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Abstract. We investigate the properties of ground states of thermodynamical systems
as limits of temperature states; we enlarge the algebra of observables in order to define a
*-automorphism relevant to the study of K.M.S.-states and derive an usefull theorem of
transitivity of *-automorphisms within the locally normal pure states of a quasilocal algebra.

§ 1. Introduction

In contrast to the situation encountered in statistical mechanics,
states of field theory are generally pure states. This fact is usually ex-
plained by saying that states of field theory correspond to zero tempera-
ture and zero density.

It is our goal in this note to make this statement a little more precise
and to study the behaviour of temperature states when the temperature
goes to zero.

If we assume that the limits of temperature states exist in the appropri-
ate sense, then one can derive some properties of these limits and recognize
the well-known properties of a ground state; roughly speaking type I
von Neumann algebras with positive hamiltonian.

We shall describe the behaviour of the states with respect to the
temperature by a family of ^-automorphisms; of course, these cannot
be automorphisms of the algebra itself but merely of one of its natural
enlargements. This can be achieved by extending the K.M.S. states we
consider to pure states of the enlarged algebra, and by proving a theorem
of transitivity of ^-automorphisms within the locally normal pure states
of a quasi-local algebra.

In general, we only have an existence theorem for these ^auto-
morphisms and it is not sufficient to give precise results about the
existence of K.M.S. states. Nevertheless, we give an example where we
can construct this automorphism explicitly.
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In order to proceed, we shall briefly describe some structure we shall
need in the sequel and some basic properties of the K.M.S. states.

Some results we shall give are independent of the nature of the algebra
we shall choose nevertheless in view of physical applications and due
to the main theorem of Section 4; we shall be mainly interested in the
quasi-local algebra or in algebras having essentially the same features;
more precisely:

Definition 1.1. A C*-algebra stf has a quasi-local structure if
i- si has a type 1^ sequential funnel, i.e.: there exists an increasing

sequence {^n}n = ι...n... °f type 1^ factors with at least one faithful re-
presentation Φn in a separable Hilbert space.

ii — for every n there exists n' >n such that the commutant of Mn

in Mn> is infinite.

Hi-

we refer to [1] and [2] for the physical motivations of this choice and
for more details.

Definition 1.2. A state (resp. a representation) of si is locally normal
whenever it is normal in restriction to each Jίn.

Notice that a locally normal state induces a locally normal cyclic
representation of si (and conversely) ([2], prop. 6) and that these re-
presentations act within separable Hilbert space ([2], prop. 8); moreover
the algebra is simple ([2], prop. 10).

Let us remark that if R is a locally normal representation of si in
Hl9Rn its restriction to Jίn then (up to unitary equivalence), one has:

where H is the standard separable Hilbert space, and

Rn(A) = Φn(A)®I

- We shall need in the sequel the opposite algebra siυ of a normed
*-algebra si\ by definition there exists a linear isometric bijection i from
si onto j/y such that

= i(BA)

i(A)* = i(A*)

so that if si is a C*-algebra, j/ϋ is a C*-algebra too.
- If S is an antirepresentation of si it can be turned into a repre-

sentation Sv = S ° Γ 1 of j/ϋ.
- If now H is an Hilbert space we can define the Hilbert space Hv

as follows: by definition there exists an antiunitary operator y from
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H onto Hv so that if π is a representation of j/ in the Hubert space H, π*
defined through:

is a representation of jtfv in Hv; this correspondence preserves ir-
reducibility, factoriality and faithfulness.

- If j/ has a quasi-local structure given by the funnel [Jίn] then
obviously <stfυ has a quasi-local structure given by the funnel {Jil}
(Φ* is a faithful representation of Jf% in a separable Hubert space).

- Analogously jtf®&tv (as defined e.g. in [3], chap. Ill, def. 2.1)
has a quasi-local structure if we define its funnel to be {Mn®Jίfy.

Finally let us quote the essential features of the K.M.S. states (see
definition below) of a quasi-local algebra. We refer to [1, 4] for a complete
derivation of these results and for further details.

Definition 1.3. Let ί-xχ, a weakly continuous homomorphism of the
additive group of reals into the ^-automorphism group of a C*-algebra
j/ (an evolution of &tf). A state ωβ of stf is said to be a K.M.S. state with
respect to αf at the inverse temperature β if for any function f with Fourier
transform in Q), one has:

for any A and B in #0.

- We list now the salient features of a K.M.S. state ωβ (see e.g.
[1,4,5]).

i— ωβ is α^invariant; so that oc, is unitarily implemented by a
strongly continuous unitary group

such that: t-+Uβ(t)

ii- Uβ(t)Ωβ = Ωp

where Ωβ is the cyclic vector associated to ωβ.
iii - The spectrum of the infinitesimal generator of Uβ (t) is a subset

of the real line symmetric with respect to the origin.

iv- Uβ(t)φRβW Uβ(t)φRβW

where jR^ is the representation of ̂  constructed from ωβ.
v - If has a quasi-local structure, then Rβ acts within a separable

Hubert space.
vi - Associated with Rβ there exists an antirepresentation Sβ of ̂

such that

(in [5] one considers an antilinear representation
vii- Ωβ is cyclic and separating for Rβ (and consequently for Sβ).
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§ 2. The Limiting Case β=co; Properties of the Ground State

We uncritically adopt here the point of view that the K.M.S. boundary
condition defines the temperature state of the system. This may exclude
phase transitions (cf. [5]) at least of certain type. Nevertheless this con-
dition is meaningless for T = 0. If there exists no phase transition at
this point, we can only expect to obtain the corresponding state through
a limiting process.

In such a general situation we are not able to ensure the existence of
a ground state i.e. a limit for β->oo of a family of K.M.S. states ωβ, so
we shall assume this limit exists pointwise viz in the w*-topology sense.

Furthermore the previous formulation of the K.M.S. condition is
not appropriate for this limiting process and we shall derive another
equivalent formulation.

Lemma 2.1. With the same notation as previously, the following are
equivalent

i - ωβ is a K.M.S. state at the inverse temperature β
ii — for every function /, with Fourier transform f in Q) and for any

pair of elements A, B in $0

+ 00

f dtf(t)ωβ(A<xtB-utB.A)

(2.2)
+ 00 ___ --- ̂ _ V '

- J dt f t h π β ( t ) ω β ( A o t t B + atB.A)
— oo

where/ thπβ(ξ) = f ( ξ ) t h ( π β ξ ) fe®.

Proof. Notice that eβ + 1 :ξ^>e2πβξ + 1 is a regular factor (cf. e.g. [6])
so that ii - is equivalent to

^ (ί) ωp(lA, ot,B]+)dt. (2.3)

A direct calculation shows that (2.3) is equivalent to:

+$° ]Tβ(t) ωβ(AκtB)dt = +f/(ί) ωβ(atB.A) at

which completes the proof.
The previous lemma gives a straightforward proof of the pointwise

invariance of the center ofπβ(jtf)" if one notices that the K.M.S. boundary
condition extends to the continuous extension of ωβ to nβ(^}".

Now we shall study the properties of a special type of states which
will be relevant in the sequel:
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Definition 2.4. Let ί— »α f be an evolution of jtf a state ρ^ of <$/ is
said to be of the Fock type with respect to αf iff

+ 00

f f(t)βoo(AatB)dt = Q
— co

for any A and B in $/ and every f with Fourier transform f in & and
swpp./C)-oo,0(.

Such states have very interesting properties, quite different of those
of the K.M.S. state. Most of them are well known from usual field theory
and for sake of completeness we shall rederive them in order to compare
the situation here to the one encountered for temperature states.

Lemma 2.5. Let ρ^ be a Fock type state; then it is an invariant state.

Proof. From the very definition of Fock type state one has equivalently

for / with Fourier transform / in 2 and Supp / C )0 + oo( and for any A
and B in the algebra; consider now

it is a continuous and bounded function; hence it is the Fourier transform
of a distribution.

Let now / be a function the Fourier transform / of which is in 2
and such that Supp /n {0} = 0; then f = f++f~ with supp / + C )0, oo(
and supp / ~ C ) — oo, 0(.

From the previous remark,

hence ρ^^A) is the Fourier transform of a distribution with support
on {0} consequently, by standard boundedness arguments, it is a con-
stant.

Lemma 2.6. Let ρ be a state of a C*-algebra jtf, let πQ be the represen-
tation in 3^ρ with cyclic vector Ωρ defined by ρ. Assume there exists a
group of unitarίes Uρ(t) which implement the evolution α, of $4 ana let
HQ the corresponding infinitesimal generator; the following are equivalent

i— Q^ is of Fock type with respect to αf

ii- #ρ^0 and HρΩρ = Q.

Proof. For every ψ in Jfρ

t-*(ψ\Uβ(t)ψ)
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is a function of positive type; let μψ be the corresponding positive mea-
sure. Consider now the set of vectors defined by the Bochner integral:

Uβ(t)AΩβ
— 00

One has (V/e®)

the equivalence follows if one notices that the ψA/s are dense in jjfβ.
In contrast to the non-zero temperature states case, the spectrum of

the Hamiltonian HQ is completely unsymmetrical.

Lemma 2.7. (cf. [71) Let πρ(j/)' the commutant of πρ (.«/), πQ(jff
C{UQ(t);teR}' or equίυalently HQ is affiliated to πρ(j/)".

Proof. Let us consider the continuous and bounded function

t^(ΩQ\A*Uβ(t)BΩβ) A*επQ(^) (2.8)

and B in πρ(j/)'; one shows by an argument quite similar to the one used
in Lemma 2.5 that it is the Fourier transform of a distribution with
support on {0}, hence a constant; using the cyclicity of Ωρ with respect
to πρ (<£/)" and its separating character with respect to πρ(X)' one gets
the result. In order to proceed we need some assumption on the evolution
since essentially one has to exclude the trivial case where the evolution
is trivial on a subalgebra and consequently the K.M.S. state over this
subalgebra is a central state whatever be the temperature.

Lemma 2.9. (cf. [7]j. Let ̂  be αf abelian in the sense of [8], then
πQ(sf)' is abelian and consequently πQ(sf)" is of type I.

The proof is immediate.
In contrast to the case of temperature states, the commutant πρ(j^)'

is no longer isomorphic to πρ(«s/)" in fact Ωρ is not a separating vector

We come now to the main result of this section in order to show
the interest of the previously defined states (cf. [9, 10, 16]).

Proposition 2.10. Let αf be an evolution of the C*-algebra jtf. Assume
that there exists a solution ρβ of the K.M.S. boundary condition (def. 13)
for every β> β0 and that:

Qβ /?-»oo> ί?oo

where the convergence is in w* -topology; then ρ^ is of Fock type.
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Proof, (cf. [9]). Consider/e® Supp/C)-oo,0( then by (2.3)

= ί
Moreover both terms go to zero as j8-»oo, the second one due to the
assumed convergence of ρ '̂s. For the first one \thπβ—1|<1 for £>0
so that one can twice exchange the limit β-+co with the integration;
moreover pointwise

1-1-0 for ξ>0

and ρβ([A, α flΓ|+)is bounded independently of β.

§ 3. The Purification Process

In this section, we shall generalize a construction due to Powers
and St0rmer in the special case of quasi-free states of Clifford algebra
[11]. Indeed quasi-free states with cyclic and separating vectors are
K.M.S. states with respect to a suitable evolution (see e.g. [9]). They
show that, given a quasi-free state ω, there exists an extension of ω which
is a pure quasi-free state of an enlarged Clifford algebra. It is then natural
to ask whether this is generally true.

For the sake of clarity, we shall perform this construction for a
temperature state of a system of particles enclosed within a finite volume V.

The algebra is J*(J^) where J»fFis the Fock space associated with V;
the equilibrium state at the inverse temperature β is given by the density
matrix.

i

Hv is the hamiltonian of the system (including the chemical potential
see [5]).

The standart realization of the associated representation can be
described as follows:

fc0 = |/ρ^is a Hubert Schmidt (H.S.) operator hence the representation
space can be considered as the Hubert space of (H.S.) operators. fe0 is
a cyclic vector and

Rβ(A) /c0 = Ak0 e H.S. A e ΛpfJ (3.2)
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furthermore one has within the same space with the same cyclic vector
a representation of s$v

Sβ(i(A)) = k0A. (3.3)

On the other hand using the natural isomorphism between the (H.S.)
operator space and the tensor product J

Σ λnm \Ψn) (ψm\ ^ΣλnmΨn®^ Ψm Ψn, 9m
n,m n,m

we get for the representation Rβ

(3.4)

Analogously

Sβ(ί(A)) = I®A (3.5)

which exhibits explicitly the commutation theorem.
If we now consider the algebra stf®s$v in 3?v®3Fγ then

(3.6)

which is the identity representation is irreducible and reduces to the
previous one for elements of the form A® I.

Consider now the two vector states of this representation defined
by the vectors:

ΩF = ΩF® vΩF

α, (3-7)

There exists an isomorphism α^ (actually a spatial isomorphism of
d®s/υ = a(J!fy®&(3ff$) such that

ωΩβ = ωΩF°<*β (3 8)

Another example of this situation is given by quasi-free states of the
CCR algebra A (H, σ) defined in [12]. Suppose that the one-particle
space is σ-complete (cf. [13], p. 295); a representation π given by a
quasi-free state corresponding to the operator As can be written:

where π7 (resp. π_j) is the representation of A(H,σ) (resp. Δ(H,σ)v

= Δ(H, — σ)) associated to the complex structure J, the polar part of

As and T± = -γ=-(\As\ ± I)1. Within the same Hubert space there is an
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antirepresentation π' given by

π'(δφ) = πj(δτ-φ)®π-j(i

Consider now the representation π of

given by

π(δφ®ί(δy)) = π(δφ)π\δψ) = πj

It is obtained from the representation πj(x)π_j by the Bogoliubov
transformation of Δ(H@H, σ0(-~σ))

T_τ=
T- T+

Consider now the physically interesting case where si is a quasi-local
algebra. Let ωβ be a factor K.M.S. (hence locally normal) state. Let
be #0 and Sβ the representations previously defined. Their restriction
to Mn can be written as:

hence

defines a representation of Jtn ® Jl^. It extends to the norm closure
of (J Jin®Ji^. Moreover π is irreducible since ̂  is a factor representa-

tion and [Rβ(jf)}' = {Sβ^
Let us remark that this representation is locally normal by con-

struction.
Let us consider now a locally normal irreducible representation

Up of j/ (for instance associated to the ground state of the system if it
exists) then πF = πF (x) π * defines another irreducible representation of

1V\ the question is now whether there exists a *-automorphism of
1υ which connects this representation to the previous one; an

affirmative answer is given in the next section.

§ 4. A Theorem of Transitivity

Above discussion has shown the interest of the transitivity of auto-
morphisms within a particular class of pure states of the algebra of
observables. This transitivity exists at least in the two examples of
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previous section, and we shall obtain a similar result for locally normal
pure states of the quasi-local algebra of observables.

Let us give first some preliminary results :

Lemma 4.1. Let s4 be a C*-algebra with unit acting on a separable
Hubert space H; let F = {Jfy} be a net in jtf (cf. [2]) let U be a unitary
operator of the von Neumann algebra jtf" generated by stf then:

for any ε > 0 and finite set {//}7 =ι ...„ of vectors in H there exists an
α and a unitary operator F, element of JfΛ, such that

\ \ ( U - V ) f j \ \ < ε V = l . . . n .

Proof. Let A be self-adjoint in <$$" chosen such that

U = exp(/π,4) (2)

then by strong continuity of A-*Qxp(iπA) on the unit ball of &(H) and
Kaplansky density theorem (cf. [14], p. 43, th. 3), there exists a self-
adjoint B of norm less or than equal to one in (J J?β such that

β

||(exp(ϊπ,4)-exp(zπ5))/;.|| ^ε V / = l . . . n .

Moreover F=exp(iπjB) is in (J Ji^\ indeed each M$ is norm closed,
hence the result. β

Lemma 4.2. Let 3%, ̂  and $2 be factors of type 1^ on a separable
Hilbert space, such that <%± and &2

 are contained in & in which they have
an infinite relative commutant. Then there exists an unitary operator U in
& such that

Proof. There exists an isomorphism of & onto 3S(H)®^K where H
is a separable Hilbert space (cf. [14], p. 124, corr. 3), consequently we can
assume 3% to be &(H). Now let U{ (i = 1, 2) be an isomorphism of H onto
H®H such that the corresponding spatial isomorphism sends 3ίi onto
&(H)®Ί and St\ onto t®@(H}\ now we can choose U = U2

l U^
Up to now all the algebras we consider have a quasi-local structure

in the sense of Definition 1.1.

Lemma 4.3. Let £/=[_) Jin and & = (J Jfm be C*-algebras with a
n m

quasi-local structure acting on a separable Hilbert space H and generating
the same type 1^ factor $. Let Ω be a strong neighbourhood of the
identity in M. For any n, there exists m^n, a factor Jf of type 1^ con-
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tained in Jfm ana a unitary operator U in Ω such that:

Proof. By Lemma 4.2, there exists a unitary operator Uί in ̂  such
that:

Choosing, by Lemma 4.1, U2 in Jfn, such that

UfU^eΩ

we can put m = sup(rc, ri) and U = U2U1, then

Lemma 4.4. Let £/=[_) Jtn, & = (J Λfm be C*-algebras with a quasi-
n m

local structure acting on a separable Hilbert space H and generating the
same factor & of type 1^. Let N be a type 1^ factor in Λr

m assume there
exists an unitary operator of & such that

-1ττ
\J

then for every strong neighbourhood Ω of I in &, there exists a m' > m, a
unitary operator U^ in & and JtC^m> with the following properties:

ii- UAU'1 = U1AU1~
ί

iii- l/it/^efi .

Proof. Let us define sf± = U^U~l and

One can see without difficulty that <£/2

 and ^2 have quasi-local structure
and moreover that they both generate the same von Neumann algebra
Jf'r\$ (cf. [2], Lemma 3) hence we can apply Lemma4.3:

for every strong neighbourhood Ω of / in Jf'r\3t> there exists a
m' > m, a unitary operator L/n e Jf*' r\βfc and a factor of type /^

such that

and (7n e ί2.
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Let Ji be the von Neumann algebra generated by Jf and Jί^ then

I7t = t/n U
satisfies i).

Moreover Ulί = U± U~l e Ω, so iii).
On the other hand

Finally if A e Jtn, then

since 17̂  e J f ' , hence

l/i^l/f1 -

which completes the proof.

Lemma 4.5. Let stf = (J «/^π and ^ = (J yΓm foe C*-algebras with
n m

quasi-local structure acting on separable Hίlbert spaces H and generating
the same factor & of type 1^ then there exists a unitary operator U e &
such that

Uj/U'1 = Ά.

Proof. Let /) be a countable set of vectors of the unit ball of H\ then
we construct by induction

i- a strictly increasing sequence diί of factors of type /^ in s$\
ii- a strictly increasing sequence ^ of factors of type /^ in ̂

iii — a sequence of unitaries Ut of ̂  such that
iv- l/ f« fU ί"

1=«9 ίJ
v- C/ + i^C/f + ̂ t/^C/Γ1 if Ae^i

vi- | |(C/ I.+ 1-t//)/ j | |<2- ί V j ^ i
vii - if i is odd, there exists nf such that

viii- if 7 is even, there exists m^ such that

Indeed, let ̂  = M± assume ̂ f is given for all f ̂  2k + 1 with ̂ 2

^ and C/f for i < 2k + 1 by Lemma 4.4, there exists m > n, U2k+^
such that

moreover one can choose the strong neighbourhood
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hence by Lemma 4.4:

and

Using again Lemma 4.4, there exists m'>w, U2k+2ί R2k+2

 such tnat

TT T T ~ 1 _u2k + 2 —

One can choose
Oft _ M
^2fc+3 <svι<m>

which completes the construction.
By vi) the sequence of Ui converges (cf. [15], p. 155). If U = S - lim Ur

then U E 3% and (7 is an isometric mapping from H to H.
Moreover the mapping

Φ(A)= U*AU

is an isomorphism of 36 into #0.
Indeed for any r ̂  n U*A Un = U?A UrAe «$? and

W l imC7*^l/ r= U*AU
r->vo

so that
U*AU=U*AUn VAε^n

and
Γ7* 9^ Γ7 — ̂U c7π U — ̂ n .

Consequently Φ is an isomorphism of (J ̂  onto (J ^n which are both
n n

dense respectively in 36 and j/; Φ is clearly continuous hence it extends
to an isomorphism of & onto j/.

Moreover an argument quite similar to that of Powers ([15], p. 156)
shows that U is unitary.

Theorem 4.6. Let ̂  be a C*-algebra with a quasi-local structure; the
group of ^-automorphisms of jtf acts transitively within the pure locally
normal states of jtf.

Proof. Let ω1 and ω2 be two pure locally normal states of sf. Hi9πi9 Ωt

(i = 1, 2) the representation space, the representation and the cyclic
vector defined by ωt ; since H{ (i = l, 2) are separable Hubert spaces, we
can identify them.
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It is clear that πt(sf) fulfils conditions of Lemma 4.5 so that there
exists a spatial *-isomorphism Φ of π±(stf) onto π2(si)\ the representa-
tions πt are injective, hence there exists a ^-automorphism α' of si such
that

Φ o TUJ = π2 ° α' .

The states ωx and ω2 ° α' define unitarily equivalent irreducible represen-
tations of si and consequently there exists an automorphism α" of si
such that

We are indebted to Professor H. Borchers for the following remark:
Lemma 4.2 can be generalized to the case where $ is an arbitrary von
Neumann algebra.

Let us sketch the proof of this fact: With the same notations as
previously, take En (resp. Fn) a sequence of orthogonal minimal pro-
jections of sum i in J?x (resp. in ^2) EI and ^i are properly infinite
projections, with central carrier i with respect to &, so that they are
equivalent ([14], chap. Ill, § 8, cor. 5 and Chap. Ill, § 1, prop. 1). Let V
isometric in M be such that

Defining the sequence of partially isometric Vn (resp. Wn) in
(resp. ^2)

 sucn

one can choose

hence the result follows.
The Lemmas 4.3 to 4.5 can be extended to ̂  an arbitrary von Neu-

mann algebra so that one can state the more general result:

Theorem 4.7. Let πί and π2 be two locally normal representations of
a C*-algebra si with a quasi-local structure.

They generate isomorphic von Neumann algebras iff there exists a
^-automorphism α of si such that π1 and π2 ° α are quasi-equivalent.

The proof is standard, cf. [15], p. 157.
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