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Abstract. The existence of a unique thermodynamic state for dilute classical systems
is proved for a class of regular multi-particle potentials. The method relies on integral
equations for "modified" correlation functions.

Integral equations have been used successfully to prove the existence
of equilibrium states of lattice systems defined by multi-particle potentials
for both classical and quantum statistical mechanics [1—3], and of
classical continuous systems with two-body potentials [4]. However,
difficulty in deriving and solving integral equations for continuous
systems with any additional multi-particle potentials has led to a belief
that these linear methods do not generalize in a natural way to the case
of multi-particle potentials in the continuum.

In this paper, we will demonstrate that for stable, multi-particle poten-
tials satisfying a regularity condition, Definition 2.1, the Kirkwood-
Salzburg equations for the correlation functions generalize to a set of
integral equations having, for sufficiently high temperatures, a unique
solution which is analytic in its parameters and to which the finite volume
correlation functions of the Gibbs ensemble converge. For finite type
potentials, a more transparent formulation of regularity is derived. We
wish to emphasize that the success in deriving integral equations for
multi-particle potentials appears to arise from an optimal use of the
expected thermodynamic behavior of the solutions.

1. Integral Equations for Modified Correlation Functions

We shall study classical continuous systems of point particles in
v-dimensional Euclidean space, Ev. We assume that the potential energy
of the particles is specified by a sequence {φm}m^2 of m-body potentials;
namely, for n^2 and x l 5 . . . , xπeIEv, then the potential energy of n
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particles located at x l 5 ..., %„ is U ( x ί 9 ..., xj, where

t/(x1,...,xn)= Σ Σ (̂̂

To simplify notation, we will generally use upper case letters to denote
finite subsets of Ev and drop the integer superscripts on the potentials φ.
In this notation,

TCX

Where it is desirable to indicate an rc-element subset of Ev, we will write
Xn or N (X) = n, and we will abbreviate the integration symbol J dx ί . . . dxn

by j dXn.
Λn

Definition 1.1. The potential φ is stable [5] if there exists a positive
constant B such that

for all X C Ev. We shall call φ ultra-stable if, for some μ, 0 <μ < 1, B can
be chosen so that

for all X, Y, z c Ev with N(z) = 1.
For X C Ev and any xeX, define

ScX-x

and let ω(X) be the element of X which is the smallest element, in some
lexicographic order, of the set {xεX\ WX(X)^ Wy(X\ V y e X } . Then,
for any 7cEv, define

W(X9Y)= Σ
ScX-ω(X)

The finite volume correlation functions ρA, for A a bounded, Lebesgue-
measurable subset of Ev, are given on E = [j (Ev)n by

oo zn + N(X)

n = 0 ft' Λn
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where χΛ(Xn) for each n ̂  1 is the characteristic function of the region
Λn C E, and ZΛ is the grand canonical partition function :

Define modified correlation functions gμ

Λ for 0 < μ < 1 by

The modification factor in these functions will avoid the high energy
divergence of the Kirkwood-Salzburg equations for multi-particle poten-
tials.

Theorem 1.2. For A a bounded Lebesgue-measurable subset o/Ev and
{φm}m^2

 an ultra-stable potential, the finite volume modified correlation
functions gμ

Λ, 0 < μ < 1, satisfy the integral equations

00 J O

0SW=Σ ί
n = 0 (Ev)n "!

with the kernel Kμ

Λ defined by

-βμW(XvRn-ω(X))} (2)

and
ίl,

Proof1. The identity

for ^4 C A follows from stability, since

00 dV °°
V Γ α K" ( iγ y Γ

*

/
y Γ aί^m e-βU(AuRm) y /_ i\N(V) = e-βϋ(A)

m = 0 ^m m! ^cκw

1 The above equations were derived jointly with D. Robinson of Centre Universitaire,
Marseille.
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and the integrands are absolutely summable for stable potentials.
Substitute (3) in (1) to obtain

n=0 " Λ1

}

dVm

Σ ΣxΛ*H T ί
n = 0 m = 0 Λ" nl Λ™

X {(_

oo

= Σ ί

Finally, observe that the Rn integration can be extended to (Ev)", since
the gμ

Λ vanish outside Λ.

2. Regular Potentials

In order for the integral equations to have a unique solution in the
limit T!->OO, it will be necessary to restrict attention to a class of ultra-
stable potentials satisfying a regularity requirement.

Definition 2.1. The potential φ is regular if the following properties
are satisfied for some μ, 0 < μ < 1, and for β sufficiently small:

(a) Except for X in a set of Lebesgue-measure zero, if X C Ev and
W(X)<co, then for every bounded, measurable region ylcEv, rc>0,
and non-degenerate covering S i 9 . . . , S j of the set Y= {y l5 ..., yn},

j \
i.e., (J St = Y, 0φ Sf φ Sk for i φ f c the function e-nβW(X"*n-ω(χ))

x Yl \e~βW(χ sJ — 1| is integrable with respect to Y on Λ.

(b) Except for X in a set of Lebesgue-measure zero, if X C Ev and
W(X) = oo, then WQf, R) > - oo almost everywhere (with respect to R).

(c) if A -> oo in the sense of van Hove, then

I
oo // V °°

Σ f-rr Σ Σ ί
n = i /I! . =^ 5 ... s c y

e' —Jy "
0ΦSiΦSfc
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We shall see that for an ultra-stable, regular potential, a unique
infinite volume state can be defined for dilute systems. An equivalent
formulation of regularity which gives a more transparent restriction on
the potentials φ or the "interaction energies" W would obviously be
desirable. Although we cannot derive this in general, we will give in
Section 3 a sufficient criterion for regularity for a class of physically
reasonable potentials.

Ultra-stability yields immediately.

Lemma 2.2. For z sufficiently small, g^ίeLco(E\ the Banach space of
bounded, Lebesgue-measurable functions on E with sup norm \\ H ^ .

Lemma 2.3. // φ is an ultra-stable, regular potential, then the kernel
Kμ

Λ is a bounded operator on LCO(E\ with norm

x exp { - β(l - μ) W(X) - μβ W(Xv Yn- ω(X))

Proof. Compute

*A(X, R) exp {/?(! - μ) W(X) +

zχΛ(X)(- If <*> Σ (- If (W} exp j - β
WCR I sew

SΦ0

Σ Y\
WCR j = l Sι,...,SjCW i = l

Σ (-

ί=l

0ΦS l ΦS k

observing in the last equation that Σ (— 1)]V(F) vanishes unless T = 0.
FCΓ

Lemma 2.4. // φ is an ultra- stable, regular potential and β is suffi-
ciently small, then for some μ < 1, the Kμ

Λ converge to a bounded operator
K^ on LCO(E) as A -^ co in the following sense. For every sequence {At}
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which converges lim A{ = oo in the sense of van Hove, and for each f e L1 (E\
ί-> 00

K£f strongly in I}(E).
Here, and throughout, T+, for T an operator on L°°(E), signifies the

adjoint of T restricted to the space I}(E) of absolutely Lebesgue-integrable
functions with norm \\ \\^.

Proof. Define K^ pointwise by Eq. (2) with the characteristic function
χΛ replaced by the identity function,

and let σ(X) denote the Lebesgue measure of any set ScE.
If ε > 0 and σ(C) < oo, there exists a bounded set C C C with σ(C — Cf) < ε.

For i sufficiently large, A{ D C, and then

(s) = χAt(s) K£ f(s) = K£ f(s)

if 5 e C'. Thus

That is, K^f-^K^fin Lebesgue measure on every measurable set
of finite measure.

Furthermore, K^f-tK^f weakly. For if β>0, choose a bounded
measurable region DcE so that \\f — fD\\ι<ε, where fD denotes the
restriction of / to D. Then, for i sufficiently large, Λt D D, and for each

*At - K"J τ) (X) dX\^ I J/(T) ((K*Ai - KM τ) (X) dX\
D

The Lemma follows from the observation that strong convergence
in L1 is equivalent to weak convergence and convergence in measure
on every measurable set of finite measure.

Definition 2.5. Let g^ be a solution of the integral equation

(1-1^)0$, = α.

Call ρ^, defined by

an infinite volume state.
When \\Kμ

A\\<LC<l for all A, Kμ^ is a strict contraction on L°°(£),
and the integral equation in Definition 2.5 has a unique solution.
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Theorem 2.6. // φ is an ultra-stable, regular potential, then in a region
of the β — z plane defined by

lim ess sup < Y f —-̂  Y Y Π
Λ-+OO XCΛ F « ^ J *•» ^ ^ A i

is a unique infinite volume state ρ^ . If A -» oo in the sense of van Hove,
then Qμ

A converges weakly to g^, and ρΛ converges pointwise to ρ^ almost
everywhere. In particular, if W(X) is bounded below, then ρΛ converges
to ρ^ weakly.

Proof. It remains only to be proved that for any feI}(E), ε > 0, and
sequence {At} with Λ^-xX),

|(/, (/ - Kft- lalΛ) - (/, (/ - K^Γ J α)| < e

if i is sufficiently large, where we have used (/, τ) to denote the integral
over E of the product f(X)τ(X\ feL\E\ τeL°(E). Estimating (/ - XT V

by Σ (K+V/and (Kj-(Kf by Σ K^K^K^'1, it is clear that

(I-Kμ

Λ

+

ιY
ίf-+(I-K.'£Tίf strongly, by Lemma 2.4. Then :

for f sufficiently large. But if D C E is a bounded measurable region satis-

fying ||(/-K£T1/-((ί-KΪ>+r1/)ι>llι <eA then

when ylf D D.

Corollary 2.7. If φ is an ultra-stable, regular potential, then in the
region of the β — z plane defined in Theorem 2.6, ρ^X) is an analytic
function of β and z. If φ is a translation-invariant potential, then ρ^
is translation invariant.
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3. Potentials of Finite Type

For potentials which satisfy some physically reasonable restrictions
of finiteness and continuity, a sufficient condition for regularity can be
given which directly generalizes the usual definition of regularity [5]
for two-body interactions.

Toward this end, define d:E-»lR by d(X)= mm\x-y\. If R},,̂
x,yeX
x*y

is a sequence of non-negative numbers, let E{όn} = {X e E\d(X) > δN(x]} C E,
and write IX(Y) for \e-βW(X'^-ί\/N(Y)l9 X, YeE.

Definition 3.1. A potential {φn}n^2 is °f finite type if
(a) for each n, φn is continuous on (Ev)"n£{0},
(b) φ2(x, j/)-»oo as d(xuy)->0, x, j/eEv,
(c) φ is bounded below on E,
(d) for each X eE, there exists a sequence {tn

x}n^ι of step functions
in l}(E), with intervals of uniform volume ί/n and bounded below by Ix,
such that tnχ-+Ix strongly and {tx}n^ί is Cauchy uniformly in X.

Lemma 3.2. If φ is ultra-stable and of finite type, then W(X)/N(X)
is bounded below on E, and W(X)-+ao as d(X)-^0.

Theorem 3.3. A stable potential φ of finite type is regular if for β
sufficiently small and A -> oo in the sense of van Hove,

lim sup If $dYnIx(Yn)\<κ.
Λ-+OO XCΛ (n=1 J

Proof. Let f(n) be a positive decreasing function of the positive inte-
gers n, to be fixed later, and choose {(5JW^! to satisfy

e~βw(γ}<f(n) whenever N(Y) = n and d(Y)<δn.

It is clearly sufficient to prove:

dr-

fΣ I ^r Σ sι Σsup
XcΛ

uniformly in {£„}, and for each ε > 0 and X e E,

,?ι.-ί ^^Λcry^ίi1

(5)

<ε (6)

for some {δn}n^ι.
Consider (6) first. Fix XeE, let e>0, and assume φ is bounded

belowbyM<-l.Then W(X,Sί)>2N(X}MSLnd\
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By (4), AQ can be chosen sufficiently large so that

j ^L\eβw(χ,γn)_^<ε and ιe-βw(χ,Yn)_1\<1 if y w n Λ " φ y w

E-Λn n

for all n and all A D ΛL0 . Split the integration in (6) over the sets
ls) and (E-E{δ^)nίE-\J An

0\. Since the number of

coverings of 7Π by 7 subsets is certainly less than . , the integration
/ \

over (£ — £^n})n ( IJ AQ \ can be bounded by

oo (

£ 22VM2N(X)+VM)μ (7)

and the integration over (E - E{όn})n (E—\J An

0\ by ε times the above.

Eq. (6) then is satisfied by choosing f(n) so that (7) is less than ε.
To prove (5), fix A, let Pn= {[x1? ..., xj} be a uniform partition of

An with F([xl9 ...,xπ]) = A, for all n; here the intervals [x1?...,xj of
the partition are labeled by the centers (x l5 ...,xn) of the hypercubes
[*!,..., xj. Define

\p-βW(X,S)_ι\i

and choose λ sufficiently small so that

λ
V 7 (Y\ - f2^ J{*ιu...uxn}W--r j ,

n = ι \pn nι Λn nι

for all X. Then:

Σ ί r Σ Σ Π
Λ = ! % j n Λ " ^ 7=1 Sι,...,SjcΓn ί=l

n = l Pn

<ε

Σ y ί=ι Λ Λn

which completes the proof.
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From the foregoing, it is easy to construct examples of regular multi-
body potentials. The simplest such example is a translation-invariant
potential with two and three body components only, satisfying:

i) φ2(0, x) is continuous, bounded below, and absolutely integrable
outside a set of finite Lebesgue measure, and φ2(0, x)-»oo as |x|->0.

ii) φ3 is continuous, non-negative, and symmetric in its arguments,
and φ3(0, x1? x2) vanishes outside a bounded region.

4. Integral Equation Techniques

The technique of using integral equations to study families of functions
on a Banach space is most fruitful if either the Banach space is chosen
to accomodate the special properties of the family, as in Ruelle's analysis
of two-body potentials [5], or if, as above, the family is optimally modified
to fit a fixed Banach space. In either case, one seeks a priori bounds for
the correlation functions, and thus expects for thermodynamic inter-
actions implicit cutoffs at high particle densities and high energy densities.
It is for this reason that it is natural to study the modified correlation
functions with their "modified" high energy behavior rather than the
correlation functions themselves.
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