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Abstract. The construction of independent SU(3) tensors out of octets of fields is
considered by investigating numerically invariant SU(3) tensors. A method of obtaining
independent sets of these to any rank is discussed and also independent sets are explicitly
displayed up to fifth rank. It is shown that this approach allows us to obtain relations among
the invariant tensors, and useful new identities involving the dijk and fijk tensors are ex-
hibited.

I. Introduction

In 5(7(3) or chiral 5 (7 (3) (x) 5 (7 (3) theories of elementary particles,
the most common multiplets of particles which we have to handle are
the octets or regular representations of S (7(3). When dealing with effective
Lagrangians [1], especially with the terms in these Lagrangians which
break the symmetry, and also when considering non-linear transforma-
tions under the chiral group, it is frequently necessary to build 5(7(3)
scalars and tensors out of these basic octets. In practice this means [2]
that the quantities of importance are the tensors of 5(7(3)/Z(3) and
henceforth we shall restrict ourselves to this subset of the 5(7(3) tensors.
In practical calculations it is always of the greatest importance to be
certain that all possible independent tensors have been written down.
In a recent consideration [3] of a model of chiral symmetry breaking,
involving three independent octets of fields, we were faced with just
such a problem, and it was in the attempt to find a general effective way
of dealing with this that the following work arose. This approach allowed
us to handle the very complicated expressions which occur in the second
and third orders in our calculation with relative ease, and this was not
achieved satisfactorily with the usual techniques [2] which we used
when we first attempted this problem. Our analysis consists of coupling
the octets together with invariant 5(7(3) tensors and for this purpose
we have been able to develop a technique for deriving all these tensors
to all orders. With the higher ranks the method is, as could be expected,
unwieldy, although nonetheless possible in principle, and probably
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within the scope of computer techniques. We have obtained explicitly
independent sets of invariant tensors up to the fifth rank.

In Section IV we have derived the necessary sets of independent
invariant tensors which we required in the work mentioned above, and
which will be extremely useful in similar situations. Section V deals
with the question of choosing independent sets of higher rank tensors
if these should be required, and Section VI contains results which apply
to the construction of tensors from repeated octet vectors. Sections II
and III describe respectively the basic ideas and methods for checking
independence and obtaining identities on the invariant tensors. Some
identities which have not previously been obtained are found by this
approach and are displayed in Section IV.

Needless to say, this work can readily be generalised to the problem
of forming tensors from the regular representations of SU(n), but since
this would in no way serve to clarify the arguments we confine ourselves
to Sί/(3) throughout the paper.

II. Numerically Invariant 8 <g) 8 <g) . . . . <g) 8 Tensors for 5 U (3)

Consider a set of r independent SU(3) vectors AhBj...Gk. By
vectors we mean that each transforms as the regular representation of
S U (3), i.e.

LQi9Aj ] = ifijkAk (1)

where the β/ are the SU(3) generators amdfijk are the structure constants.

Suppose that H$..k: l^α^β(r) are β(r) numerically invariant rth

rank tensors; that is, they are tensors which transform according to the
8! ® 82 ® <S> 8r representation of S U (3), i.e.

[Q,,fl/£j = i/^ (2)

and they are also just sets of numbers which are the same in all Si/(3)
frames. This means, of course, that the left hand side of Eq. (2) is zero.
Examples of such tensors are, say, dtj and εijk for 0(3) or δij9 fijk and
dijk of Gell-Mann [4] for SU(3). The H$..k have been chosen so that
they are all independent and we assume that we have also found all
the tensors of this particular rank; we emphasise that this implies all
the independent tensors when we take order of indices into account.
For example, the fourth rank tensors δ^δ^ and δikδjt are therefore
counted as two different tensors; but the third rank tensors fijk and
fjik are not counted separately since they are linearly dependent:

Jijk ~ ~~ Jjik
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If we contract the r independent vectors A^Bj, . .., Gk with the in-
variant tensors H^]^k we shall form scalars σ("\ i.e.

<t* = H}?...kA,Bj...Gk lί*Zβ(r). (3)

Furthermore, since the Ah ..., Gk are independent vectors and since the
H/ 0.^ are not only all independent, but also all the invariant tensors
we can form of rank r, the σ(α) will be all the scalars that we can build
out of these vectors (each being used once and only once), and of course
they will all be independent. We therefore deduce that out of r inde-
pendent SU(3) vectors we can form β(r) independent SU(3) scalars,
where β(r) is the number of rth rank numerically invariant tensors.

Similarly all the independent vectors that it is possible to form out
of the (r — 1) vectors Bj ... Gk will be

VW = H$..kBj...Gk l^α^β(r). (4)

We can generalise this procedure to the problem of constructing all the
independent kth rank SU(3) tensors out of (r — fe) independent vectors,
and in each case we shall find β(r) independent tensors. Thus, for example,
the number of scalars that we can form out of six independent vectors
is the same as the number of vectors that we can form out of five inde-
pendent vectors, which is in turn the number of second rank tensors
that we can form out of four independent vectors, and so on.

Alternatively we can approach the problem in the following way.
The scalars are the singlet representations of S U (3). Therefore the number
of scalars we can form out of r independent vectors is the number of
times that 1 appears in the decomposition of 8 1®82® (x)8r into
irreducible representations. Suppose this number is β(r). Now consider
the fcth rank tensors formed out of (r — k) vectors; suppose we have
γ(r,k) of these. If we consider the irreducible parts of these kth rank
tensors according to

ΘXε ί .σ ί (5)

where σz are the irreducible representations of SU(3) and εf are their
multiplicities in the decomposition then

y(r,*) = Z«A (6)
i

where λ{ is the number of times that the representation σ1 appears in
the decomposition of

But the number of times that the irreducible representation μ appears
in the decomposition of the representation v is the same as the number
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of times that 1 appears in the decomposition of μ®v, where v is the
representation adjoint to v. (This can be deduced from the orthogonality
theorems.) Hence λt is the number of times that 1 appears in the de-
composition of

since the representation 8®8® ®8 is self adjoint. Therefore Eq. (6)
tells us that y(r, fc) is the number of times that 1 appears in the decom-
position of

Using Eq. (5), y (r, fc) is the number of times that 1 appears in the de-
composition of

(81®82® ®8k)®8 ( k + 1 )®8 ( k + 2 )® ®8r

and this is β(r). Hence,

y ( r 9 k ) = β(r) for all fc. (7)

These two different ways of looking at the problem each have their
respective merits. The first shows us that the construction of all inde-
pendent vectors and tensors is trivial once we have found all the numeri-
cally invariant tensors, and the second gives us an explicit method of
counting these tensors.

III. Relations between Invariant Tensors

Suppose that Kijtmtk is a numerically invariant tensor of the rth rank.
We know that the β(r) tensors H$tttk can be taken as a basis of such
tensors. Hence

K i j f f f k = XβH$..h (summation on β) (8)

define

Q*β = Qβ« = H$m.kHft\.k (summation on i,j . . . k ) (9)

and let
y^Kij.^Hff^. (10)

Then contracting both sides of Eq. (8) with H$]..k gives us

These are equations which we can solve for the xα, because Qaβ and yΛ

are known quantities which we determine from Eqs. (9) and (10). The
Eqs. (11) have a unique solution only when Qα/? is non-singular and this
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is obviously the condition that our H$..k are independent, for a singular
Qaβ indicates that at least one of the H$m.k is linearly dependent on the
others.

IV. Invariant Tensors of the Second, Third, Fourth and Fifth Ranks

We shall now choose specific sets of invariant tensors for the #(α)

for the lowest few ranks. The last part of section II tells us that the
number of rth rank tensors is β(r) where this is the number of Γs in the
decomposition of

First we notice that if we take the convention

«8>8)° = 1 (12)

(which we need for compatibility in (<g)8)r®(®8)s = (<8>8)''+5), then
jg(0) = l. This, of course, is the completely trivial case. The zeroth rank
tensors are just elements of the complex field and these are a one dimen-
sional space. The other β(r) can be evaluated by actually performing
the reduction of ((x) 8)r by the method of Young Tableaux for instance.
We list the results below for ranks up to six.

0(0)= 1

0(D = 0

0(2) = 1

0(3) = 2 (13)

0(4)- 8

0(5)= 32

j8(6)=145.

For the lowest ranks the results are already well known. That /?(!)
equals zero is a statement that there is no numerically invariant vector;
that β(2) equals one means that there is one second rank tensor which
we know to be δ^, and /?(3) equals two tells us that there are two third
rank tensors. We know that dijk and fijk are numerically invariant
tensors and we know that they are independent (from their symmetry
properties). We may therefore take

jk

-ijk — aijk
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The statement (2) that H(1) and H(2) are invariant tensors gives the well
known relations

fijpfklp + filpfjkp + fikpfljp —
(15)

From the usual normalisation of fijk and dίjk, namely,

fipqfjpq=='ίδij

we can calculate

24 01
δ α ( )- Q «>]

and proceed as in Eqs. (8)...(11) to calculate identities. For instance,
consider

ijk JpiqJqjrJrkp

then

J7! — Jpiqfqjrfrkpfijk

= fpiqfqjrUpkjfrik + fpkifjrk)

ijk = fpiqfqjr(fpkjdrik + fpki^jrk) = ~

24 0

0 ¥

-36

0

i.e. Xi = — I and x2 =0. Hence

JpiqJqjrJrkp == ~2Jijk'

In a similar manner we obtain

dpiqfqjrfrkp ~ ~ 2

dpiqdqjrdrkp =

(16)

(17)

(18)

(19)

where in Eq. (19) λ is a number which will be fixed when we deduce
an identity similar to Eqs. (15) for the dijk tensors, by consideration of the
independent fourth rank tensors.
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Since β(4) equals eight, there are eight independent fourth rank
tensors. We shall attempt to form these out of outer products of δip

fijk and dijk, and products with contractions. Consider the set

(20)

which consists of some of the simplest tensors we can build. Again we
construct the matrix Qaβ defined in Eq. (9) and to do this we use the
identities in Eqs. (16)... (19).

We find
"64

8

8

0
40
3

0

0

_ 0

8

64

8
40
3

0

0

0

0

8

8

64
40

40

0

0

0

0
40
3

40
3

200
9

40λ
3

0

0

0

40

0
40

40A

200

0

0

0

(21)

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

40 -20 20

0 -20 40 -20

20 -20 40

which explicitly contains the number λ from Eq. (19). For general values
of λ, Q*β(4) is non-singular. The H\fkl are therefore eight independent
fourth rank tensors, thus by means of our earlier technique, we may
write down any fourth rank numerically invariant tensor in terms of
the eight we have chosen above. First we consider dίlmdjkm and obtain
the identity

(22)

We then contract both sides of this equation with f t j and use Eq. (18)
to arrive at

λ=-l
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Putting this value in Eq. (22) gives

dijmdkιm + dίkmdjlm + dίlmdjkm = ̂ (δijδkl+δikδjl+δίlδjk). (23)

Also if we take for Kijkl in Eq. (8) the tensor fnmfjkm we obtain

fiimfjkm = f (δijδki - δikδji) + dijmdklm - dikmdjlm. (24)

Eqs. (23) and (24) are of course well established identities [2] on fijk

and dijk tensors. It is interesting to note that we have deduced these
relations merely from the symmetry properties of / and d, our count
of invariant octet coupling tensors, and the relations (15) which are the
equations which state that f ί j k and dijk are invariant tensors.

At this level, the simplicity of this approach has been obscured by
our desire to obtain well known identities from a minimum amount of
initial information. Now that the groundwork has been completed,
however, the more complicated expressions can be deduced with relative
ease. For instance, two identities which are not well known and which
are not easy to deduce from the well known relations are:

jk-6dikmdjlm, (25)

I2dpiqdqjmdmktftlp = -ldijmfklm + dikmfjlm + 9dίlmfjkm . (26)

If we were to assume knowledge of Eqs. (23) and (24) we could summa-
rise our procedure for picking the independent fourth rank tensors as
follows. After writing down all the straightforward outer products of
lower rank tensors (which were H(1) ... //(3)) we wrote down all the
products of fijk and dijk with the minimum number of contractions
(in this case one contraction). Using the Eqs. (15), (23) and (24) we were
able to find among these just the required number of independent ones
to give us eight altogether.

For the fifth rank tensors the treatment is exactly the same. The
simple outer products are of the form

i j k l m

-X f ^
— °ijJklm

There are ten of each of these (this being the number of ways of choosing
two from five) so we have found H\fklm for 1 rg α ̂  20. We look for the
remaining twelve which we require among the set of contracted / and d
tensors with the minimum number of contractions. These are obviously
the tensors of the form

9ijp9pkt9tlm
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or as we shall write henceforth

9 9 β (28)
"WW

where gijk stands for either dijk or fijk. There are fifteen combinations
of indices which we number in the following way.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

iJP

ikp

kjp

iJP

UP

ikp

ikp

kjp

kjp

Up

jlp

imp

jmp

Up

mip

pkt

pjt
pit

pit

pmt

pit

pmt

pit

pmt

pjt
pit

pjt
pit

pkt

pkt

tlm

tlm

tlm

tkm

tkl

tjm

t j l

tίm

til

tkm

tkm

tkl

tkl

tjm

tjl.

(29)

First consider the products/ / / which we can write as F(l) ... F(15),
"WW i

according to the numbering convention in Eqs. (29). Applying Eqs. (15)
gives us ten relations among the F(i). These are

5) = 0

F(2)-F (6) + F (7) = 0

F(9) + F(10)-F(14) = 0

F(8) + F(12) + F(15) = 0

F(3)-F (8) + F (9) = 0

F(5)-F(12) + F(13) = 0

F(4)-F(10)

F(7)-F(11) + F(15) = 0

F(6)-F(13)-F(14) = 0

-F (2)-F (3) = 0.
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We deduce that all the expressions to the right in Eqs. (30) namely F(5),
F (7), F (14), F (1 5), F (9), F(l 3), F (11) and F (3) depend on their predecessors
and can be discarded. In fact F(14) and F (15) appear twice in this position
and eliminating them from the equations gives

)-F(8)-F(10) (31)

in both cases. We may therefore discard F(12) as well; the only inde-
pendent tensors of this form are F(l), F(2), F(4), F(6), F(8) and F(10).

Now consider the expressions D ( i ) : i = l, ..., 15 which are products
of the form a d d . We shall use the equivalence relation

"w^
A~B

to mean that A — B to within expressions we have already chosen as
independent 5th rank invariant tensors. An application of Eq. (23) leads to

D ( l ) + D (4) + D (5)~0

D(2) + D (6) + D (7)~0

(9)~0
(32)

These equations for the D(i) are the same as Eqs. (30) for the F(i) apart
from the positive sign appearing everywhere and the equivalence sign
replacing the equality sign. Consequently we discard the expressions
D(5), D(7), D(14), D(15), D(9), D(13), D(ll) and D(3) because these are
linearly dependent on their predecessors (and perhaps on some of the
Hlfklm for l^α^20). Again, since D(14) and D(15) appear twice in this
position, we may eliminate them to find other relations. This time we
obtain two independent equations:

D(4) + D (6) + D (8)-0
(33)

Hence we may discard D(8) and D(12) as well, and deduce that the only
independent tensors of this form are

D ( l ) , D ( 2 ) , D ( 4 ) 9 D ( 6 ) and D(10).
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All we have yet to consider are the mixed products of fijk and dijk

which must be (ddf) or (ffd) in some orders. If the odd one out is not
in the middle of the product g g g , then the other two gt jk tensors,

"WW
which must be either both / tensors or both d tensors, can be written
as a product of two tensors which are the same as the odd one out by
Eqs. (15), (23) and (24). These expressions are therefore equivalent to the
F(i) or the D(i) and can be discarded. If the odd one out is in the middle,
then the product is either

f . . p d p . t f t . . or d.p/p. td f..

The latter can be written using Eqs. (15) as

which may be discarded by the arguments above (/.„ the odd one out,
is now on the end of the product in each term). We are just left with the
former expression which we call E(i) according to the earlier notation.
If we apply Eqs. (15) to the E(i) we find that they are all equivalent. Hence
there is just one more independent tensor which is a mixed product
of/ and d tensors and this we take to be £(1).

Hence an independent set of fifth rank invariant tensors is

Hijklm=°klfij

R(3) —,nijklm — <

E7(5) —fid Γ7(21) _ f f f
±Ί ijklm~ υjlaikm ΓLijklm~JijpJpktJtlm

= fi ή ΊJ{22) — f f f
^im^-jkl ±J ijklm JikpJpjtJtlm

= δ d f/.(23) = f f f
^jm^ikl ^^ijklm JijpJpltJtkm

— /S /^ ff.(24) — f f f
^kl"-ijm ^^ijklm JikpJpltJtjm

E7(25) /• f f (34)
ίMijklm JkjpJpltJtim

ΉΪ?L = διΛ» H}$l = -fuffpjtft

= δ f H".(2?) — f /7 f
i ^ίjJklm -L^ijklm JijpupktJtl

km

— °ίmfjkl
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As before we may write any other fifth rank invariant tensors in terms
of the above set. To do this in general, however, we shall need to solve
thirty-two simultaneous equations. This would give at the same time,
of course, a further check on the independence of the tensors (34), because
by solving these thirty-two equations we would also be revealing whether
βα/? was singular or not.

V. Invariant Tensors of Arbitrary Rank

The above methods of dealing with the lower rank tensors are
evidently possible only because of the simplicity of the problem at these
levels. With the higher ranks, it is a hopeless task to try to pick an inde-
pendent set just by manipulating Jacobi identity relations. We shall
therefore indicate a general method by which one can obtain independent
sets of tensors to all orders this method is of course extremely tedious,
and we suggest it more for the sake of completeness rather than for its
practical value - when attempting to form independent scalars and
tensors out of 5(7(3) vectors, one will be unlikely to require more than
the contents of the previous section.

We write down a spanning set for the rth rank tensors and choose
from these an independent set in the usual way. Suppose we have already
chosen m independent tensors from the spanning set. We shall call these
H/jL/c ••• Hif?..k- We pick ^e next simplest tensor, J i j f , . k say, from the
spanning set, and form an (m +1) dimensional matrix from H(1\ ..., #(m)

and J as in Eq. (9). If this matrix is non-singular, J is not linearly depen-
dent on H( 1 \ ..., H(m] and we can write H(m +1 > = J if the matrix is singular,
J is dependent on H(ΐ\ ...,H(m} and can be discarded. We continue in
this way until we have obtained β(r) independent tensors; then these
tensors must be a basis of numerically invariant rth rank tensors.

VI. Symmetry in Pairs of Indices

Once all the independent invariant tensors have been found it is
a straightforward job to write down all the scalars, vectors or tensors
which can be formed out of a set of 5(7(3) vectors. In practice, however,
this set of vectors from which we wish to form our tensors may have
vectors repeated and this will lead to less independent tensors than
would have arisen if all the initial vectors had been different. On the
other hand, instead of forming general 8® 8 tensors, we may only
require certain irreducible parts of these tensors. In each of these special
cases it is useful to know how many independent tensors we expect to
find, and this can be done using our earlier methods. We shall merely
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give brief descriptions of the ideas in these approaches; the proofs run
on the same lines as those in section II.

It is well known that, if we decompose the outer product of two
SC7(3) octets according to

= 108080100ΪO©27,

then those representations that are symmetric under interchange of the
octets in the outer product are the singlet, the symmetric octet and
the 27, i.e.

(35)

In a similar manner we can show that the totally symmetric parts in a
product of three octets are given by

(8®8®8)S = 108©100Ϊ0027064. (36)

and that the totally symmetric parts in a product of four octets are
given by

(8®8®8®8)s = 10808027027035©35©640125. (37)

If we are forming kth rank tensors out of (r — k) independent vectors,
we know that this is the number of times that 1 appears in the decomposi-
tion of

81®82® (g)8r.

But, if two of the vectors we start with are the same, the number of
independent vectors will be the number of times that 1 appears in

81®82® ®8 ( Γ_2 )®(8 ( Γ_1 )®8 r) s

= (®8)(r~2)® (108027) (using Eq. (35)).

If three are the same, the required number of tensors will be the number
of Γs in

(using Eq. (36))

and similarly if more than one of the vectors is repeated.
We shall illustrate this with the fifth rank invariant tensors, the

number of which is 32. Hence there are 32 independent scalars formed
out of Ai9 BJ, Ck9 Dl and Em. The number of scalars built out of Ai9 BJ9

Ck, Dl and Dm is the number of times that 1 appears in the decomposition
of

8®8®8®(1®8®27) (38)

and this is easily found to be sixteen. It is an amusing exercise to verify
that, if the invariant tensors given in Eqs. (34) are in fact contracted against
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Ai9 BJ, Ck, Dl and Dm, then only sixteen independent scalars do emerge.
(The elimination of the dependent quantities is easily done using Eqs. (30)
and (32).) Also the number of scalars built out of Ah AJ9 Ak, Bl and Bm

is the number of Γs in

(8®8®8)s®(8®8)s (39)

which is the number in

(1®8®10ΘΪO®27Θ64)®(1®8®27) (40)

which is three. These are, of course,

d^AiAjAiBM, d^A.AjB^B^ d^A^B^A,. (41)

Finally suppose we are forming (8® 8)f</ tensors out of Ak9 B{ and Cm;
there are 32 of these, this being the number of Γs in

(8z.®8;)®8fc®8,®8m. (42)

If we want to know how many of these 32 tensors are in each of the
irreducible representations in the decomposition of (8 ® 8)fj we merely
write the expression (42) as

8m (43)

and see that the 32 (8® 8) tensors can be rearranged into two singlets,
eight symmetric octets, eight anti-symmetric octets, four 10's, four TO's
and six 27's. The singlets and octets can easily be written explicitly - the
two scalars are δtj multiplied by each of the two scalars formed from
Ah BJ and Cfc, namely

fwAtBjC* d^A^C, (44)

and the two sets of octets are dίjk and fijk contracted into the set of
eight vectors formed from At,Bm and Cn. Using the set (20) we may
write

fijk(dkmpdlnp)^lBm

Cn^

fίjk(dklpfmnp) AιBmCn,

fijk(dkmpflnp) AtBmCn,

and similarly for 8fj.
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