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Abstract. The general analysis of the equivalence of ensembles in quantum lattice
systems, which was undertaken in paper I of this series, is continued.

The properties of equilibrium states are considered in a variational sense. It is then
shown that there exists a canonical as well as a microcanonical variational formulation
of equilibrium both of which are equivalent to the grandcanonical formulation.

Equilibrium states are constructed both in the canonical and in the microcanonical
formalism by means of suitable limiting procedures.

It is shown, in particular, that the invariant equilibrium states for a given energy and
density are those for which the maximum of the mean entropy is reached. The mean entropy
thus obtained coincides with the microcanonical entropy.

1. Introduction

In a previous paper [1], the problem of the equivalence of ensembles
in Quantum Lattice Systems was begun. The purpose of this paper is to
continue the analysis of equivalence of ensembles in quantum spin
systems. In [1] we gave an algebraic formulation of the mathematical
framework of quantum spin systems in the three usual ensembles and
also some equivalence formulas of the respective thermodynamic func-
tions. This allowed us to show some properties in one ensemble if they
are proved in another.

In the present we continue in the same way and we consider the
properties of the equilibrium states using a variational principle intro-
duced by Ruelle for the grandcanonical ensemble [2].

We consider a quantum lattice system on Z*. We associate with each
lattice site x € Z” a Hilbert space #, of dimension two, and with each
finite region A in Z" the tensor product

H(N)=K) H,.
xed
If A, CA, we can identify each bounded operator A on #(A,) with
A®1y, 4, on H(A,), where 1,4, is the identity of H#'(4,/4,). With this
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convention one defines the algebra of observables by the following

A=) AW’
AeZv
where U(A) is the set of bounded operators on #(A).
We note that the group Z* of space translations is a subgroup of the
automorphism group of A and we denote the action of this group by

AeUA)»1,AeN(A+a). aeZ.

We consider interactions, i.e., functions @ from the set of finite subsets
of Z” to A such that
i) oX)eAX), VXCZ,

ii) @(X) is hermitian,

i) (X +a)=1,9(X), VaeZ,

: I2X)

iv) ||| an:o N ) <+ 00
where the last sum extends over all finite subsets of Z* containing 0 and
N(X) is the number of points of X.

We denote by B the set of such interactions.

We consider a system of particles on the finite set A and the energy
operator Ug(A) e A(A) corresponding to the interaction @ defined by

Up(D)= ), 2(X).

Xca

We also introduce the “interaction energy” at the origin by

D(X)
Ad§= Z W

Xs0

Further we denote by {e}?, e{”} an orthonormal basis of #,, for each xe Z".
Now for each finite region A C Z”, we define a configuration | X ) which
is at once a subset {x;, ..., x,} of A and an element of #(A) defined by
XD = ) iy
xed
where 6(x)=1if xe {x{, ..., x,} and 0 if not.

If A, CA, we can identify every configuration |X) of #(A,) with
XD ®80,4,/4, of W(A,), where §,,,,, is the vacuous subset of A,/4;.
Clearly the set of all configurations of A is an orthonormal basis of #(A).

We define projectors PN(A) e A(A); 0N < N(A), by

PYA)|X>=|X) if NX)=N

=0 ifnot.
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Now we give a review of definitions in the three ensembles which be used
in the following.
In the microcanonical formalism variables are the energy per unit of
volume e, and the density n, 0<n< 1.
For each finite region A of Z” and interaction @ € ‘B, we can define
the microcanonical partition function by
Q4 (E,N)= Tty 4 {PN(A) z E}.i(db,A)}
AP, A)<E
where E = e- N(A), N is an integer such that 0 < N < N(A) and {A,(®.4)};,
is the set of eigenvalues of Ug(A) repeated according to multiplicity and
{E;,@.4)}i30 is the corresponding set of spectral projectors.
We define the microcanonical thermodynamic function, actually the
entropy, by .
D _ : D
s%(e,n)= /}Lngo N logQ%(e- N(A), N).

N

N "

In the canonical formalism variables are the density n and the inverse

temperature f3.
For each finite region A4 CZ> and interaction @ €B, we can also
define a canonical partition function

ES(N.p) = Tty {P(A) exp(— BUq(A))}

where N is an integer such that 0 <N < N(A).
We define the canonical thermodynamic function, actually the free
energy by

o 1 o
fon, p)y=—p /11120 N log Z4(N. B).
wr

In the grandcanonical formalism variables are the inverse temperature
p and the chemical potential p.

For each finite region 4 CZ" and interaction &€ B, we can also
define a grandcanonical partition function

Z3(B. W)= Ty {exp (BuAN"(A) — BU(A)}
where A"(A) € A(A) is defined by
VXCANAIX)=NX)|X).

We define the grandcanonical thermodynamic function, actually the
pressure, by

1
pP(B. ) =p~" lim N log Z3(B. 1) -
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Let E be the set of the normalized positive linear functionals over 2,
i.e. the set of the states and E L5, the subset of E of the translationnally
invariant states, i.e. such that

0€E o(t1,A)=9(A) VAeUA and VYxeZ'.
If g€ E, the restriction of ¢ to any 2(A), the state defines a positive
operator g, on #(A) such that
T1 04 {o4}=1 and T4y {os4}=0(4)

for A e A(A).
We refer to [3] or [4] for the properties of the mean entropy of an
invariant state, defined by

. 1
S(o)= /111_{130 - m Tty {o4logo4}

where the limit A — oo is the sense of the parallelepipeds. The mean
entropy is a non-negative affine upper semi-continuous function on
EnL}..

As in [1] we consider only the interactions which commute with all
the PN(A) for each A.

II. Variational Properties

With the foregoing definitions the Variational Property (Theorem IV
of [3] and Theorem III of [4]) has the following form:

Theorem 1. If & € B then we have for >0 and pe R
()= sup (S0~ Beldo)+hrelNe) ()

and
S(Q)=q§1&}£{ﬁp"’(ﬁa 1)+ Po(Ag) — Buo(No)y  for g€ EnLy. (2.1)

Once one notes that this Theorem is identical to that of [3] because

Bp®(B. 1) = P(')

where P(.) is the pression as defined in [2] and @’ is connected with @
by the following:

P'({x})= — BuNs+ pO(Ix}) x4
P (X) =pd(X) XCA and N(X)*1.

The aim of this section is to describe this variational property in the
canonical and microcanonical ensembles.

2.2)
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First, for canonical ensemble, it was shown in [1] that thermo-
dynamic functions of grand canonical and canonical ensembles are
related by the following

f2(n. p)= sup {un—p®(B. )} (2.3)

for #eB,0<n<1, f>0and peR.
Then, we can show the following.

Theorem 2. If @ € B, then we have for >0 and 0 <n<1
O =B/ pl= sup {S(0)~foldo)}. @4

e(HNo)=n
Furthermore

D) S()= inf {~ BS?(e(No).B)— Po(Aa)} for o€ ENLy.
We put
—Bf*n )= sup {S(0)-Pel4s)} 2.5)
e(H#o)=n

and we begin by proving that

AN PR FAUN 26)
By Theorem 1, we have, for all g e En L3, such that o(45)=n and all
HeR
Bp®(B. 1) Z S(0) — Be(d) + Bun (2.7)
and by (2.3)

—Bf0p = il B° B —pmz — 0. Q)

Now f®(n- B) is a convex function of n because for 0= 4, n;,n, <1

— Bf®(Any + (1 — ) ny, B)
> sup | {S(le+(1—2) @) — Bhei(Ae)—B(1 — 1) 02(40)}

Q1,026 EnLzv
01(Ao)=n1
02(A0)=n2

A {A[S(01) — Bo1(Ag)] + (1 — 2) [S(e2) — o2 (Ag)1}
e1(Ho)=ny
e1(Ao)=n2

= —ABSo(n. B)— (L= B2 (ns. B) .
So for ff and @ fixed

Ynel0, [ 3u,eR Viel0,1]
foBy=fom B)— p,(n—1)

2.9)

(2.10)
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and it is shown in [1] that

120, B)= pn—p®(B. 1) - (2.11)
Furthermore
Ve>0 3Joe Enlje
such that
sup {S(0) — Bo(Ag) + Brao(No)y = S(0) — Bo(Ag) + Br,o(N o)+ &

and put g(Ap) =1L
Therefore

Bf2 (. p)=Bu,n— Bp®(B. )
=Bun— sup {S(0)—foldo)+ Buno(Ao)}

> B, n—S(0) + Bo(Ag) — Pund(No) — &

2=~ sup {S(e)—Pe(do)}—e
o(Ho)=1

= Bu,(n—D+BfO1 B —e

2 pf%n p)—¢

where we have used (2.11) the Theorem 1 and the convexity property
(2.10). Combining (2.8) and (2.12) part (I) follows. Part (II) follows from
part (I) by analogy with 5 of Theorem 2 of [4]. We remark that, also
with results of [1] and the fact that the function

Sup {S(0) — Bo(Ag) + Bro(A5)} (2.13)

(2.12)

e

is convex in u, we show in the same way that Theorem 1 follows from
Theorem 2.

We recall that A4, is interpretated as the mean energy per site asso-
ciated with an interaction @ € B and if ¢ is an invariant state ¢(44) may
be considered as the expectation value of the energy per site for the
interaction @ in the state g.

The following Theorem is thus an easy physical interpretation com-
pleted in the following section.

Theorem 3. If ® B we have for |e|] < || ®|| and 0<n<1
@O sP(e.n)= NWE

sup
0eEnLyzy

e(Ho)=n; e(Aa)=e
Furthermore

D) S()= inf s?(0(Ag) 0(Ny) for ge ENLy,.
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The proof of this Theorem is similar to the previous one. We remark
only that for each n the function

sup S(o) (2.14)

eeEnLyy
e(H#o)=n; ¢(dop)=e

is concave in e by the following

sup S(e)2 sup S(Ae; +(1 =2 02)
0cEnLyy 01,026 EnLzv
o(Ho)=n; ¢(Ap)=2Aer+(1—A)ez 21(#0)= 02(H0)=n
e1(do)=ey; 2(Adap)=e2 (2 15)
=4 sup S(e)+(1—=7) sup S(e2)
eleEr\lev QzEEf\LJ'zV
21(Ho)=n; ¢1(Ada)=e1 2(AH0) =n; e2(Ap) =e2

where 0= A=< 1.

And so, we can use results of [1] and Theorem 2 for proving the
present Theorem.

We remark also that the function

sup -{S(¢) — BeAs)}
oeEnLzv
¢(Ho)=n

is convex in f and using also results of [1] this proves that part I of
Theorem 2 follows from part I of Theorem 3.

Part II follows by analogy with Theorem 2 and 1 and continuity of
s®(e,n) in (e, n).

3. Equilibrium States

In Quantum Statistical Mechanics the ensemble averages are given by
a positive operator of trace class. If A" is a subsystem of the lattice con-
fined to A, for all A e W(A') we define a ensemble average of A by

0p,4(4)= Tr{T} ' Tr{T{ A}

where T is the ensemble unnormalized density matrix, meaning in the
grand canonical ensemble:

TP = exp{fuN (A) — Ug(A)}
in the canonical ensemble:
TP =PN(A) exp{— fUg(A)}
in the micro canonical ensemble:

Tf=PN(A) Z Ezmp,A)

AieE4

where E4 is the interval [eN(A), N(A) (e+ 4)] for 4e R,
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As in the grand canonical ensemble [3] and [4] we will prove the
existence of invariant states reaching the maximum of formulas of
Theorems 2 and 3 and for a “large” set of interactions they may be
obtained as thermodynamical limit of the averages before®.

We recall that in [3] is proved that for each (®, 5, 1) we can associate
at least one invariant state gg 4 ,, such that

Bp® (B, W) = S(0o.p,.) — 00,5, (BAs— BU(N?)
= sup {S(e)—feldo)+fue(Ho)}-

QELNLZY

3.1)

It is proved in [4] that each tangent functional «g 4 ,(.) to the graph of
p®(B. 1) determines an (invariant) equilibrium state that verifies (3.1).
More precisely the situation is the following:

Let T, CB x R x R be the set of (P, B, u)e B x R* x R such that
the graph of p has a unique tangent functional at this point, i.e.

PP B p+ 1) Z p® (B ) — g p (D1 i) VOB, (32)
Yu, eR

determines a unique og 5 ,(.,.) € (B x R) for (®, f, We T;.
Now o0g 4 ,(..1) determines a state g4 ;5 ,€ ENLz through the
relation

Og.p (P )= — 005, (N0)+ 0o p,u,(Ap) VP EB.

The state g4 4 , gives the maximum in (3.1) and this maximum is unique
only if (@, 8, u) e T;.

Now we can investigate some properties of these equilibrium states
using the Theorems 2 and 3.

We begin with following
Theorem 4. Let ¢ € B. For each ue R
i) we can define a non empty set #i, C [0, 1] of the n, such that

p®(B. w)=pun, — f®(n,. B),

il) there exists at least one (invariant) equilibrium state gg 5, that
verifies (3.1) and
Q¢,p,p(Wo) en,,

Co.p., i unique if and only if (@, u, p) € Ty,

! In the microcanonical case we are interested in the case 4— 0. Unfortunately it
appears that then, in the Quantum Spin System, the limit A— oo is connected to the size
of convergence 4 —0.

14 Commun. math Phys, Vol 24
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iii) each of these equilibrium states reaches the maximum of Theorem 2
- ﬁf(p(nw ﬁ) = S(Q(D,ﬂ,u) - ﬁQd’,ﬂ,u(Ad})

where n,= 04 5 ,(N)
and conversely, for ecach ne 10, 1[.

iv) We can define a non empty set fi, CR of the u, such that
fe(n. B)=p,n—p®(B. 1)
v) There exists at least one state gq, , € ENLy" such that
Qomp(No)=n and —Bf®(n. p)=5(pnp)~ Boons(Ade).
vi) For each of these states there exists u, € fi, such that
Bp® (B, 1) = S©p.n.p) = B n,p(A0) + Blly0s n s (N0) -

We note T, CB x 10, 1[ x R* the set (@, n, f) such that gy, » is unique.

Proof. Statements i) and iv) together are proved in [1]. The beginning
of this section gives references to the proof of parts of ii).

Now we recall that the set En L}, of invariant states is weak-*-com-
pact in the set of all states. Then the set of the states such that

o€ EnLy, and o(ANp)=n forsome ne[0,1]

is a closed subset of En L., because the function A" (g) = o(A) is con-
tinuous on EnL;,, and therefore weak-s-compact. This proves v) be-
cause the function S(g)— fo(Ay) is upper-semi-continuous on EN Lj..
The last inequality of (2.12) proves vi) by the following:

JSup, {S(e)— Peldo)} + Buun=— Bf®(n.p)+ Bu,n

¢(H0)=n

2 BS2( B+ Bunl (3.3)
- Qei}rlgf v {S(‘Q) - :BQ(A@)} + ﬁ,u,,l
o(Ho)=1

where u,, as in (2.12) is an element of f, verifying iv).
Now (3.3) is true for all [€[0, 1], therefore using v) we have
S(Qq),n,/;) — Boo.np(Ae) + ﬁﬂan,n,p(JVo)
= sup  sup {S(o)—Polde)+ Bu,o(No)}
1e[0,1] ¢eEnLzv
o(No) =1
= Bp®(B. 1)

To prove statement iii) we note that using (3.1) we have
ule {S(0) — Po(Ag)} = S(sz,p,u) - ﬁQqs,ﬂ,u(Aq>) .

S
eeEnLzv
e(Ho)=¢ew,p, 1
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The remaining part of statement ii), i.e.

Q(D,ﬂ,u(‘/VO) € ﬁu

follows now by iii) and 1).
We remark that if (@, 8, w)e T, and (P, n,, f) € T, therefore by the
previous Theorem

00.8,u = Co,n,..p
and

pr,/z,#(‘/Vo) =n,.

As in the grand canonical ensemble we can compute the equilibrium
states associated to each (&, n, f) using the tangent planes to the thermo-
dynamics function.

We define:

1
o il (¥)= N(4) Z2(N. B)™! Tty {PN(A) e PT2 D Uy (A)}

for ®eB and 0 < N < N(A), 4 (finite) C Z¥ and we extend this function
to all the values of the density parameter 0 <n<1 by linearity.

The following Theorem gives information concerning the equilibrium
states in the canonical ensemble, i.e. for @, n, § fixed.

Theorem 5. Let T, CB x [0,1] x R* be the set of (D, n, B) such that
the graph of f has a unique tangent functional in the dual of B at @ then
for (@, n, p)e T, the equilibrium state @4, 5 is determined by the tangent
functional oy, ; and is ergodic. Further we have for (®,n,B)e T, the
relation

a(b,n,ﬂ(ql) = Q(D,n,ﬂ(A‘I’) = /}1_120 ad),n,ﬁ,A(W)

where he limit A— oo is in the sense of van Hove.
Furthermore, each tangent functional to the graph of f at (®,n, )
determines a state Qo , 5 € EN Ly, through the relation

‘xqs,n,p('P): Qdi,n,ﬂ(AlI’)‘

The proof of the first statement of this Theorem is identical to [2]
or [3] once one notes that for finite A4 and each (n, f) the function
@— f2(n, p) has a unique tangent plane and because the linearity of
fem P innfor NSn N(A)SN +1itis ag, 5 4

The remaining part is identical to part 2 of Theorem 3 of [4].

Clearly T, coincides with the set defined as in Theorem 4.

The following two Theorems give information about the equilibrium
states using the microcanonical formalism.

14*



190 R. Lima:

Theorem 6. Let ® € B and ne [0, 1]. For each >0
i) we can define a non empty set é;CEq=[—||®|,
such that:
S(p(eﬂa n)= ﬁe/; - ﬂf‘p(’ﬁ B .

ii) There exists at least (invariant) equilibrium state gg , 5 that veri-
fies the maximum of the canonical variational property of Theorem 2 and

D] of the ¢;

Qq>,n,ﬂ(A¢) €ép.

iii) Each of this equilibrium state reaches the maximum of Theorem 3,
ie.
Sq)(eﬂ« n)= S(pr,n,ﬁ)
where
€= 00.n,p(Ae)
and conversely, for each e € E,.
iv) We can define a non empty set f,CR* of the B, such that:

_ﬁequ(n’ Be):_gd}(e, n)— ,Bee .

V) There exists at least one state gq . € ENLy, such that

Qd>,e,n(=/V0) =n, Q¢,e,n(Ad>) =e

Sd)(eﬂ n) = S(Q¢,e,n) .

vi) For each of these states there exists ,€ ﬁz such that

- Bequ(n* Be) = S(Q(b,e,n) - ﬁQ(b.e,n(Ad)) .

We denote T3 CB x Eg % [0, 1] the set of the (@, e, n) such that gg ,, is
unique.

Proof. Using the equivalence of thermodynamical functions proved
in [1] and Theorem 2 and 3 the proof of the Theorem is identical to that
of Theorem 4. Once one notes that the function A4(g) = 0(A44) is also
weak x-continuous and so the set {¢p € ENn L., o(A,) =n and o(4y) = e}
is weak *-compact in EnL3,.

Like in the other ensembles we can also in the microcanonical
ensemble to construct equilibrium states using the finite volume thermo-
dynamic functions.

Let B, AeZ’, A finite and e€ E5, 0= N < N(A) we define for

a given e R*: .
1 Try 4 {P (4) Z E; 0,4 U.,;(A)}

liEEj‘l

g, N 4 (V)=
2, ’N(A)’A( ) N(A) Tr 4 {PN(A) D E).l-(di,A)}

liEEﬂ

and

where E4 is the interval [e- N(A),e- N(A)+ 4 - N(A)].
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We can extend this functional to all n such that 0<rn<1 in the
third index.

We begin with the following

Theorem 7. Let T; CB x E4 X [0, 1] be the set of the (®, e, n) such that
the graph of s® has a unique tangent functional in the dual of B at ®, then
Jor (@, e,n)e Ty the equilibrium state 0g , , is determined by the tangent
functional o, , ,at @ and is ergodic. Further we have for (®, e, n)€ T and
forall P eB

Q(Pen(AY’)_ acben('P)_ hm sup OC(D enA(T)

4-0 Ad)~>wo
Furthermore each tangent functional to the graph of s at (P, e, n) determines
an equilibrium state Qg , , € EN Ly, through the relation

adi,e,n(lp) = QtD,e,n(A‘I’) fOT all Ye 23 »

The proof of this Theorem uses one Lemma. For thatlet € B, 4 C 2",
A finite and e€ Eg, 0 £ N £ N (A) we define for a given 4e R*

TI 4 {PN(A) Z E,one “Ueld Uy (/1)}

ricE4

N(A) a (F)= N(A) Tty (a) {P (4) Y, Epene” U“"A)}

lieEﬂ

We extend this functional to all n such that 0 =n =1 in the third index.
Now we define also the function

N 1
i ("” N(A)) Ny O o (P 3 Bacom e

and we extend this functional to all n such that 0>n=>=1 in the second
variable. With these definitions we have the following

Lemma. y5 , . (V) is the tangent functional at @ to the function
t$ 4(e.n) for all ® € B.

Proof. We have

d
Tty a) {PN(A) an Egyw(A) iz e_U‘”(A)}

1 1
Tty PYA) [ o _dZe Vs
= 2mi rW){ ) j Z= U Wz 92¢ }
=0
where we have noted Eg(4)= ),  E,; 4.4 and C4isa contour in C
(@, ) e EA

such that E4 is within and for small A there are no eigenvalues of Uy, ; (A1)
= Ug(A) + AUg(A) on C4.
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1

The last equality follows by commutativity of e V> and Z- U

and cyclicity of Tr.
The Lemma results from the definition of ¢§ 4(e, n) and analogy with
Theorem 5 or 3.
Also we recall that the properties of the microcanonical entropy
implies [5], that:
s®(e,n)= jl_r'n s3 4(e.n) for all 4

where
1

N
St 4 (6” W) =N [QL(N(A) (e + 4), N)— QF(e- N(A),N)].

Now to prove Theorem 7, we have

S?I),A(eﬂ n—ez= IA(D,A(e» n) = 5?1),/1(& nj—e+4
because
Tr {PV(A) E3(A)} €™ 1eND-ANDI < Tr,  (PN(4) E3(4) ™ Vo)
< Trye ) {PV(A) Eg(A)} e N}
Furthermore we note that a tangent functional y € B, to s®(e, n) also

is a tangent functional to s®(e, n) — e.
Then

s (e n) —ezs®(e.n) —e—(1g.ema(P)+4)—¢
>s®e.n)—e—(eog . 4(P)+4)—¢
25%(e,n) —e—og . ,(¥)— 2
which concludes the proof.
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