-dimer problem (with unit edge weights) on G*.
Hence the exclusion problem on G has no phase transition. An example
of this is the Kagome lattice which is the line graph of the planar hexa-
gonal lattice.

II. Basic Definitions

The notation and terminology used in this paper will differ in certain
respects from those employed in the previous paper [61], partly to make
the notation more convenient and partly to bring the terminology into
closer agreement with what is generally accepted.

Graphs. The basic terminology for unweighted graphs will be that
suggested by Essam and Fisher [65] and we shall not repeat their
definitions. Unfortunately, they did not suggest any terminology for
weighted graphs: If G is a graph then we shall associate a complex number,
W(iJ\ called an edge weight, with each unordered pair of vertices, [i,/],
in G. Unless otherwise stated, W(iJ) will be assumed non-negative for
all pairs, [i,j], and positive if there is an edge connecting i and j. We
shall further associate a complex number, xt (called a vertex weight),
with each vertex in G. We shall use N(G) (or just N if no ambiguity is
caused) for the number of vertices in G. We shall write G — G' for the
section graph of G which is obtained by deleting the vertices in the sub-
graph, G'. If G' consists only of the i'th vertex we shall write G — i.

Definition 2.1. A graph is said to be Hamiltonian if it contains a
Hamilton walk. i.e. if it is possible to number the vertices in the graph
such that

^(1,2)1^(2,3)... J^(N-1,ΛOΦO. (2.1)

Dimers. A aimer is a molecule which can be placed on the graph, G,
such that it covers an edge and the two vertices on which the edge is
incident. We shall use <z,j> for the dimer which covers vertices i and j.
A dimer arrangement, D, is a set of dimers placed on G such that no vertex
is covered by more than one dimer. The set of vertices of G covered by the
dimers in D will be denoted by [D]. The set of all dimer arrangements
will be denoted by Q). A dimer arrangement which covers all vertices in
G is called a dimer covering.

Canonical Weights. For a dimer arrangement, D, the canonical weight,
W(D), is given by

). (2.2)
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The d-dimer partition function (or weight) of all dimers arrangements
with d dimers is

zd= Σ W(D^ (2 3)
De^
#D = d

where φD is the number of dimers in D.
If we denote the largest integer in N/2 by M, i.e.

M - [N/2] , (2.4)

then we can define the generating function for Zd:

M

P(G;x)= Σ ZX-". (2.5a)
d = 0

Obviously P(G; x) is a polynomial in x of degree N and will be called
simply the partition function (of the weighted graph G). It will prove
convenient to define P(G; x) for a graph having no vertices by

P(0;x) = l . (2.5b)

Remark. If PΓ(i, j) is written as

M ), (2-6)

then Zd can be interpreted as the canonical partition function for d
dimers on the graph, G, if Jtj is the energy gained by placing a dimer on
the two vertices i and j. Furthermore, if x is taken to be the activity of a
monomer, and if it is supposed that all vertices not covered by a dimer
contain a monomer, then P(G x) is the grand canonical partition
function for the distribution of monomers and dimers on G. Alternatively,
P(G; 1) can be considered to be the grand canonical partition function
for the distribution of hard dimers on G; this analogy is particularly
useful since much of the standard theory of statistical mechanics applies
directly to this case.

Further polynomials: Besides P(G; x) we shall also need two related
polynomials, Q(G\ x) and R(G; x):

β(G;x) = Γ"P(G;ix), (2.7)

/i)/^, IV odd.

A Generating Function in N Variables. Finally we shall need a more
general form of P(G; x) which includes the vertex weights:

X W(D) Π *i > (2 9)
D e 2 ί e G - [D]
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where the sum runs over all dimer arrangements on G and the product
runs over all vertices of G which are not in [D].

One can easily derive the following relation:

/ N \
P(G; m,x, m2x, ...9mNx) = Π mi] W; x), (2.10)

\i = l /

where the graph G' differs from G only in the edge weights which are
related by:

mimjW'(ι9j)=W(i9j). (2.11)

In particular one has
P(G x, x,..., x) = P(G x). (2.12)

An important property of P ( G ; x l 5 . . . , XN) is that it is linear in each
variable, i.e. considered as a function of xj it is a polynomial of degree one.

III. Examples of Partition Functions

In this section we shall give closed form expressions for β(G, x) for
some simple graphs. Most of these results are well known and, as the
purpose of this section is primarily that of illustration, it may be omitted
without any loss of continuity.

Example 1. The Linear Chain. In this case the weights are given by

W(i,j) = l, if i-j =1
. (3.1)

= 0, otherwise.

If we define L(N) to be the linear chain with N vertices and edge weights
as given by (3.1), one has the following recursion formula for N^2:

Q(L(N); x) = xQ(L(N - 1); x) - Q(L(N - 2); x), (3.2)

where the first term of the right hand side corresponds to a monomer at
the ΛPth vertex and the second term corresponds to a dimer covering the
vertices N and N — 1. Since one has

Q(L(0);x) = l, β(L(l);x) = x, (3.3)

one easily find that

Q(L(N);x)=UN&x)9 (3.4)

where Un(x) is the Chebyshev polynomial of the second kind of degree
n which is defined by

t7B(x) = sin((π + l)θ)/sinθ, (3.5)

cosθ = x . (3.6)
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It is easily seen that the zeros of Q(L(N);x) are real and lie in the
interval |x| < 2. Consequently the zeros of P(L(JV); x) are pure imaginary
and are limited by |Im(x)| < 2. It should be noted that this bound on the
roots is the best possible bound that is independent of N.

Example 2. The Polygon. In this case the weights are given by

1 If J''-^1 °r (U) = ( 1 'W )> (3.7)
0 otherwise. v '

If we use P(N) for the polygon with N vertices and all edge weights equal
to one we have the following formula for N ^ 2:

Q(P(AO; x) = xQ(L(N -1); x) - 2Q(L(N - 2); x), (3.8)

where the first term of the right hand side corresponds to a monomer on
the JV'th vertex and the second term corresponds to a dimer which
includes the JV'th vertex (and which can be either <JV — 1, JV> or <1, JV».
Using Eq. (3.4) one finds

(3.9)

where Tn(x) is the Chebyshev polynomial of the first kind of degree n,

defined by :
Tn(x) = cos(nθ) ,

" ) V 7 (3.10)
— x .

It is easily seen that the zeros have the same properties and the same
bounds as those given for the linear chain.

Examples. The Complete Graph. In this case the edge weights are

giVeΠby Hf(U) = l, all ft j). (3.11)

If we use K(N) for the complete graph with N vertices and edge weights
equal to one we have the following recursion formula for N ^ 2:

Q(K(N)ι x) = xQ(K(N - 1); x) - (N - 1) Q(K(N - 2); x) , (3.12)

where again the first term of the right hand side corresponds to a monomer
on the JV'th vertex and the second term corresponds to a dimer including
the JV'th vertex. Since one has

Q(K(0);x) = l, β(K(l);x) = x, (3.13)
it follows that

) = HeN(x), (3.14)

where Hen(x) is the Hermite polynomial of degree n defined by

Hen(x) = (^ί)neχ2f2-Γe-χ2ί2. (3.15)
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If one renormalizes the edge weights to

W'(i,j) = (N-lΓί, (N^2)9 (3.16)

then one gets, with K'(N) for the complete graph with edge weights
normalized according to (3.16):

Q(K'(N} x) = (N- 1)'N/2 HeN(x]/N - 1) . (3.17)

As before one finds that the zeros of Q(K'(N); x) are real and the best N
independent bound is x <2 [66].

Example 4. The Bethe Graph. We shall define the rooted Bethe graph
of degree d and order n, B(d, n\ as follows: B(d, 1) consists of a single
vertex called the root; B(d, h) consists of a vertex called the root, which is
connected by edges to the roots of d — 1 graphs B(d, n — 1). With edge
weights equal to one on all edges, one finds in the usual manner for n Ξ> 2
that

Q(B(d, n); x) = x[β(B(d, n - 1); x)]--1

' - d - 2 ( '

Defining the quantity Qn(x) for n ̂  2 by

fin(x) = Q(B(d, n); x) Π Q(B(d, 0; x) , (3.19)

one gets for n ̂  3

-2W, (3.20)
with

Qi W - x, 62 W = -^2 - (d - 1) - (3.21)

Therefore, βπ(x) is a polynomial and, by comparison with (3.2) and (3.4),

ρπ(x) = (d-l)"/2 C/B(ίx(d-lΓ*), (3.22)

where Un(x) is again the Chebyshev polynomial defined in Eq. (3.5). The
inversion of (3.19) is given by

Q(B(d,n);x) = Qn(x) "ff ^(x)^-2^-^-1^ , (3.23a)
7 = 1

for n>l , while

6W,l);x) = 61 (*) = *. (3-23b)

The (n independent) bound on the zeros of Q ( B ( d 9 n ) ; x ) is seen to be
x <2]/d-L
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IV. Location of Zeros of Monomer Dimer Partition Functions

All the proofs in this section will be based on the two-step recurrence
relation satisfied by the monomer-dimer polynomials. For P(G x) it
reads (with i being any vertex in G):

P(G;x) = xP(G-/;x) + £ W(iJ)P(G-i-j 9 x ) . (4.1)
J e G - i

The same is true for β(G; x) if the plus sign is replaced by a minus sign.
The first term on the right is the contribution of a monomer placed on the
z'th vertex, while the summation over j gives the contribution of all the
ways of placing a dimer at i. Obviously, if x is a zero of P(G; x) then ix
is a zero of β(G; x) and conversely.

Lemma 4.1. // G is a complete graph (i.e. W(iJ) > 0 for all pairs [ίj'])
then the zeros of Q(G; x) are all real. Furthermore, if i is any vertex in G
then the zeros of Q(G x), <21? α 2 ? •••?%> and the zeros of β(G — z, x),
αί,α'2, . . . j f l t f - ! obey a strict interlacing relation:

aί <a( <a2<a'2 < - <a'N-ι <% (4-2)

Proof. If G is the empty graph and if G contains only one vertex the
lemma is trivially true. The lemma can then be proved for N larger than
one by induction, assuming that the lemma holds for all complete
graphs, G7, with ΛΓ(G') :g N — 1. For β(G; x) the recurrence relation (4.1)
takes the form

) = xβ(G-i;x)- £ W(iJ)Q(G-i-j;x) . (4.3)

Here β(G — i; x) is polynomial of degree N — 1 and the sum-polynomial

Σ W(i,j)Q(G-i-j 9 x ) 9 (4.4)
je G — i

is polynomial of degree N — 2. From the induction assumption it follows
that the zeros of β(G — i — j; x) interlace the zeros of Q(G — i; x) for all
j e G — L Since W(ί,j) is positive for all j e G — i then the zeros of the sum-
polynomial (4.4) will also interlace the zeros of β(G — z, x). Now, con-
sidering the sign of the right-hand side of (4.3) as x takes the values of
the zeros of β(G — i; x) together with the sign as x approaches + oo and
— oo (see Fig. 1), one easily concludes that β(G; x) has N real zeros which

+ - + - + - + sign of Q(G; x)

zeros of Q(G-r, x)

+ 00 zeros of sum p o l . (4.4)

Fig. 1.
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satisfy (4.2). Since β(G; x) is a polynomial of degree N it does not have
any other zeros.

By a continuity argument one can easily extend the lemma to include
the case where some edge weights are zero and obtain the following
theorem.

Theorem 4.2. For any weighted graph, G, β(G; x) has only real zeros.
Further, if i is any vertex in G and if a1,a2>..., % are the zeros of β(G; x)
while the zeros of Q(G — i x) are a(,a'2, . . . 5 0#_ l 5 then

βί ^a[^a2^a2 = ••• ^ a'N_^ ^ % . (4.5)

Remark 4.1. Theorem 4.2 does, of course, imply that the zeros of
P(G x) are purely imaginary.

Remark 4.2. One might be interested in knowing when the inequalities
in (4.5) will all be strict, especially since strict interlacing implies distinct
zeros. Example 4 in Section III shows that connectedness is not sufficient
to ensure distinct zeros. One can also construct counterexamples to the
conjecture that the absence of articulation points would be sufficient
to ensure distinct zeros (see Fig. 2). Instead we propose the following
amendment which, although it does not exhaust all the possibilities,
covers most cases of interest.

(α) (b)

Fig. 2.

Amendment to Theorem 4.2. // G has a Hamilton walk which ends
at the f t h vertex then all the inequalities in (4.5) are strict.

Proof. As for Lemma 4.1, the proof inductively uses the recurrence
relation (4.3). The important thing to notice is that if G — i contains at
least one vertex, fe, such that W(i,k)>Q and such that the zeros of
<2(G — ί; x) and Q(G — i — k; x) obey the strict interlacing property, then
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the zeros of Q(G — ί x) and the sum-polynomial (4.4) will also obey the
strict interlacing property. Consequently the strict interlacing property
is retained along the Hamilton Walk.

Definition 4.1. For any graph, G, and any vertex,), in G we define the
vertex sum Wj by

Wj= Σ W(^ J) ~ min { w(l> Λ : l e G> w(l> Λ > °) - (4 6)
ieG-j

We further define the numbers Bl , B( and B'[ by

.:7-6G}, (4.7)

B'[ =imax{^(i,j); i e GJe G} (4.8)
and

#! = max {JBΊ,^'}. (4.9)

Theorem 4.3. The (real) zeros of Q(G; x), α l 9 <32, ..., %, satisfy

\ai\<2\/Bί, alii. (4.10)

Proof. If G does not have a component which contains only two
vertices then clearly B'[ < B{ . Since the bound on the zeros imposed by
B'[ is correct for a graph containing only two vertices we can concentrate
on proving that 2\/B[ is a bound for the zeros when G is a connected
graph consisting of at least three vertices. For this purpose we shall need
one more definition and a lemma :

Definition 4.2. Given a connected, weighted graph, G, we construct a
(not necessarily unique) set, <^G, of ordered pairs of section graphs of G
such that $G contains the following members :
1) The pair (G - 1, G - 1 - i) is a member of £G if W(l, ί) φ 0. Since G is
connected there is at least one pair of this type in $G.

2) If (G', G' — ΐ) is a member of SG then (G' — i, G' — I —j) is a member
whenever W(iJ) φ 0 and j e G' — i.

3) If (G', G' - i) is a member of δG such that W(iJ) = 0 for all in
G' — i, then choose a vertex, j, in G' — i for which at least one of the
neighbors in G does not belong to G' — i and include (G' — i, G' — i —j)
as a member of <fG.

Lemma 4.4. // G is a connected graph, (G', G' — i) e SG and x ^ 2yB[
then Q(G';x)/Q(Gf-i;x)^]/Wί and β(G',x)>0, provided G1 is not G.

Proof. Consider again the fundamental recurrence relation:

β(G';x) = xβ(G'-i;x)- Σ W(U) β(G'-ί- x) . (4.11)
jeG'-i

If (Gx, G' — i) e ^G then it follows from the definition of SG that

Σ W(i,j)£B'l9 (4.12)
j e G ' — i
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Table 1. Comparison between bound for the zeros (Theorem 4.3) and the actual value of the
largest zero

Lattice

Simple quadratic
Plane triangular
Tetrahedral
Simple cubic
Body-centered cubic
Face-centered cubic

Largest zero
squared a

11.24
17.86
11.76
19.23
26.81
41.32

4B,

12
20
12
20
28
44

a - 1/r as given by Eq. (3.1) in Gaunt [28].

and that the sum over j in (4.11) can be confined to /s for which
(G'-i,G'-i-j)εffG. Hence, if one divides Eq. (4.11) by β(G'-i x)
one can easily prove the lemma by induction.

Proof of Theorem 43. (cont.j The only step missing in the lemma above
is the last step where G' in Eq. (4.11) is identical to G. Also in this case
one can confine the sum over; to values for which (G' — i,G' — i—j)e$G.
Using

)^2B' 1 5 (4.13)
j = 2

one can then furnish this final step in the proof by showing that Lemma 4.4
with G' = G — 1 implies that the right hand side of Eq. (4.3) is non-
negative and strictly positive if x > 2J/B^.

Remark 43. It is seen that the bound on the zeros given by Theorem 4.3
is the best possible for the four examples considered in Section III. This
cannot be expected to be true in general, but that the bound is rather
good, at least for graphs with equal edge weights, can be seen from
Table 1 where the bound given by Theorem 4.3 is compared with the
value for the largest zero found numerically by Gaunt [28]. It is also
interesting to compare the bound given by Theorem 4.3 with the bound
which can be obtained by applying the general theory of Ruelle [67] to
the system of hard dimers. C(β) in Ruelle's notation is, in this case, given by

C(β) = 2B4^ max J £ \_W(i, h) + W(j, h) + W(i,j)]
[i, j]eG Ί h Φ i . j

while B in Ruelle's notation is zero. One obtains 2eB4 as an upper bound
on the square of the zeros as compared to 4B[ with the present theory.

Theorem 4.5. Assume that G is a graph with complex edge weights
and write \G\ for the graph obtained from G by replacing the edge weights
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by their moduli. If A is any upper bound on the zeros of Q(\G\',x) then

P(G;x1 ; x2, ..., Xjv) is zero tf A for 1 ̂ j ^ N.

Proof. From Eq. (4.11) it follows that

> k Σ
j e G ' - ί

P(G'~i;x 1 ,x 2 , . . .)
(4.14)

P(G'-i-jιxl9x2,...

From this inequality one easily deduces inductively that

P(G; — z ;
(4.15)

if x l 9 x2, ..., XN and A fullfill the condition of the theorem and G! is a
section graph of G. The inequality (4.15) implies the theorem.

Theorem 4.6. Let G be a weighted graph with N vertices and G' a
subgraph. If Re(X ) > 0 for all i e G' and Re(xf) = 0 for all i e G — G' then
the polynomial P(G; x1 ? ..., XN) can only be zero if P(G; x 1 ?..., XN) is
identically zero when P(G; x l s ..., XN) is considered as a polynomial in
{xj, i 6 G', wiί/i ί/ze o£/?er vertex weights {xj, i e G — G', kepi /bced ciί ίfee
gzi en values. The same statement is true ι/Re(Xj) < 0 /or <?// i e G'. Here we
return to the case of real, positive edge weights and G' does not have to be
a proper subgraph of G because the only relevant fact about G' is the
specification of its vertices.

Proof. Define the corresponding Q-polynomial:

(4.16)

We shall then prove the theorem by proving the following two lemmas:
The first, Lemma 4.7, implies that the theorem is true with G' — G, in
which case the theorem simply says that P(G;x l 5 . . .,XN) is not zero
when Re(Xj) > 0 for i = 1,..., N. The second, Lemma 4.8, then allows one
to generalize the theorem as follows: Suppose that the vertices in G' are
1,..., k — 1 and that we wish to set x7 = ΐ o y for j — k,..., N. Then the
polynomial (and hence holomorphic function)

is equal to

lim lim P(G; x l 5 . . . , X j y ) , Re(x ,
-
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Lemma 4.7. // Im(x7 ) <Ofor\^j^N and if (G', G' - i) e SG then

x 1,x 2,...)}>0, (4.17)
and

β(G / ;x 1 ,x 2 , . . . )ΦO. (4.18)

Proof. If G' contains only one vertex then the lemma clearly holds
since one then has:

β(G'-i;x l 9 x 2 , . . .)/β(G / ;x 1 ,x 2 j . . .) = l/x ί . (4.19)

If G' contains more than one vertex then we use the recurrence relation
(4.11) to obtain

jeG'-i (4.20)
• Im{β(G' - i -j; x1? x2, .

and once again we can complete the proof by induction.

Lemma 4.8. Let D be a connected open set in C" and let {/; } be a
sequence of holomorphic functions on D with the following properties:

(i) The fj are uniformly bounded on compact subsets of D
(ii) {fj} converges to a function f pointwise on D

(iii) For each j and each z e D, fj(z) φ 0.
Then the convergence is uniform on compact subsets of D, f is holo-

morphic, and either f = 0 on D or else f(z) φ 0 for all z e D.

Proof. The uniform convergence on compacta and the analyticity
o f / is MonteΓs Theorem. When n= 1, the remainder of the lemma is
Hurwitz's Theorem. If n > 1 and if /(z0) = 0 for some z0 e D, then
Hurwitz's Theorem states that / = 0 on PnD, where P is any one-dimen-
sional hyperplane through z0. Hence J ' = 0 on some polydisc containing
z0 and, consequently, / = 0 on D.

One might wonder how Theorem 4.6 would change if one allowed
complex edge weights and whether there is a general theorem that
combines Theorems 4.5 and 4.6. We first remark that if the edge weights
are of the simple form

k,j) = \W(kJ)\ exp[i(θk + θjί] , (4.21)

then we can use the correspondence given in Eqs. (2.10), (2.11) in reverse
to obtain

P(G;x 1 , . . . ,x J V ) = P(|G|;x 1exp(-iθ 1),.. .,xΛrexp(-iM» (4 22)

where |G| again means that we have replaced the edge weights by their
moduli. Theorems 4.5 and 4.6 are directly applicable in this case which
may suffice for many purposes. There exists, however, a general theorem
which allows the edge weights to vary independently of each other and
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we shall conclude this section with that Theorem 4.9. Essentially it sums
up all the preceding theorems. First we need a definition of the types of
regions of the complex plane which we are going to consider.

Definition 43. The closed circular disk D_(A, θ) in the complex plane
is defined for A real and non-negative and 0 rg $ rg π/2 as the closed subset
of the complex plane:

D _ (A,θ) = {x: x e <C, x + A cotθ| g A/sinθ}. (4.23)

Similarly D + (A, θ) is defined by

D + (A, θ) is defined as the intersection of D_(A, θ) and D + (A, 0), i.e.

D± (A, θ) = {x: x e <C, x + A cotθ| ^ A/sinθ,

x — A cotθ\ rg A/sinθ}.

The boundary of D_(A,Θ) and the boundary of D + (A,Θ) include the
points x — ± iA. We write D^ (A, θ) for the complement of D_ (A, θ) with
respect to the complex plane, and similarly for D + (A, θ). Clearly

Theorem 4.9. Let G be a graph with complex edge weights such that

W(i,j)=-U(iJ)2, (4.26)

V ( i , j ) e D ± ( V ( i J ) 9 θ ) , V y e G , (4.27)

with V(iJ) real and non-negative and with 0^0^ π/2. Let G be the graph
with positive edge weights V(iJ)2. Then P(G; x1? . . .,XN) is not zero if
X; e D^ (A, θ), all i e G; or if xf e D + (>1, 0), α// i e G, where A is the largest
zero of β(G; x).

Proof. The proof is by induction from the recurrence relations for a
subgraph G' in the form

P(G';xi,...,xN)__

V) _, (4.28)

Choose δ > 0 and assume that x f e D^ (.4 + <5, 0) for all i. The induction
assumption is that

v v ^ / Cldr1' A _ι_ ̂  \

(4.29)

where G' is related to G as G' is to G. The induction is easily established
from the following three lemmas and since δ was arbitrary, the theorem
is proved.

15 Commun math Phvs.. Vol 25
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Lemma 4.10. Let A>0 and 0 ̂  θ ̂  π/2. Then XEDC_(A,Θ) if and
only if x~ί E D + (A~1,θ). The same is true if — and + are interchanged.

Proof. Trivial.

Lemma 4.11. // x E D± (A, θ) and y e D+ (£, θ) with A ^ 0, B ̂  0 and
0 ̂  θ ̂  π/2, then x2y ε D _ _ ( A 2 B , θ).

Proof. By the maximum modulus principle it is sufficient to prove the
lemma when x and y are on the boundaries of their respective domains.
By symmetry it is also sufficient to consider Re(x) ̂  0. This means that
we want to consider points in the complex plane of the form

x2y = A2B(-cotθ + eίφ/sinθ}2 (cotθ + eίη/sinθ),
(4.30)

We want to prove that

\x2y + A2B cot0| ^ A2B/smθ , (4.31)

when x2y is given by (4.30). The condition (4.31) is equivalent to

|(-cos0 4- eiφ)2 (cosθ + eiη) + sin2θ cos0|2 - sin4θ ̂  0 . (4.32)

By tedious computation one can transform the left side of (4.32) to

8cosθ(cosθ — cosφ) cosθ sin h sin

Since —Θ^φ-^θ^ π/2 implies that cosθ rg cosc/>, (4.32) is satisfied.

Lemma 4.12. // x ^ D c ί ( A , θ ) and yED_(B,θ) with A^B^O and
0 ̂  θ ̂  π/2, then x-yeD^A-B, θ).

Proof. Follows trivially from the triangle inequality.

An Alternative Proof of Theorem 4.9 Using Analytic Function Theory

By the above, rather involved analysis of the recurrence relation we
were able to prove Theorem 4.9 which can be thought of as interpolating
between Theorems 4.5 and 4.6. It is a remarkable conclusion of the theory
of analytic functions of several complex variables, however, that
Theorems 4.5 and 4.6 automatically imply Theorem 4.9 without regard
to the specific nature of the function P(G; x 1 ? . . ., XN). Since the powerful
concept of a domain of holomorphy in <CN has heretofore rarely been
used in statistical mechanics, the following alternative proof of
Theorem 4.9 may have some value.

Instead of proving that P has no zeros we shall prove that / = 1/P is
analytic. We suppose there are M different edge weights which we label
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as Wί9 ..., WM and define new variables yί9 ...,yM by

7 = 1,...,M, (4.33)

where the ί/'s and F's are defined in (4.26) and (4.27). Clearly ̂  is holo-
morphic in Uj/Vj except on the cuts (i, zoo) and ( — i, —zoo). The curve in
the Uj plane defined by Re(y7 ) = constant is a circular arc with end
points +ίVj (corresponding to Im^) = oo) and —iVj (corresponding to
ImO^ ) = — oo). In fact, for 0 rg θ ̂  π/2, the intersection of the boundary
of the disc D + (Vp θ} with the right hand plane is the curve Re^ ) = π — θ
while the intersection of the boundary of D + (VJ9Θ) with the left hand
plane is the curve Re^ ) = — θ and similarly for D,(Vp θ). The domain
D + (Vp θ) maps onto the domain iReO^ ) < θ.

For the activity variables we first make the replacement x^l/ί,-,
j — 1 , . . . , N and then consider the polynomial

which is analytic in a neighborhood of ^ = £2 — '" —^N — ̂  Recalling
that A ^ 0 is the largest zero of Q(G x) we define new variables zv,..., ZN by

exp(iz,) = J-, 7 = 1, ...,N. (4.34)

i + ̂ ^
Let us consider the complex numbers Y = ( y ^ , . . . , yM) together with

Z = (z1,...,z J V) as a point in €M+]V and define /:€M+N->€ by /(Y,Z)
= 1/P. Then Theorem 4.5 can be rephrased as:

/ is holomorphic on the tube, T, with real base

JRe^ ) < π/2, 7 = 1,..., M and

|Re(z,.)|<πA 7' = 1,.»,N. '̂̂

Likewise, Theorem 4.6 can be rephrased as:

/ is holomorphic on the tubes T+ and T_ with real bases

Re(^ ) = 0, 7 = 1,..., M and for

7 = 1,..., AT, 0 = Re(z7 ) < π for T+ while (4.36)

-π<Re(z;)^0 for T_.

As D=^ T u T + u T _ is connected, the Tube Theorem states that the
envelope of holomorphy of D is the domain ch(D) where c/ι( ) means
convex hull. That is, every function that satisfies (4.35) and (4.36) has a
holomorphic extension to ch(D). We claim that ch(D) is precisely the
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domain given by Theorem 4.9, i.e.

ch(D)= U [Kβ+uKβ-] (4.37)
O ^ θ ^ π / 2

where

(4.38)

To see that K^9 for example, is in ch(D) we let α denote the subset of
{1, ..., N} for which Re(z_y) ̂  0 and let β be the complement of α. Then
(7,Z)eKθ

+ means that Re^ ) - yfi, with j^.) < 1, - 1, ..., M, Re(z;)
- δj(π - θ), j e α and Re(zj) - - fyθ, j e jS with 0 ̂  ̂  < 1. We then form
a convex combination of a point in T with a point in T+ , i.e.

20 I 20 (y2,z2),

with

~

^ = 1, j e α ; Sj=-l,jeβ (4.39)

Z2 = (S1<51π, ...,^(5Nπ), Sj = 1, j e α ; Sj = Q,jεβ.

Thus, we have recovered Theorem (4.9). The only thing that remains
to be shown is that ch(D) is not larger than the domain given by the right
side of (4.37). It is clear that L+ = ch(Tu T+) = (j Kj and similarly

O ^ Θ < π / 2

for L_ = ch(Tu T_). We claim that ch(D) = L+ uL_ . Since T, T+ and T_
are all convex it follows easily that if there is a point in ch(D] not in
L+ uL_ then there must be a point in ch(D) which is in ch(T+ u T_) and
which is not in L+ uL_. A point (7, Z) in c/z(T+ u Γ_) has the property
that y = (0, ...,0)and l ^ - Z y l <π for all / , / = 1, ..., JV. However, it is easy
to see that L+ uL_ contains all such points, which completes the proof.

V. Relationship of the Monomer-Dimer System to the Ising Model
and to the Heisenberg Ferro- and Antiferromagnet

Fisher [68] has shown how the Ising model with zero magnetic field
can be put into a one to one correspondence with the dimer coverings
of a suitably chosen weighted graph. As we shall show, that method can
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easily be extended to the Ising model with non-zero magnetic field, which
can be put into a one to one correspondence with the monomer-dimer
problem in which some of the vertices have zero monomer weight. One
proceeds as follows: The Ising partition function corresponding to a
weighted graph, G, with edge weights (K^}, and N vertices can be
written as

T _. (5.1),z = exp

To each vertex, i, is associated a spin-variable, sh and a fugacity, z;. The
first sum runs over all values of the spin variables, and it is assumed that
different vertices have different fugacities. With s, and s; equal to +1 or
— 1 one has the identities:

ySjS ) = cosh(Ky) [1 +

Vij = tanh(Kij),

These can be used to obtain an alternative form of (5.1):

Z(G; 2 l,z 2,...,zN) = Π

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

Y ( G ; y ί 9 y 2 , . . . , y N ) 9

Y(G;y1,y2,...,yfl) = 2
s= ±1

Π
Here, G is the weighted graph with edge weights {V^}, vertex weights
{y{} and N vertices. It is important to notice that G has no negative edge

weights if and only if G has the same property. This latter condition
means that G is an Ising ferromagnet. Y(G',yl9y2,...,yN) is essentially a
partition function for walks on G such that no edge is visited more than
once.

The next step is to construct the expanded graph, GE: For each
vertex, i, in G with coordination number, q(ϊ), larger than one, q(i) new
vertices, i l 5 i 2 , . . . , ί q ( i } , are substituted. The edges which were incident
on i in G become edges in GE with the same weight and incident on
(ί2, ϊ 3 , . . . , iq(ί}} such that ΐ 2 , h, •••, ^(o-i βet one e^ge e^ch while ί q ( ί } gets
two edges. Finally edges with weight one are added between [iι,ΐ 2]>
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[z'2, z'3], ..., [i€(i)-ι, ig(i)] The vertex weight of i± in GL is set equal to yt

while ϊ 2 9 *3> •••> iq(i) are given vertex weight zero. Vertices in G with
coordination number one are transferred unaltered. Numbering the
vertices in GE such that i\ in the above notation gets number i one finds

Y(G yι,...,yN)=Y(GE ,yi,...,yN9Q,Q,...,ΰ). (5.9)

It is important that the vertices in GE have coordination number at most
3 and that vertices with non-zero value of the vertex weight have co-
ordination number one.

The terminal graph, (G£)τ, of GE can now be constructed: For each
vertex, i, of GE with coordination number q(i) a cluster of q(i) new
vertices is substituted; each of these is connected to the other q(ί) — i
vertices by edges (called internal edges) with edge weight one. The vertex
weight of the new vertices in (G£)τ are all taken to be equal to the vertex
weight of the corresponding vertex in GE. The edges which were incident
on the vertex, i, in GE become edges incident on the vertices of the cor-
responding cluster in (G£)Γ, such that each of the q(i) vertices gets con-
nected by one edge. These edges are called external edges in (GE}T their
edge weights are taken to be the reciprocal of the edge weights of the
corresponding edges in GE.

Finally, it will be shown that P((GE)τ\yl9 ...,yN, 0, ...,0) and
Γ(G£; y l 9 ..., yN, 0, ..., 0) can be expanded in such a manner that a one
to one correspondence between non-zero terms in the expansions
of the two partition functions obtains and that, furthermore, cor-
responding terms only differ by a factor which is the same for all terms.
P((GE)T y1 , . . . , yN, 0, . . . , 0) is expanded as a sum over all dimer arrange-
ments (see Eq. (2.9)). For Y(GE;yl9 ...,)>#, 0, ...,0) one takes the defini-
tion (5.8), expands the two products, and sums over all values of the spin
variables. Corresponding to the term 1 in the factor (1 -f V^s^j) in
Eq. (5.8), a dimer is placed on the corresponding external edge in (G£)Γ,
while the term V^s^j corresponds to the external edge being free of a
dimer. In the expansion of the second product in Eq. (5.8), the term j; fs f

corresponds to a monomer on the analogous vertex in (G£)τ which
otherwise must be covered by a dimer. Having kept the important
properties of GE in mind, it is easily perceived that

Fp((Gy ; y ι , . . . , ̂ ,0,. ..,0). (5.10)

This last polynomial, considered as a polynomial in (y1? ...,yN)is not
identically zero since otherwise the original Ising polynomial, (5.7),
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would be identically zero. Thus, the conditions of Theorem 4.6 are
satisfied and we can conclude that P((G£)Γ;y ls ...,^,0, ...,0), as a
polynomial in (y l5 ...,yN), satisfies Theorem 4.6. Since Eqs. (5.6) implies
that z f | < 1 is equivalent to Re(yf) > 0 while zt > 1 is equivalent to
Re(y,)<0. then Theorem 4.6 implies the Lee-Yang circle theorem for
the Ising ferromagnet.

On the other hand, by taking the high- temperature limit of the Ising-
partition function, one can prove that the Lee-Yang circle theorem implies
the fact that the zeros of the monomer -aimer partition function are purely
imaginary. For convenience we write the Ising partition function as

(5.11)
s = ± l \ [ί,j]eG

and, in contrast to what we did before, take the edge weights of the graph
G to be the J^ 's (J0 ̂  0 corresponding to the ferromagnet). Introducing
the variable x defined by

one obtains the relation

When this is substituted into Eq. (5.11) one gets

Z(G; z) = (2x)~N Σ expm £ J ijsisn Π (x + s ΐβ~^) - (5-14)
s= ± 1 \ [i, j]e G / i = 1

Z(G; z) is now expanded in powers of β. It is not difficult to see that the
term of lowest order in β is of zero'th order in β and that it is precisely the
monomer-dimer partition function for G. Consequently,

Since z = 1 corresponds to purely imaginary x, the Lee-Yang circle
theorem implies that the left-hand side of (5.15) considered as a poly-
nomial in x has purely imaginary zeros for all values of β > 0. If one
assumed that P(G; x) had a zero away from the imaginary axis one could
easily prove from continuity of the zeros that for sufficiently small, but
nonzero, β the total right hand side of Eq. (5.15) would also have a zero
outside the imaginary axis and one would thus have a contradiction.
Consequently, the zeros of P(G x) are all purely imaginary. Thus, by
starting with the Lee-Yang theorem, one can derive part of Theorem 4.2
but not the amendment.
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The proof just given will also work the other way provided the zeros of
P(G x) are all simple. This means that Theorem 4.1 implies directly
that if G has a Hamilton walk and if β is sufficiently small, then the zeros
of the corresponding Ising ferromagnet partition function lie on the unit
circle, are simple, and fulfill an interlacing condition similar to Eq. (4.5).

One can easily convince oneself that (5.15) also holds when Z(G; z) is
a Heisenberg ferromagnet partition function of the form:

- , (5.16)

H= Σ ( J i j s i z s j z )
[iJ]εG (5jη

+ (quadratic expression in s l x, s2x, •••Js ly,s2y, ...) •

Furthermore, if Jtj is changed to — Ju in the formulas above one obtains
an antiferromagnet in place of the ferromagnet and at the same time
P(G x) is changed to β(G x). Since z2 negative and real corresponds
to x real, these considerations imply that for an antiferromagnet the zeros
in z2 are all on the negative real axis for sufficiently small β when G has a
Hamilton walk. One should note that the considerations above do not
yield a bound, independent of the size of G, on the range of β in which the
zeros have the stated properties.

Our result, that the zeros of the Heisenberg ferromagnet lie on the
unit circle when β is small, is overshadowed by the result of Asano [70]
that the zeros lie on the unit circle for all /? > 0. Asano's result has been
extended by Suzuki and Fisher [71].

VI. Christoffell-Darboux Type Formulas
for Monomer-Dimer and Ising Systems

The recursion formula (4.1) suggests that it might be worthwhile to
make an investigation of the general theory of orthogonal polynomials
in order to obtain ideas which can be applied with success to the theory
of monomer-dimer systems. Unfortunately, most results for orthogonal
polynomials are not derived from the recursion formulae; the only
important exception seems to be the Christoffel-Darboux Formula.
This will be the main theme of the present section.

Definition 6.1. A self-avoiding walk on a weighted graph, G, is an
ordered set of vertices in G, such that no vertex appears more than once.
The weight, W(S\ associated with the walk
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of length m, for m > 0, is given by

m

W(S)= Π W ( i j , i j + ΐ ) . (6.2)
j = ι

For m = 0 we take W(S) = 1. We shall write [S] for the self-avoiding walk,
S, considered as a subgraph of G, and the set of all self-avoiding walks on
G which start at the vertex i and have non-zero weight will be denoted 5 .̂

Definition 6.2. We define the kernel, K(G, i\ y, x) by

K(G,i;y9x)= X ^(S)ρ(G-[S];x)β(G-[S];y), (6-3)
Sey,

where y is the complex conjugate of y.

Theorem 6.1. For every vertex, i, in a weighted graph, G,

(x-y}K(G,i',y,x}=[_Q(G;x)Q(G-i;y)-Q(G;y}Q(G-i',x)-]. (6.4)

Proof. By induction from the recursion formula (4.3).
Theorem 6.1 is the Christoffel-Darboux formula for the monomer-

dimer partition function.

Corollary 6.2. For every vertex, i, in a weighted graph, G,

K(G, i', x, x) = Q'(G; x) Q(G - ί; x} - Q(G\ x) Q'(G - ί; x) , (6.5}

where the prime denotes differentiation with respect to x.

Proof. Trivial.
Remark 6.1. Theorem 4.2 with the amendment can be obtained

easily from Theorem 6.1 and Corollary 6.2: If Q(G x) had a complex
zero, a, then a would also be a zero of Q(G; x). Taking y = x = a in
Eq. (6.4) one arrives at a contradiction because every term in (6.3) is
clearly nonnegative and real. If G has a Hamilton walk, there is at least
one nonzero term, namely when [S] = G. If G does not have a Hamilton
walk we can appeal to a continuity argument. The interlacing can then
be proved from Eq. (6.5) by considering the sign of Q(G — i x) for x
equal to the zeros of Q(G; x).

Theorem 6.3. Let H be a proper, non-empty subgraph of G, let j be a
vertex in G — H, and let ¥j(H) be the set of all self -avoiding walks which
start at the vertex j and end at some vertex in H without visiting H before.
Then

Q(G',x)Q(G-H-j;x)-Q(G-j;x)Q(G-H;x)
v-,

= - Σ WW Q(G - [5] x) Q(G - [5] - H x) ,

where in G — \_S] — H it is understood that the vertex common to [S]

and H is deleted only once.
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Proof. The proof again follows by a simple application of the recursion
formula.

It is interesting that while the recursion formula for the monomer-
dimer system has no interesting analog for the Ising model, the Christoffel-
Darboux formula, (6.4), does. If G is a weighted graph with positive edge
weights, {Vij}, and if H is a subset of vertices in G, then we define

s= ±1 jeH

π <
(J,k]eG

N

ΓUS

;=ι

(6.7)

where i is the imaginary unit. We shall allow the same vertex of G to
occur repeatedly in //, in which case the corresponding factor in
Y[ (—iSj) should also be repeated. Γ(G, 0; z) is seen to be a version of the

Ising partition function (see Eqs. (5.3)-(5.8)). In the following, H +j
denotes the union of the set H and the vertex j.

Theorem 6.4. Let G, H and Y be as defined above and introduce

Ψ(G9 HJ x, y) = Y(G, H +;; x) Γ(G, H; y)

-Y(G,H+j;y)Y(G9H;x).

Then there exists an expansion of Ψ:

(6.8)

X £ W ( G 9 H , j ' , G ' 9 H ' )
G'c G H'c G'

• Y ( G ' , H ' ' , x ) Y ( G ' 9 H ' ι y ) ,

such that the numbers W(G,HJ'9G',H'\ are all non-negative when the
edge weights {Vjk} we all non-negative.

Proof. Expanding the factor (1 + VjkSjSh) in Eq. (6.7) we obtain

r&H+M-Y^G-w+j^^ (6lθa)

Y(G, H; z) = Γ(G- VJk, H z)- Vjk Y(G- VJk, H +j + k ; z ) , (6.10b)

where we have used G — Vjk to denote the graph G with the edge [/', fe]
deleted. Then,

Ψ(G, HJ x, y) = Ψ(G - VJk, HJ x, y)

+ VjkΨ(G-Vjk,H,k;x,y)

+ VjkΨ(G-Vjk,H+j,k χ,y}

+ VJ

2

kΨ(G-Vjk,H + kJ;x,y).



Theory of Monomer-Dimer Systems 215

If j is a vertex in a weighted graph, G', which is not connected to any
other vertex in G1 then, upon summing over s7 = ± 1, one obtains:

Ψ(G', HJ x>y)=-L(—- Aj Γ(G - j, H; x) Y(G - j, H; y ) . (6.12)

This result holds even if H contains 7, but in that case one should delete
j from H on the right side of (6.12). The theorem then follows by combining
Eqs. (6.11) and (6.12).

Eq. (6.9) is the Christoffel-Darboux formula for the Ising model.

Theorem 6.5. The zeros of Γ(G, H; z) He on the unit circle (i.e. satisfy
\z\ — \) for all G and H when all the V^ are non-negative (ferromagnetic
case). If eiφ\ eίφ\ ...,eίφN are the ordered zeros of Y(G, H\ z),

— π<φι ^ (t>2< "' ^ ΦN = π 5

and if eιφ\ elψ2, ..., elψN are the zeros of Γ(G, H +7; z) ordered in the same
manner, then either

Φ1^\p1^φ2^ιp2^ ••• <zφN<zipN, (6.13a)
or

Ψι^Φι^ψ2^Φ2^ '" ^ΨN^ΦN (6.13b)

// G is connected then all the inequalities in (6.13) are strict.

Proof. From the definition (6.7)

Y(G, H; z-1) = (-!)"<*> Γ(G, H; z),
(6.14)

Let x be a root of Γ(G, H\ x] = 0 and set y = (x)"1 in (6.8). On the right
side of (6.9) there will be at least one non-zero W, corresponding to
G' = G —j and H' = //, as can be seen from (6.11). Then, by using (6.14)
and induction, the right side of (6.9) is non-zero unless |x = 1. The proof
of the interlacing parallels that in Remark 6.1.

VII. Some Inequalities on the Compressibility and Other Quantities

In this section we display some inequalities that can be derived from
the fact that the roots of β(G; x) are real and come in equal and opposite
pairs (except for x = 0). Theorem 7.1 is of theoretical interest and will be
used in Section VIII. Among other inequalities we derive a lower bound
on the compressibility and show in Theorem 7.6 that this is stronger
than the bound that can be derived using Ginibre's general method for
repulsive potentials [72].
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Definition 7.1. Let α 1 ? a2, ..., aN be the (real) zeros of Q(G; x) ordered
such that

0j= -%+ι-j, C7-1)

(which is possible since Q(G; x) contains either only even powers or only
odd powers of x). We then define bt g: 0 (/ = 1, 2, ..., N) by

*>i ^ α2 - (7-2)

The numbers — bl9 ..., — bM (with M = [Λf/2]) are the zeros of R(G; x).

Theorem 7.1. The canonical partition function Zd satisfies the
inequality:

21nZ^lπZd,1 +lnZd + 1+ln(M-^ + 1 ). (73)

Remark 7.1. This inequality states that even for finite systems the free
energy per unit volume is a strictly convex function of the dimer density.

Proof. If Newton's inequality is applied to R(G\ x) which is a poly-
nomial of degree M having M real zeros (according to Theorem 4.2),
then one gets

Zd + 1^0, (7.4)

which trivially yields (7.1).
Definition 7.2. For a weighted graph, G, and activity, x, the monomer

density, ρm, is given by

Qm = xN(G)~1 dlnP(G x)/dx - xN(GΓ1 P'(G\ x)/P(G; x) . (7.5)

Theorem 7.2. // G has at least one edge then the zeros of dρm/dx
satisfy

|x2 + V2|^V2, (7.6)

where —b^ is the smallest (largest modulus) zero of R(G; x). If G has no
edges then dρm/dx vanishes identically. In particular Re(x2) ̂  0 and

I* 2I^V
Proof. With y = x2 one has

Q^ί-N-1 Σbfr + b,)-1, (7.7)
j^ i

since -by, j = 1, 2, ..., M, are the zeros of #(G; x). Differentiation gives

(7.8)
l J

N , (y + bj)2
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Setting y = relθ Φ 0 one finds

If x fails to satisfy condition (7.6) then r + bjCOsθ is positive for all j.
The theorem then follows because bj is real for all j and nonzero for at
least one value of j. (If G does not contain any edges then bj = 0 for all j
and dρJdx = 0, identically.)

Remark 7.2. Clearly ρm is an increasing function of x e (0, oc) and
Theorem 7.1, together with the implicit function theorem, guarantees
that x is real analytic in ρm. In the thermodynamic limit (whose existence
we shall prove in sections VIII and IX) the zeros of dρJdx also satisfy
Theorem 7.2 (by Vitali's theorem). This means that the thermodynamic
limit of N(G)"1 lnP(G x) can be thought of as a real analytic function
of ρm. The following Theorems 7.3 and 7.4 complement this assertion by
giving an explicit lower bound to dρJdx, but by themselves they do not
obviously guarantee analyticity of x in ρm since they are concerned solely
with real x.

Theorem 7.3. The following bounds on ρm and xdρjdx follow from
Theorem 4. ί :

Qm^(l + B2x~2Tl, (7.10)

xdρJdx^2x2(l-ρm)2/B2, (7.11)

xdρjdx^2ρm(l-ρj, (7.12)

for real, positive x. B2 is given by

B2 = 2N-1 £ W(iJ). (7.13)
< i , / > e G

Proof. Since ^NB2 is the coefficient of x**"1 in R(G; x) one has that

(l + B 2x" 2) = x" 2 JV 1 Σ (bj + x 2 ) - (7 14)

Eq. (7.7) can alternatively be written

and

X (b + x2)-1, (7.15)

The inequality (7.10) follows from (7.14) and (7.15) since

^ 1. (7.17)
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The two inequalities:

(l-ρJ^^Λ

and

(7.19)

can be obtained from Eq. (7.16) by applying Cauchy's inequality. The
inequality (7.11) then follows by substituting (7.8) into (7.18), while (7.12)
can be obtained from (7.19) since

2

(720)

l '
rfx ~ N (*2 + b,) TV

A lower bound on xdρjdx can be obtained in an entirely different
way by viewing the system as a hard core dimer gas. One can then prove

Theorem 7.4. x^- ̂  2(1 -ρj(l +2J33χ-2Γ1 , (7.21)
ax

where

(7.22)

(7.23)

Following Ginibre [72] one first proves

Lemma 7.5. ί/Zd

2 ^ Z d _ t [(d + 1) Zd + 1 + 2J53Zd] .

Proof of Lemma 7.5. One has:

# D = d - l

An application of Cauchy's inequality yields

W(D)

# D = d - l

Σ w(D) i x
De® 1<i, j>eG-[D]

#D=d-l I

*D=d-ι

U e G

which proves the lemma.
Proof of Theorem 7.4. If one introduces the notation

</(<*)> = Σ /(Ό ZΛy?-2άIP(G\x) , (7.25)
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then one can write om = 1 — 2N~1 <d> and

If, furthermore, the inequality (7.22) is written as

[_(d + l}\Zd + ίx»-^^ίd\Zdx
N-2dTl

^^!ZdxN-2 d][(J-l)!Zd_1x
N-2 ( d-1 )]-1-2B3x-2, ( ' }

then Ginibre's main theorem [72] implies

£ (1 + 2B3X-2)-1 , (7.28)

which is equivalent to (7.21).

Theorem 7.4 is weaker than the lower bound on x — — — given in
ax

Theorem 7.3, Eq. (7.11). This can be seen from the following theorem:

Theorem 7.6. (1 - ρj ̂  B2(x2 + 2B3Γ' (7-29)

Proof. The inequality (7.29) may alternatively be written as

2£3g;β2(l-ρmΓ1-x2. (7.30)

From the inequality (7.11) one obtains

-£-(B2(l-ρmΓl)^2x9 (7.31)

which implies that the right hand side of (7.30) is an increasing function
of x. It will consequently be sufficient to prove (7.30) in the limit x->oo,
i.e. to prove that

(7.32)
j=ι / V j=ι

Lemma 7.5 gives for a = 1

Z 2<2Z 2 + 2B3Z1. (7.33)
Since

M M 1

z 2 = Σ Σ (-^)(-fei)= τzf-
j=l i = j + l Z

then (7.32) follows from (7.33).
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Remark 7.3. In this section and in Section IV we have introduced four
different numbers B1,B2,B3 and B4 which all involve the sum of the
weights of the edges incident on one vertex. B3 is the maximum value of
the sum; B2 is the average value of the sum; Bl is the maximum when one
edge is deleted from the sum, and B4 is somewhere between B3 and B1.
If all vertices are equivalent except for boundary points then one obtains
B2 = B3 in the limit of an infinite graph if the fraction of boundary vertices
tends to zero. If, moreover, all edge weights are equal to W and the
coordination number is q then in the limit of an infinite graph one has

B2 = Bι = qWι Bl=(q- \)W; B4 = (q- ±)W. (7.36)

VIII. The Thermodynamic Limit for Monomer-Dimer Systems:
Basic Properties

Since the monomer-dimer problem can be considered as the problem
of a hard core dimer gas, it is fairly obvious from the general results on
thermodynamic limits that the limit exists when the weighted graph G
tends to infinity in a reasonable manner. We shall, nevertheless, give an
explicit proof of the existence of the thermodynamic limit for the mono-
mer-dimer problem, partly to obtain stronger results and partly to
demonstrate a different method of proof.

Definition 8.1. A Weighted Lattice, (or simply Lattice), L, is an infinite,
weighted graph imbedded in 1RV such that if α = {α l 5 α 2 , ...,α v} *s anY
vector with integer components then L is mapped onto itself if it is
translated by α. We also assume that every bounded subset of 1RV contains
only a finite number of vertices of L.

Definition 8.2. The lattice, L, will be said to have compact interaction
if there exists a finite upper bound on the Euclidean length of the edges
incident at any vertex.

Remark 8.1. In the following we shall assume that the lattice, L, has
compact interaction and that the units of the Euclidean space are chosen
such that if the edge [/, j] is represented by a vector from the Γth vertex
to the/th vertex, and if j — i = {jl — il,j2~ * 2 > ••• >7v~Λ}>

max { max I/V — iλ\ <1. (8.1)
W(ί,j)>0 [l^k^v J

This will ensure that the interactions (nonzero edges) do not extend
beyond the neighboring unit cells.

Remark 8.2. In the following we shall only consider subgraphs of the
lattice L. If not otherwise specified all subgraphs will be assumed to be
section graphs.
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Remark 8.3. Unless otherwise specified, vectors will be assumed to
have integer components.

Definition 83. The section graph A(a) includes every vertex with
coordinates xl9x29 • -•> xv which satisfies

0 ̂  Xl < a,, 0 ̂  x2 < a2,..., 0 ̂  xv < α v . (8.2)

The section graph Λn(a) is the graph Λ(a) translated by{nlaί,n2a2,.^, ^v

αv)
Definition 8.4. Let A be any section graph of L. The number N*(A) is

then defined as the number of graphs An(a) which, for a fixed and n running
over all integer vectors, has at least one vertex in common with A. The
number N~(A) is defined similarly as the number of graphs An(a) which
are section graphs of A.

Definition 8.5. Let {A} be a sequence of finite graphs such that
JV(Λ)->oo. If

limN- (Λ)-> G O ,

for all α then the sequence is said to tend to infinity in the sense of Van Hove.
Remark 8.4. Whenever a sequence of section graphs of L is said to

tend to infinity it should always be understood to be in the sense of
Van Hove.

Definition 8.6. A0(A) is the modulus of the zero of maximum modulus
of P(A x).

Definitions.?. An = A({2n- 1, 2n- 1, ...,2Π- 1}); Λn + a means the
cube An translated by the vector α.

Lemma 8.1. The following limit exists:

limA0(An) = A0. (8.4)
n-» oc

Proof. From Theorem 4.2, A0(An] ^ A0(An + l ) . From Theorem 4.3,

Theorem 8.2. // {A} is a sequence of section graphs which tends to
infinity then

lim A0(Λ) = A0 . (8.5)
Λ~* 00

Proof. Since A is finite there exist an n and an integer vector α such
that AcAn + a. This proves that \imsupA0(A) rg A0. For any n and
sufficiently large A there exists an integer vector α such that An + aCA.
This proves that liminL40(yl) ̂  A0.

Definition 8.8. N(A, r) is defined for r > 0 as the number of zeros of
P(yl x) with modulus less than r. For r ̂  0, one defines N(A,r) = Q.

Definition 8.9. n*(Λ, r) = N(Λ, r)/N(Λ), n*(n, r) = n*(Λn, r).

16 Commun. math Phys , Vol. 25
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Lemma 8.3. The following limit exists for all r:

l imn*(n,r) = n*(r). (8.6)
n~* oo

The convergence is uniform in r; indeed for all r:

|n*(n,r)-n*(r) |^4v2"". (8.7)

Proof. One has (with ̂  - N(Aί)):

= N1(2»-iγ. (8.8)

If one deletes the middle rows of unit cells in An, i.e. the vertices with
2n~1 — 1 ̂  Xj < 2""1 for at least one of its coordinates, then Λn is divided
into 2V disjoint cubes Λn _ x . From the interlacing statement of Theorem 4. 1
one then gets

, (8.9)

because the right side of (8.9) is the number of deleted vertices; as each
vertex is deleted N(Λ, r) either increases or decreases by exactly one. Since

\^\l-(l-2l-nγ\^2v2-n, (8.10)

one gets from Eq. (8.9):

|n*(n, r) - n*(n ~ 1, r)| g 4v2~" . (8.11)

Eq. (8.7), and thereby the lemma, is an immediate consequence of
Eq.(8.11).

Theorem 8.4. // {A} is a sequence of section graphs which tends to
infinity, then the following limit is uniform in r

limn*(Λ,r) = n*(r). (8.12)

Proof. Take α = {2"+ 1,2"+ 1, ...,2"+ 1} and pack A with N~(A)
copies of the cube A(a). Next, delete the unit cells at the boundaries of
the cubes A(a\ As above, one then gets

\N(Λ, r) - N- (A) N(Λn, r)| ̂  N(Λ) - Na~ (A) N(An) . (8.13)

Further, one has:

^ 1 - [JVβ- (A)/Na

+ (A)-] [_N(Λn)/N(Λ(a)}] (8.14)

^ 1 - [AT" (A)/Na

+ (A}] [1 - 2v2-"] .

If N0 is chosen such that
+ί (8.15)
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when N(Λ) > Nθ9 then one has for N(A) > N0

\n*(A9 r) - n*(n9 r)\ <; 4(v + 1)2"". (8.16)

Using Eq. (8.7),

\n*(A9 r) - n*(r)\ ^ 8(v + l)2~ n , (8.17)

which proves the theorem.
Remark 8.5. If φ(r) and ψ(r) are two non-decreasing functions which

satisfy

φ(r) = ψ(r), for r^a and r ^ b ,

\φ(r)-ψ(r)\<ε, for a^r^b,

and if /(r) is continuous and non-decreasing in the closed interval [α, i>]
and differentiable in the open interval (α, b] then

00

j /(r) dφ(r) - /(r) dφ(r) < ε[/(fc) - /(α)] . (8.18)
— oo

If one defines a function

g(Λ)= J γ(r)dn*(Λ,r)
— oo

for y continuous, then, as

(8.19)

00

l i m f l f ( / l ) = j γ(r)dn*(r) = g.
Λ~* GO

(8.20)

If y(r) is differentiable and non-decreasing in 0 ̂  r ̂  ̂ 40 and if \n*(r)
— n*(A9r)\ <ε, then

|^)-^|<ε[yμo)-y(0)]. (8.21)

This is a useful tool for proving uniformity of convergence.
Definition tf. //9

g(Λ μ) = ±

1 1 °°
Lemma 8.5. g(A9 μ)=~μ+~ f

^ ^ - OC

Proof. Trivial.
Definition 8.H.

1 lnP(/t; e~

+ r2)dn*(Λ,r).

(8.22)

(8.23)

(8.24)
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Theorem 8.6. // A tends to infinity, then, for all μ,

(8.25)
Λ-+OO

The convergence is uniform on subsets of the form μ ̂  μ0.

Proof. From Remark 8.5 it follows that

\g(A'9μ)-g(μ)\<sln(l+A2

0e*)9 (8.26)

when N(A)> N0, where JV0 is chosen to make

\n*(A,r)-n*(r)\<ε

for N(A)>N0.
Remark 8.6. One can alternatively prove the existence of the grand

canonical limit g(μ) directly, and then infer the existence of the distribution
n*(r) from the power series expansion of g(μ) in eμ. This follows by the
theory of the Hamburger moment problem from the fact that the domain
of increase of w*(r) is finite by Theorem 8.4.

Definition 8.12. If, for a given A, d0 is the maximum value of d for
which Zd is strictly positive, we define

(8.27)

Lemma 8.7. ρΌ(Λ) = lim , (8.28)
-* dμ

=ρ0. (8.29)
^co μ c o μ

Proof. Eq. (8.28) is a trivial consequence of the fact that exp[g(/L; μ)] is
a polynomial in exp(|μ); the non-trivial part of the theorem is (8.29), for
it says that we can interchange the limits μ-»oo and A-+CQ. The left side
of (8.29) is lim lim J r2(e~μ + r2)~1 dn*(A,r) and the right side is the

Λ—*GQ μ— > oo

same with the limits reversed. On the right side we can take the limit
A-+CQ which, by Remark 8.5, means that n*(A, r)->n*(r). Now it is clear
that for any increasing m(r), with m(oo) = 1 and with m(0) = 0 for r < 0,

lim $r2(e-μ + r2Γidm(r) = l-m(Q + ), (8.30)

where m(0 + ) = limm(r). Thus, to prove the theorem we require that

lim n*(A, 0 + ) = n*(0 + ). This, in turn, is a consequence of the uniform
Λ—> oo

convergence of n*(A, •) to n*( ).
Definition 8.13. For 0 ̂  ρ ̂  Q0(A) we define the function h(A, ρ), for

integral, by
(8.31)
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For other values of ρ we define h(A, ρ) by linear interpolation between
ρ1 and ρ2 which are chosen such that ρ± <ρ<ρ2, Nρί is integral and
N(ρ2 — ρi) = l For ρ > ρ0 we define h(A, ρ) = — oo. It is a very important
consequence of Newton's inequality (Theorem 7.1) that h(A,ρ) is con-
cave in ρ for 0 ̂  ρ ̂  1.

Definition 8.14. For 0 rg ρ ̂  1

-oo<μ<oo}. (8.32)

Theorem 8.8 A. limsuph(Λ, ρ) - h(ρ), 0 ̂  ρ ̂  1 . (8.33)
Λ->co

Proof.

g(Λ, μ) ̂  maxίμΛ^/lΓ1 d + N(A)~ί lnZd:d^ N(Λ)}
(8.34)

Choose N0 such that \g(Λ, μ) — g(μ)\ < ε for N(A) > N0 and for μ ̂  μ0 < oo.
Then

g(μ) + ε^ sup{ρμ + h(Λ, ρ): 0 ̂  ρ ̂  1} ,

i.e. for all ρ and N(Λ) > N0 and μ ̂  μ0

/ιμ,ρ)^^(μ)-ρμ + β. (8.35)

Therefore,

limsup/z(/l, ρ) ̂  inf{0(μ) -ρμ:μ^μ0} (8.36)
/!-*• oo

for all μ0, and (8.33) follows.

Theorem 8.8 B. For 0 g ρ < ρ0,

liminf/ι(yl,ρ) = /z(ρ). (8.37)
Λ-+OO

Proof. One has

g(Λ, μ) ̂  N(AΓ1 lnN(Λ) + max{μN(AΓ1 d + N(A)~1 lr\Zd : d ̂  N(A)}

= N(A)~ί \nN(A) + sup{ρμ + h(Λ, ρ); 0 ̂  ρ ̂  1} . (8.38)

Since h(A, ρ) is concave in ρ,

h(Λ, ρ) - inf{ -ρμ + g(Λ, μ ) : - oo < μ<oo} - N(A)~l \nN(A} . (8.39)

Now choose μ0 such that

dg(μQ)/dμQ = $(ρ0 + ρ) (8.40)

and then choose N0 such that for N(A) > N0

,
(8.41)

dg(Λ,
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and for μ ̂  μ0

g(Λ,μ)-g(μ)>-$ε. (8.42)

From (8.41) it follows that for N(Λ) > N0

inf { — ρμ + g(A, μ) :oo<μ<oo} = inf { — ρμ + g(Λ, μ): — oo < μ ̂  μ0} .

From (8.42) it follows that for N(Λ) > N0

inf { - ρμ + g(Λ, μ}: - oo < μ ̂  μ0} ̂

Consequently, for N(Λ) > N0

h(Λ,ρ)^h(β)-ε, (8.43)

which proves the theorem.
Remark 8.7. The limit

lim h(Λ, ρ0)
Λ-* 00

will generally depend on the specific boundary condition and does not
need to exist. Hammersley [59] proved that for simple cubic lattices in
any dimension and for {A} being rectangular boxes with faces perpendic-
ular to the directions of the edges and for an even number of vertices
one has

lim h(Λ, ρ0) = Λfeo) - (8.44)
Λ-+CO

We conjecture that (8.44) holds generally for cyclic boundary conditions
provided A is chosen to have a dimer arrangement with the density ρ0.

IX. Thermodynamic Limit for Monomer-Dimer Systems:
Analyticity Properties

In this section we shall combine the results of Sections IV and VIII
in order to furnish the general analyticity properties of the thermody-
namic functions. We shall also prove the existence and analyticity of the
infinite lattice correlation functions. We begin by restating the general
analyticity condition of Theorem 4.9.

Definition 9.1. Let G be a graph with general, complex edge weights.
Write the edge weights as

W(iJ)=-U(iJ)2 (9.1)

and assume

U(i,j)eD±(V(iJ),θ), all / , j e G , (9.2)
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for some set of real, non-negative numbers (V(iJ)} and some value of
0, 0 rg θ g π/2. Finally let G be the graph with the edge weights changed
to V(ίJ)2. If x is the monomer fugacity, we then say that x 6 stf(G) if θ and
the set of numbers ( V ( i J ) } can be chosen such that (9.2) is fulfilled and
simultaneously

x 6 DC

±(A0(G), θ) = DC

+(AQ(G), Θ}^JDC_(AQ(G\ θ) . (9.3)

If (9.3) is changed to

xeDc

±(A0(G) + ε,θ] (9.4)

then x e X,(G).
Finally let L be a lattice (Definition 8.1) with complex edge weights,

let the edge weights be written in the form (9.1) and satisfy (9.2) with a set
of weights (V(iJ)} such that L (defined analogously to G) is a lattice
(i.e. that the translation invariance is preserved), and let AQ be taken to
be the value of A0 obtained for Z by the limit in Theorem 8.2. If θ and
the set of numbers {V(iJ)} can be chosen such that both (9.2) is satisfied
and simultaneously

xeDc

±(A0,θ), (9.5)

then we say that x e jtf(L).
Next, we modify the definition of the free energy slightly from

Definition 8.10.
Definition 9.2.

gm(G; x) = N(G)-1 lnP(G; x) - Inx (9.6)

where the branch cuts of the right side of (9.6) are the N(G) line segments
(z, 0), where z is any one of the zeros of P(G; x).

One then has the following lemma as a trivial corollary of Theorem 4.9.

Lemma 9.1. // G is a weighted graph and if xe ,^ε(G) then

|£m(G;x)|<|lnε| + 2π. (9.7)

By application of VitalΓs theorem one easily proves the following
theorem from Lemma 9.1 and Theorem 8.6:

Theorem 9.2. Let L be a lattice with complex edge weights and let {A}
be a sequence of section graphs that tends to infinity in the sense of
Van Hove. Then the limit

\imgm(A',x) = gm(x] (9.8)
Λ-* oo

exists, is independent of the sequence, and is uniform on closed subsets of
the following domains:

(i) If the edge weights are held fixed then gm(x) is analytic in x e j/
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(ii) // gm(x) is also considered as a function of the edge weights then
it is analytic on the following domain:

U U {(x,{W}):xeDc

±(A0,θ),W(i,j)=-U(i,jf
( V ( i , j ) } O ^ θ ^ π / 2 m m

and U(i,j)eD±(V(i,j),θ)},

where the allowed (V(i,j)} are translation invariant.

Remark. If all the edge weights are real and positive, then Theorem 9.2
states that the free energy is analytic in x in the cut x-plane where the cut
runs from — iAQ to iAQ along the imaginary axis. One can then obtain a
natural expansion variable s by the substitution

x = $AQ(l-s2)/s (9.10)

s = (xMo)[l+Λg/x2)*-l] (9.11)

which maps the cut x-plane conformally onto the unit disk of the s-plane.
A power series in s will then converge in the whole physical region.

As mentioned in the introduction, the variable s is essentially the
same as the expansion variable, y2, used by Nagle [27]. To establish the
connection we note that iίAQ is replaced by some A' > AQ in (9.10, 11), one
obtains an expansion variable s' with the same property that the analytici-
ty region is mapped into the unit s'-disk. Naturally, the best A' to use is A0,
but in the absence of accurate knowledge of A0 we can use the bound
given by Theorem 4.3. For a connected lattice, all of whose non-zero
edge weights are a constant, W, and which has coordination number, q,
the upper bound is

(9.12)

It is this A' that appears in Nagle's y2. We also note in passing that our
previous report [61] contained an inferior estimate in which (q — 1) was
replaced by q.

As the last point we turn to the correlation functions.
Definition 9.3. The correlation function ρ(G, S) is defined for subsets

5 of the graph G (S C G) by

ρ(G, 5; x) = xN(S]P(G - S; x)/P(G; x) . (9.13)

We first prove two lemmas which are the equivalent of Lemma 9.1
and Theorem 8.2 and then obtain the final theorem by an application of
Vitali's theorem. For the sake of the proof of the lemmas it is more
convenient to work with the function

ιxl,...,xN). (9.14)
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Lemma 9.3. // G is a weighted graph and if xe £#ε(G) then

|/(G,S;x,...,x)|;gε-" ( 5 ). (9.15)

Proof. If we choose

*,={x j e" (9.i6)J [x ] e G — S

then, in an obvious notation, we have
N(S)

P(G; x', x") = P(G - 5; x") f] I* - a/*")] (9.17)
7 = 1

since the coefficient of (x')N(S} is P(G - S; x"). Now P(G - S; x") is surely
not zero if x" e sέ(G] and therefore

N(S)

It follows from Theorem 4.9 that if x" G DC+(AΌ(G), θ) then

flj.(x'')eI>+(,40(G),0). (9.19)

Consequently, if x = x' — x" e <s/ε(G) then

\x'-aj(x")\>ε, (9.20)

which proves the lemma.

Lemma 9.4. // G is α weighted graph whose edge weights are real and
positive, N(S) = N, and if x is purely imaginary and

-ix>A0(G) (9.21)

then z'N(S)/(G, S m^x, ..., mNx) is monotone decreasing in each of the
variables, m^ e G — S), when mk is real and greater than one for k — 1, . . . , JV.

Proof. Suppose {1} C G - S. Then if G = G - 1

, S mί x, . . . , mNx)/dmί

x[P(G; m^x, ..., mNx] P(G - S; m2x, ...,mNx)
(9.22)

-P(G;m2x, ...,mNx)

• P(G - S mi x,..., mNx)]/P2(G m^ x,..., mNx).

Application of Eqs. (2.7), (2.10) and (2.11) then yields

m/| iN(s)df(G, S; m^,..., mNx)/dmλ

(9.23)

with y = — ix. The monotonicity then follows from Theorem 6.3 since
y > A0(G) ^ A0(G') by assumption.
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Theorem 9.5. Let ScGlCG2C ••• be an infinite sequence of section
graphs with complex edge weights. Then the limit

\imρ(Gi7S;x) = ρ(S',x) (9.24)
i— > oo

exists uniformly on closed subsets of the following domains
(i) If the edge weights are held fixed then ρ(S x) is analytic on

(ii) // ρ(S; x) is also considered as a function of any finite number of
distinct edge weights then it is analytic on

f U U {(x,{W}):xeD^(A0(G,),θ),
' \{V(iJ)} O ^ θ ^ π / 2 (925)

W(i,j) = - I7(i, j)2 and U(i,j) e D ± ( V ( i , j ) , θ)}}

If the sequence is a sequence of section graphs of a lattice, L, and if the
(V(iJ)} in (9.25) are restricted to be translation invariant, then the limit is
independent of the sequence when the sequence tends to infinity in the sense
of Van Hove, provided the distance of S from the boundary of Gt tends to
infinity as i->oo.

Proof. We notice that Gt can be thought of as Gi + 1 in which the vertex
weights on the vertices belonging to Gί + 1 — G; are infinite. Consequently,
if the edge weights are positive and if x is sufficiently large and imaginary,
Lemmas 9.3 and 9.4 tell us that {ρ(GhSιx}} is a monotone bounded
sequence and hence has a limit. The rest follows from Vitali's theorem.
The uniqueness of the limit in the case of a Van Hove sequence follows
from the same cube packing arguments as in Section VIII.
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