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Abstract. We describe a new approach to the general theory of unitary representations
of Lie groups which makes use of the Gelfand-Segal construction directly on the universal
enveloping algebra of any Lie algebra. The crucial observation is that Nelson's theory of
analytic vectors allows the characterisation of certain states on the universal enveloping
algebra such that the corresponding representations of the universal enveloping algebra are
the infinitesimal part of unitary representations of the associated simply connected Lie
group. In the first section of the paper we show that with the aid of Choquet's theory of
representing measures one can derive a simple new approach to integral decomposition
theory along these lines.

In the second section of the paper we use these methods to study the irreducible unitary
representations of general semi-simple Lie groups. We give a simple proof that the X-finite
vectors studied by Harish-Chandra [5] are all analytic vectors. We also give new proofs of
some of Godement's results [2] characterising spherical functions of height one, at least for
unitary representations. Compared with [2] our method has the possible advantage of
obtaining the characterisations by infinitesimal methods instead of using an indirect argu-
ment involving functions on the group. We point out that while being purely algebraic in
nature, this approach makes almost no use of the deep and difficult theorems of Harish-
Chandra concerning the universal enveloping algebra [5].

Our work is done in very much the same spirit as that of Power's recent paper [8]. The
main difference is that by concentrating on a more special class of positive states we are
able to carry the analysis very much further without difficulty.

§ 1. Representations of the Universal Enveloping Algebra

Let G be a real simply connected Lie group with Lie algebra ^ and
let %(&) denoted the complex universal enveloping algebra of ^. An
involution is defined on ^(^) by supposing that X* = — X for all l e i

If π is a unitary representation of G on a Hubert space Jf., we denote
by jf °° and Jfω the spaces of C00- and analytic vectors respectively for π.
It is known [6] that both of these are always dense subspaces of Jf. There
is a representation dπ of ^ by operators on Jf7 °° given by

dπ(X)ξ = HmΓ1{π{exptX)ξ-ξ}
ί->0

and this has a natural extension to a representation dπ of °U(^\ The
extension is a ^representation in the sense that for all

dπ(X*) Q dπ(X)* .
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In terms of any basis Xγ,..., Xd of ^ the analytic vectors of π are deter-
mined by the following criterion, [6].

Proposition 1.1. A vector ξ e Jf °° is an analytic vector for π if and
only if there are constants, a,s>0 such that

for all functions i such that 1 ̂  ί(r) ̂  d for all ί^r^n.

It is most important that this estimate can be deduced from an
apparently weaker one involving the element A = X* + + Xj e %{^\
[3,6].

Proposition 1.2. Let σ be a *-representation of %($) on a dense in-
variant domain D in a Hilbert space J f. If ξeD and there is a constant
M such that

\\σ{(l-Δy}ξ\\SM"(2n)\

then there exists a constant s depending on M but not on ξ or σ such that

\\σ{Xw...Xi(m))ξ\\^s-"m\.

This proposition may be used in conjunction with the following
sufficient condition for a *-representation of °U{^) to be associated with
a unitary representation of the Lie group G, [6].

Proposition 1.3. Let σ be a *-representation of ^ ( ^ ) on a dense in-
variant domain D in a Hilbert space ffl and let s > 0 be a constant such
that for all ξeD there exists a constant aξ such that

\\σ(Xia)...Xm)ξ\\Saξn\s-\

Then there exists a unique unitary representation π of G on ffl such that
D Q #eω and σ is the restriction of dπ to D.

If sj + ••• +s% Ss and ξeD then

π{exp(s1X1+ ••• +sdXd)}ξ = Y^ — σ(Xm...Xi{H^ξsi{1)...sm

where the R.H.S. converges absolutely.

From these estimates it follows quickly that δπ(l — A) is essentially
self-adjoint on Jf00 and that <#ω is precisely the set of analytic vectors
for the square root of dπ(ί -A)~, [3].

We come now to the study of states on the universal enveloping
algebra. A functional φ : * (^)->C is called a state if φ(X*X) ^ 0 for all
X e <%{%). This implies in particular that φ(X*) = φ(X) for all X e %{$).
The set of all states forms a cone which defines a partial ordering on the
linear space of all self-adjoint linear functionals on °U{^\ Those states
which give rise to extreme rays of the cone are called pure states. By the
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Gelfand-Segal construction [1], corresponding to any state φ on
there exists a Hubert space jtfφ9 a, ^representation σ of °U{^) by un-
bounded operators on a dense invariant subspace D of Jίfφ and a vector
ξ e D such that for all X e <

The question now arises whether the representation σ can be ex-
ponentiated.

Theorem 1.4. Let φ be α state such that for some constant M and all

integers n

φ{(l-A)2n}^M2n(2n)\2

Then there exists a unique unitary representation πφ of G on Jfφ such that
D Q fflφ and σ is the restriction of dπφ to D.

Proof. The given estimate may be written as

from which, by Proposition 1.2, we deduce an estimate of the form

\\σ(Xi{ί)...Xiim))ξ\\^smml.

liηeD then η = σ(X)ξ for some Xe^(^) and expanding X as a poly-
nomial in Xx,..., Xa we obtain an estimate

where t is any constant greater than s. The result then follows by Prop-
osition 1.3.

We call a state satisfying an estimate of the above type an analytic state.

Theorem 1.5. // φ is an analytic state on ^ί(^) then {ψ : 0 ^ ψ ^ φ} is
order isomorphίc to

{AG JS?(Λ;) :OSΛ^1 and Aπφ(g) = πφ(g)A for all geG}.

In particular φ is a pure state if and only if πφ is an irreducible unitary
representation.

Proof If A is an operator of the stated type then A leaves the subspace
Jf °° invariant and Adπ(X) = dπ(X)A for all X e %($). Therefore if ψ is
defined by

ψ is a state and

= φ(X*X).



162 E. B. Davies:

Conversely given any ψ of this type there exists by the Gelfand-Segal
construction a bounded operator A on J f such that 0 ^ A ^ 1 and

for all X, 7 e Φ(»). It follows that for all X e %(&) and all η, ζ e D

The required result now follows by exponentiating, using the fact that D
consists entirely of analytic vectors.

The following result allows us to derive the whole of integral decom-
position theory for unitary representations of Lie groups from Choquet's
theory of representing measures on compact convex sets [7]. The ad-
vantage of this over the usual approach [1] is that it brings the integral
and infinitesimal aspects of Lie group theory into a much closer relation-
ship.

Theorem 1.6. For any constant M > 0 the set K of states on %($)
such that

f (2n)Γ2M~2nφ{(\ - Δ)2n} ^ 1
n = 0

is a metrίsable compact convex set and a cap for the cone of all states on
%(<&). Every state in K can be represented as the barycentre of a probability
measure concentrated on the set of pure states in K.

Proof. The set K is clearly a convex cap and it is metrisable in the
weak topology since <%(&) has a countable basis. We have only now to
prove that it is compact, since the last assertion then follows from [7].

By Proposition 1.2 there exists a constant s such that for all φeK

\\σφ(Xi{ί)...XHm))ξ\\Ssmm\.
Therefore

\φ{Xm ... Xiim))\ = Kσφ(Xi(ί)... Xiim))ξ, ξ>\

Since the elements Xi{1)... Xi(m) generate °U{$\ for every X e%(&) there
exists a constant kx<oo such that for all φeK, \φ(X)\ S kχ The com-
pactness of K is an immediate consequence.

One is not interested only in simply connected Lie groups, and the
following criterion enables one to deal with more general situations.

Theorem 1.7. Let G be a simply connected Lie group and Z a discrete
subgroup of the centre of G. For any M>0let Kz be the set of states φ on

such that

Σ (2n)Γ2 M~2nφ{(l - Δ)2n} ^ 1
n = 0
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and π(g) = l for all geZ, where π is the unitary representation constructed
from φ. Then Kz is a weakly closed face of the compact convex set K.

Proof. If 0 ^ ψ ^ φ e Kz then the Gelfand-Segal construction and
Theorem 1.5 allow us to identify πψ with a subrepresentation of πφ9 from
which it is immediate that πφ(g) = 1 for all geZ, and hence ψeKz. This
and similar calculations prove that Kz is a face and it remains to prove
that it is weakly closed. Suppose φn e Kz and φn-+φoe K. Each of these
states defines via Theorem 1.4 a positive definite analytic function on
G, say fn(g) = (πn(g)ξn, ξn}, and by Proposition 1.3 and Theorem 1.4 it
is clear that fn{g)^fo(β) for all g in the neighbourhood

JV(e)={exp(s1X1+ ••• +sdXd):si+ "+sj<s2}

of the identity in G. By the general theory of positive definite functions
it now follows that /„ {g) -> f0 (g) for all g e G and so f0 (g) = 1 for all geZ.
But if <πo(gf)ξ, ξy = 1 then πo(g)ξ = ξ, by spectral theory, so φoeKz.

§ 2. Spherical Functions on Semi-simple Matrix Groups

In this section we use the above results to provide a new derivation of
some of Godement's results on spherical functions for unitary representa-
tions of semi-simple groups. More general results can be found in [2, 5]
but our approach avoids all technical problems, and derives the in-
finitesimal results directly, rather than obtaining them from the integral
versions as Godement does.

We let G be a real semi-simple, simply connected group with Lie
algebra <3. Let 0 = Jf + & be a Cartan decomposition of <S and Xl9..., Xe

a basis for Jf, Xe + ί9 ...,Xd as basis for 9 with respect to which the
Killing form B : 0 x < -̂>lR is given by

O,Ϊ=K/

If %(^) is the complex universal enveloping algebra of ^ then the sub-
algebra generated by X is isomorphic with <%(jf). The element

Cx = -Xl Xe+Xe + 1 + ••• +X* l i e S i n t h e C e n t Γ e Z(9) Of
and the element C2 = -Xl ... -X e

2 lies in the centre Z(jf) of
Moreover in our earlier notation A = C1 — 2C2.

If K is the Lie subgroup of G associated with JΓ then K need not be
compact if the centre Z of G is too large. However we may write
K = KίxK2 where Kx is a compact group, K2 is a vector group and
K = K/ZnK2 is compact. We observe that for the adjoint representation
on fyif&X K may be factored through K so the image is a compact group.
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Lemma 2.1. // π is an irreducible unitary representation of G on a
Hilbert space J f then π\K is a direct sum of irreducible representations.

Proof. Since π is irreducible π | Z is given by a character. If χ: K
-> {z: \z\ = 1} is a character such that χ(g) = π(g) for all g e ZnK2 then
the representation π'(/c) = π(/c) /(/c)"1 of K can be factored through K.
The result follows from standard theorems about representations of
compact groups.

We define the positive cone of °U^S) to be the weakly closed cone
generated by {X*X :X eW(<$)} and define %(9) to be { l e f ( ^ )
: adfc(X) = X for all k e K}. %(&) is a *-subalgebra of Φ(#) containing
Z(Jf) and Z(^), and we define its positive cone to be its intersection with
the + ve cone of °U{^\ Since K has an action on the semi-graded algebra

there is an averaging mapH on %(<&) defined by

Z H = [zdk(X)dk.
K

This is a positive linear map of <%{<&) onto <%0(&)9

 a n d in particular satisfies
zlN = A. We finally define ^# to be the set of all positive homomorphisms
from %{&) to C and give ί̂T the weak topology. It is clear that %(&)
commutes with Φ(jf) and we denote by J the algebra generated by
these.

For each I e f ( f ) we denote by X the associated left invariant
differential operator on C^iG) so that if π is a representation of G and

The elements of %(9) then correspond to the differential operators on G
which are left invariant with respect to G and right invariant with respect
to K.

If π is any representation of G and σ is an irreducible representation
of K we denote by j ^ σ the closed subspace of ffi consisting of vectors
which transform like σ under π | K. Clearly ffl = Σ J^σ.

σeK

Lemma 2.2. If π is an irreducible unitary representation of G on J^f
and σeK then 2tfσ Q Jtfω and dπ maps 0& onto an irreducible *-algebra of
bounded operators on 2tfa.

Proof. One first observes that dπ(Cx) is a scalar operator, by [9].
Also dπ(C2) leaves 2tfa invariant and is a scalar operator on 2tfσ. Therefore
2tfσ is an eigenspace for dπ(Δ) = dπ(C1 - 2C2). The fact that 2tfa £ Jfω

now follows from Propositions 1.1 and 1.2. It is easy to see from their
definitions that dπ(X) leaves Jί?σ invariant for all Xe<%(JίT) and all
I e f o ( f ) , so dπ maps $ onto a *-algebra of operators on 2tfσ. Since
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the norm topology of Jfσ must coincide with its C00

Frechet space topology defined in [4], the operators dπ(X) | fflσ must be
continuous and so bounded for all l e i .

We may write 2tfσ = 2tfγ ® 2tf2 and dπ \ $ = dπγ ®dπ2 where dπx maps
^(JΓ) onto the algebra of all operators on the finite-dimensional space
jfj. and dπ2 maps %(#) into JS?(Jf2). Let £ 1 ? . . . ? £„ be an orthonormal
basis for ^ and let ξ,ηeJ?2. Since π is irreducible and Φ(#) 2 ^ P O
there exists X e ^ ( ^ ) such that

(dπ(X)ξί®ξ, ξj®η} = δij

for 1 ^ Ϊ,7 ̂  n. Then letting σ be a rep of K projectively equivalent to
the rep σ of K, it follows that

, η} =

= Σ

= » Σ fi<<7(fc)^,

This is enough to prove that the algebra dπ2(%{&) acts irreducibly on jf2.
If π is an irreducible unitary representation of G and σ is an irreducible

representation of K which occurs with multiplicity one in π | K, and if
ξl9..., ^w is a basis for Jfσ then the function

is called a positive definite spherical function of height one associated with
π, σ, [2]. It is clear that such a function is analytic and satisfies fikgk'1)
= f{g) for all k e K.

Theorem 2.3. (Godement). The formula

X(m) = (Xf)(e) dimσ

valid for all I e f o ( ^ ) , defines a one-one correspondence between the set
of all positive definite spherical functions f of height one, and the set of
all meJi. The space Jt is locally compact. The positive definite spherical
functions of height one are precisely those positive definite C00-functions
on G which are eigenfunctions of all the differential operators X such that
Xe%(9), and satisfy f(kgk~ι) = f{g) for allkeK and geG.
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Proof. Given π, define φ : ̂ (^)->C by

φ{X)= Σ
i = ί

= trlPσdπ(X)Pσ]

where Pσ is the projection on the subspace J^σ. It is clear that φ is positive
definite and that φ((adk)X) = φ(X) for all X e %(<$) and keK. Therefore
φ(X) = φ(X^) If σ is of multiplicity one in π | K then 3π(X) is a scalar
operator on Jfσ for all X e %(&) so φ \ %{&) is a character m e Λ?. It is
clear that if/ is the spherical function on G associated with π, σ then for
all X e <%(&)

(Xf)(e)= t (π

Since / is analytic it is determined by its derivatives at the origin and
hence by σ and m. However °U^S) ̂  Z(jf) and since adK is compact σ
is determined by the associated character on Z(Jf), which is of course
just the restriction of m to Z(jf). Therefore m determines σ and so /.

The only non-trivial part of the argument consists of showing that
every me M arises from some spherical function. Let me Jί and define
φ on <%(&) by φ(X) = X^(m), so that φ is a positive definite functional.
Since φ(An) = (zΓ)N (m) = {Λ(m)}n it is clear that φ is an analytic state.
Define

and F as the set of positive functionals ψ on %(&) such that tp(X*X) = 0
for all X e / and

n = 0

Then F is a non-empty weakly closed face of the set K of analytic states
defined in Theorem 1.6. Moreover if

$) and φ(X) = oc
then

φ((X - α)* (X - α)) = \φ(X) - φ(a)\2 = 0

so for all ψ e F
\ψ(X-α)|2 S Ψ(1)Ψ{(X~«)* (X-α)} = 0.

Therefore ψ(X) = φ(l) φ(X) for all X e Φo(#) s i n c e ^ i s a c l o s e d f a c e o f

K there exists an extreme point ψ of F, and this is also an extreme point
of K. Let π be the corresponding irreducible representation of G with
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analytic cyclic vector ξ. Since Z(jf) £%(&), dπ(X)ξ = X(m)ξ for all
X e Z(Jf). Since Z(Jf) separates the irreducible representations of jf9

ξeJfσ for some single irreducible representation σ of jf.
If X e %{&) then dπ(X)ξ e JΊfσ and

- m(X)ξ\\2 = v ( ( * - m(X))* ( X -

so dπ(X)ξ = m(X)ξ and in fact if Ye %(jf) and η = dπ{Y)ξ

dπ(X)η = dπ(X) dπ(Y)ξ = m(X)η .

Therefore the algebra of operators ΰ%(β) on J-fσ is the same as
By Lemma 2.2, j f acts irreducibly on 3tfσ so σ has multiplicity one in
π I K. If ξί,..., ξn is a basis of =̂fσ and

i = ί

then /( ί̂) is a spherical function and for X e

This shows that the map of the theorem has range equal to M.
To prove that M is locally compact in the weak topology we define

Jί^ = {m e Jί: Δ(m) ̂  α}

for any α < oo. If m e Jta and φm(X) = X^(m) then φm is a positive state
and φm(A2n) rg α2". By the proof of Theorem 1.6 there is a constant β,
depending only on α, such that if m e Jίa

\φm{Xtίl)...Xm)[Zn\p'.

This implies that

{\m(X)\:meJ(a}

is a bounded set for any Xe%(&), which proves that ^ α is compact.
Since J?a Q int(Ji0L+1) it follows that Jt is locally compact.

Finally we show that any C00 function satisfying the conditions of the
last statement of the theorem is a spherical function. If π, ξ is the cyclic
representation associated with /, then by [4], ξ is a C00-vector for π.
If φ : ̂ H C is defined by <£(X) = (dπ{X)ξ, ξ} and if Xf = λf for some

12 Commun. math. Phys., Vol. 23
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(dπ{X)ζ - λξ, πig-^ξy = <πfe) dπ(X)ξ, ξ> - λ<π(g)ξ, ξ}

= (Xf)(g)-λf(g)

= 0.

As ξ is a cyclic vector for π, dπ(X)ξ = λξ. Therefore φ\%(&) is a
character. Moreover since

φ(X) = (Xf)(e)

and f(g) = f(kgk-1) for all keK, φ(X) = φ(adkX). Therefore φ(X)
= φ(X^). It is immediate that φ is an analytic state, ξ is an analytic
vector, and/is an analytic function, the spherical function corresponding
to an element of M.
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