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Abstract. Spherical functions of the Lorentz group with respect to the horyspheric
subgroup are derived and their relation to Gelfand's homogeneous functions are discussed.

Introduction

There exists a number of homogeneous spaces whose group of
motion may serve for the definition of the Lorentz group. Of these
homogeneous spaces the most familiar is the three dimensional hyper-
boloid. It has turned out, however, that in certain respects it is expedient
to treat the Lorentz group as a group of motion of the two-(complex)
dimensional complex sphere S2 = S^ + S2

2 + S3

2. Namely, it has been
pointed out by H. Joos and R. Schrader [1] and by M. Huszar and
J. Smorodinsky [2] that if the Lorentz group is considered in this spirit,
matrix elements of its unitary representation take a rather simple form.

A three dimensional complex vector S is the self-dual part of the

Lorentz covariant antisymmetric tensor 5μv, i.e. Sk = SOk + -w-^kimβim^

(fe, /, m = 1, 2, 3). Since the real and imaginary part of S transform like the
electric and magnetic field, respectively, the in variance of S2 ~ (E + i B)2

under proper Lorentz transformations is evident. And conversely, it can
be proved [3] that the connected part of three dimensional complex
rotation group is isomorphic to the proper Lorentz group.

1. Little Groups on the Complex Sphere of Zero and Non-zero Radius

Let us associate to a three dimensional complex vector S = (Su S2, S3)
I S S — ίS \

the matrix S = 3 x 2 . Under g e SL(2, C) S transforms as
\b + ιb —S3 j
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TgS = Sf = gSg~1 and clearly S2 = S1

2 + S2

2 + S3

2 is invariant. And
conversely, it can be shown that if one excludes the point S = (0,0,0)
any two complex vectors 5, S' of the same length can be translated to each
other by means of a suitable SX(2, C) transformation. Consider now the
point So = (—iS, S, 0) (S φ 0) on the complex sphere of zero radius Σo.
The little group of this point i. e. the subgroup satisfying TηS0 = So

constitute elements of the type η = I I. This is the horyspheric sub-

group [5, 6] isomorphic to the two dimensional translation group Γ(2).

An arbitrary other point S = TgS0 (g e SL(29 Q) on Σo has the little group

Άg — gηg1- The converse statement is also true i.e. any three dimensional

complex vector having the horyspheric little group ηg is on the sphere

of the zero radius. It can be shown in an analogous way that the little

group of a vector on the complex sphere of non-zero radius is the

group H = SO(2) x SO(1,1) [2]. Spherical functions of the Lorentz group

with respect to the subgroup H have been studied in [2]. Here we derive

the spherical functions with respect to the horyspheric subgroup.

2. Spherical Functions on the Complex Sphere of Zero Radius

Consider the state | > satisfying

where Tη is the unitary representation of the horyspheric subgroup. Then
spherical functions of the Lorentz group with respect to the subgroup η
are defined as

(1)

Here Tg is the unitary representation of the Lorentz group and |Φ> is a
basis vector specified below. The quantity Σo indicates that fφ(Σ0) is a
function over the factor space g/η, i.e. it is defined over the complex
sphere of zero radius Σo.

Explicit form of the spherical functions (1) can be found by solving the
eigenvalue equation of the Casimir operators. To this end introduce the
combinations

j = λ(M + iNl K = y ( A f - ί N )

where M and N are the infinitesimal generators of the spatial and hyper-
bolic rotations. At first the basis |Φ> will be labelled by the eigenvalues of
J 3 and K3 i.e. by m = (μ + iv)/2, m* = (μ-iv)/2 (μ = 0, ± 1 , + 2 , . . . ,
— oo < v < oo continuous).
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Introduce the following coordinate system on Σo:

S1 = — i cos(9cosΦ — sinΦ, S 2 = — ί cos<9 sinΦ + cosΦ

S 3 = i s inΘ.
Here

0 S Θγ < π, 0 ^ Φγ < 2π, - 00 < Θ 2 , Φ 2 < 00 .

The spherical functions in unitary spinor basis satisfy the eigenvalue
equations of the Casimir operators J2,K2 and the generators J3,K3.
From (2) we obtain

1 d2 „ sin Θ d2

dΘ cos2<9 dΦ2 cos26) dΘ dΦ
. . . . (3)

dΘ cos Θ dΦ

1 d sin<9*

cos2<9* 3Φ* 2 cos 2 Θ* dΘ* dΦ*
(4)

* ) ^

Here 7 is related to the familiar quantum numbers j 0 , σ [4], as
j = 2 OΌ - 1 + iσ) (/o = 0,1,2,..., - 00 < σ < 00 continuous).

The solution of Eqs. (3), (4), (5) can be written in the form

j-mί Θ\j+mί Θ\

) r-T-j

These functions are normalized as follows

(j'f* m'm'* \ jj* mm*y

I i \2

= 1 — 1 § cosΘ cosΘ* dΘ dΘ*

= δjbjoδ(σ'-σ)δμ,μδ(v'-v).

It is worthy of note that fyζ* is a single valued function. If we cut the
Θ

sin — plane it is easily seen that as a consequence of integral valuedness
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of Jo ± μ the discontinuity over the cuts is equal to zero. Or conversely,
the requirement of single valuedness leads to the quantization of j 0 .

In order to obtain the spherical functions in another basis we have to
introduce a suitable coordinate system. E.g. the coordinate system

St = ea+ixp(-ήnφ + i cosθ cosφ), S2 = eα+ίψ(cos<p + i cosS sinφ)

S3 = -ίsinSea+iψ (7)

-oo<a<oo, O^φ, ψ<2π, 0^S<π

leads to the spherical functions in angular momentum basis

, S, φ)

where Dι

μjo is the representation of the real three dimensional rotation
group.

3. Relation to Gelfand's Homogeneous Functions

Consider now the following parametrization of ΣQ:

S1 = - i(μ2 - v2l S2 = u2 + v2, S3 = liuυ. (8)

It can be easily shown that if u and v transform as spinors of the SL(2, C)

group i.e. , I = f Λ\ 1 then S transforms as a vector of the three
\vfj \γ δ) \v)

dimensional complex rotation group. Parametrizations (2), (7) can be
considered as special cases of (8) and correspond to the following para-
metrization of spinors:

Θ -if . θ if
u = cos — e , v = sin — e

and

u= — sm —-e z , v = cos -r- e
2 2

Spherical functions in terms of u, υ in the unitary spinor basis read

j ( 2 π ) 2 " "

If one considers the linear manifold

f(u,υ)= Σ J
μ = — oo — oo

10 Commun math. Phys., Vol. 23

m1.*-j*-l+m*1 »-./*-!-



136 M. Huszar: Spherical Functions of the Lorentz Group

then under the SL(2, C) group the function /(u, v) transforms as

Tβf(u, v) = fίg-Hu, υ)) = f(δu -βv, -yu + at;),

furthermore, it has the degrees of homogeneity 2/, — 2/* — 2 with respect
to u9 v and u*, v*. Thus, if we fix a basis, say m, m* the homogeneous
functions investigated by Naimark and Gelfand [5, 6] take the form of
the spherical functions (6) defined over the two dimensional complex
sphere of zero radius.
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