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Abstract. It is shown that a stationary space containing a black hole is a solution of
the Brans-Dicke field equations if and only if it is a solution of the Einstein field equations.
This implies that when the star collapses to form a black hole, it loses that fraction (about
1%) of its measured gravitational mass that arises from the scalar interaction. This mass
loss is in addition to that caused by emission of scalar or tensor gravitational radiation.
Another consequence is that there will not be any scalar gravitational radiation emitted
when two black holes collide.

1. Introduction

In this paper I shall extend the arguments of the previous paper [1]
to the Brans-Dicke theory of gravitation. Most of the results of the
previous paper did not depend on the field equations in detail, but only
on certain inequalities on the Ricci tensor such as

for any null vector la. These inequalities are also satisfied in the Brans-
Dicke theory if one expresses it in the conformal frame in which the
gravitational constant is constant and the masses of particles vary with
position. I shall call this the Einstein frame. In particular, the results that
stationary black holes must be axi-symmetric and have spherical topology
will hold in the Brans-Dicke theory also. It then follows that the scalar
field which occurs in the Brans-Dicke theory must be constant every-
where in a stationary black hole solution. From this it follows that
stationary black holes in Brans-Dicke theory are precisely the same as
in general relativity and so presumably are represented by the Kerr
family of solutions. What this seems to indicate is that if a massive body
collapses behind an event horizon, its effect as a source of the scalar field
decreases to zero. This has two important consequences. Firstly, the scalar
monopole moment represents a fraction l/(2ω-h4) of the measured
active gravitational mass of a normal body (OJ is the coupling constants
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which appear in the Brans-Dicke theory and which has a suggested value
of about 6). As a body collapses it loses its scalar monopole moment so
its measured active gravitational mass decreases by this fraction. This
mass loss is in addition to any mass loss that may result from the emission
of scalar or tensor radiation during the collapse. The resulting black
hole will move on a geodesic in the Einstein conformal frame whereas
small normal bodies move on geodesies in the conformal frame in which
the masses of particles are constants (I shall call this the Brans-Dicke
frame). This means that black holes do not obey the equivalence principle
in the Brans-Dicke theory. The existence of such violations of the equiv-
alence principle by bodies with significant gravitational binding energy
has already been pointed out by Nordvedt [2]. A black hole may be
regarded as extreme case of this effect where the binding energy is of
the same order as the rest mass energy. One may express this violation
by saying that the inertial mass is no longer equal to the passive and
active gravitational mass.

The second important consequence is that no scalar gravitational
radiation will be emitted when two black holes collide since the scalar
field will be constant everywhere. This shows that the fact that the
gravitational radiation pulses which Weber observes [3] do not appear
to be scalar [4] is not inconsistent with the Brans-Dicke theory if the
pulses arise from a black hole collisions. Indeed, this would seem to be
the only possible process that could be producing them in view of the
enormous energy [5] and the lack of associated electromagnetic [6] or
neutrino [7] radiation.

2. The Brans-Dicke Theory

The Brans-Dicke theory was originally expressed in the conformal
frame (the "Brans-Dicke frame") in which the masses of small particles
remain constant while the locally measured gravitational constant G is
φ~1(4 + 2ω) (3 + 2ω)~x where φ is a scalar field and ω is an adjustable
coupling constant. The field equations have the form:

gcdφ,cd= 8π(3 + 2 ω ) - 1 c ~ 4 T (2)
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where semi-colon denotes the covariant derivative with respect to the
metric gab and Tab is the usual energy momentum tensor which obeys the
conservation equation Tab.cg

bc = 0.

Dicke [9] has pointed out that the theory can also be expressed in
another conformal frame in which the field equations resemble Einstein's.
In this frame (the "Einstein frame") the value of G is defined to be a
constant Go everywhere but the masses of particles vary as φ~*. The
conformal transformation defining this frame is gab

 = φGogab> Tab

= φ~1Gβ1Tab. The field equations then take the forms

1 ab

laΦιb-
λ2gab9

cdΦlcΦld) (3)

f (4)

where stroke denotes differentiation with respect to gab.
The Brans-Dicke frame is the most convenient for physical inter-

pretations because in this frame small particles move on geodesies.
However, from a mathematical point of view, the Einstein frame is better
because in it there are no second derivatives of φ on the right hand side
of the field equations. In fact one can regard the field equations as being
simply the Einstein equations with a scalar field which interacts with
all other matter fields through the trace of their energy-momentum
tensor. Provided that the matter fields are reasonable, the Ricci tensor
Rab will satisfy the inequalities used in the previous paper and so the
results derived there about the axial symmetry and the spherical topology
of stationary black holes will hold in the Brans-Dicke theory also.

3. Stationary Black Holes

As stated in the previous section, a stationary black hole must be
axially symmetric or static. In the former case there will be two Killing
vector fields Ka, Ka, the first of which is timelike and the second spacelike
at infinity. The bivector K[aKb] will be timelike at infinity and its magni-
tude h = K[aKb]K[aKb] will be negative. Carter [10] has shown thta the
event horizon will occur where h = 0. Outside the horizon h will be
negative and so at each point there will be some linear combination of Ka

and Ka which is timelike. The scalar field φ must be constant along the
directions of Ka, Ka since they are Killing vectors. It follows therefore
that the gradient of φ must be spacelike or zero everywhere in the
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exterior region. The same will be true if the solution is static since in this
case there will be one Killing vector Ka which is timelike everywhere
in the exterior region. Now let ^ be a partial Cauchy surface for
J+{J~)r\J~(J+) and 9?l the partial Cauchy surface obtained by moving
each point of £f a unit parameter distance along the integral curves of Ka.
Let Ψ' be the region bounded by £f, 9', a portion of the event horizon
and a timelike 3-surface at infinity. If the exterior region is empty apart
from an electromagnetic field, the scalar field will obey an equation

Multiply this equation by log(φ/φ0) and integrate over Ψ* {φ0 is the
constant value which φ approaches at infinity; it can be normalized to
unity). One can then integrate by parts to obtain a volume integral of
minus the square of the gradient of logφ and various surface integrals.
Because of the isometry group the surface integral over 9" cancels out
that over ίf. The surface integral at infinity is zero because \og(φ/φ0) is
zero there. The surface integral over the horizon is zero because the
gradient of φ is orthogonal to the null vector tangent to the horizon
which is a linear combination of Ka and Ka. This shows the volume
integral of the square of the gradient of φ must be zero. Since the gradient
can only be spacelike or zero, it must be zero everywhere and so φ must
be constant. In this case the Brans-Dicke equations are the same as the
Einstein equations. Thus, stationary black hole solutions in the Brans-
Dicke theory are the same as stationary black hole solutions in the
Einstein theory. It appears that the latter are completely represented by
the Kerr family of solutions.

4. Mass Loss

Let Ka be the timelike Killing vector in a stationary asymptotically
flat solution containing an uncollapsed body. The gravitational mass of
the body measured from infinity by the orbits of small particles is given
by the r'1 term in KaKbgab. More precisely

where dΣbc is the surface element of a spacelike 2-surface near infinity
and x2 = KaKhgab. One also defines the quantity Mt by a similar expres-
sion but with gab replaced by gab = φgab. Mt represents the gravitational
mass that one would calculate from the geodesies in the Einstein frame.
One can then decompose the total mass M into the sum of a "tensor"
component Mt and a scalar component Ms which causes small particles
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not to move on geodesies in the Einstein frame and which is given by
the r ~1 term in φ. Mt and Ms can be expressed in terms of integrals over
the matter distribution. If the body is static and does not have high
gravitational binding energy, they will be in the ratio of 1 to (2 + 3ω)~ *.
If the body now collapses to form a black hole, the field φ will become
constant and so Ms will become zero. On the other hand, one can general-
ize the asymptotic conservation law of Penrose [10] and apply it to the
Einstein frame to show that Mt will decrease by the amount of tensor
gravitational waves and scalar field energy radiated to infinity.
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