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Abstract. It is proved that irreducible representations of CAR are determined by the
groups of implementable automorphisms of the corresponding C*-algebra. This is done
by a study of implementable canonical transformations. Some results in the same directions
for factor representations are given.

1. Introduction

Let A be a C*-algebra and let .o/ be the group of all its automorphisms.
&/ acts in a natural way in the set of all representations of 2 and for a
representation a of A let o/, denote the isotropy subgroup of g, that is,
of, is the group of all 7 € o7 such that a- 7 is equivalent to a.

The mapping a+—/, gives a classification of representations. We
study here this mapping for irreducible representations of a uniformly
hyperfinite (UHF) algebra of Glimm, [2], and prove that in this case it is
one-to-one, that is, if o/, = o7, then a is equivalent to b.

This is complementary to what is found in [4] by Powers where it
is, in particular, proved that ./ acts on the set (of the equivalence classes)
of irreducible representations of the UHF algebra in a transitive way.

In investigations of physical systems the UHF algebra appears as
the C*-algebra of canonical anticommutation relations (CAR), [7, 5],
or as the algebra used for a description of quantum lattice systems.
In the case of CAR the C*-algebra has additional structure, namely,
there is given a linear subspace # which generates 2, which is invariant
with respect to involution and on which the norm of 2 is of hilbertian
type. The special automorphisms of 2 which leave £ invariant are
called canonical, or Bogoliubov, transformations. In this way every
canonical transformation gives rise to a unitary operator on # and
conversely: every unitary operator on £ which commutes with involution
extends to an automorphism of 2. The group of all canonical transforma-
tions is denoted by £ and " n.Z, by A,.
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We study first the mapping a— ¢, which is more interesting than
ar o/, as A is much smaller than 7, but for which the results are not so
full.

In Section 3 we define the representation a, and prove that if 4, =
and a is irreducible than a is equivalent to a,. This is done by picking
out a compact subgroup of 4, such that in the representation space
there exist a unique one-dimensional subspace invariant with respect
to this subgroup. By a similar method we proved in [9] corresponding
result for the Fock representation.

That from </, = ¢/, and irreducibility of a follows equivalence of
a to a, can be proved a little more simply: Section 2.10 can be shortened
and the canonical anticommutation relations need not be mentioned.
The stronger theorem is proved here for an eventual fuller investigation
of a—A,.

Section 4 contains theorems about ar#, for the irreducible case
together with generalizations to factor representations. In Section 5,
using these theorems and the Powers’ theorem about the transitivity
of the action of &/, we prove that a—./, is one-to-one.

Section 3 is a slight modification of § 3, Chapter III of the Thesis [8].
The rest, apart from the generalizations to factor representations of
Section 4.3, can also be found there. Other references are given in suitable
places in the following.

2. Resume on Representations of CAR

2.1. Let # be a complex Hilbert space with involution, that is,
on Z is defined, denoted by x+x*, an antiunitary mapping such that
(x*)* = x. By representation of CAR over £ in the Hilbert space #
we mean a linear mapping x+—a(x) from % to bounded operators on #
such that

a(x*)=a(x)*, and a(x)a(y)+a(y)a(x)=2(x,);

here (,) is the symmetric bilinear form defined by (x,y)=3(x*|y);
we note the inequality ||a(x)| =< [ x].

The representation is defined uniquely by its restriction to the real
Hilbert space of all vectors of # satisfying: x* = x; this restriction is
the starting point of [7].

Our notation is taken from the Appendix 1 of [3]. It is connected
with the “a*” formulation as follows.

Let H be a complex Hilbert space and let a* be a linear mapping
from H to the bounded operators on # such that if a(f):= (a* (f))* then

a(f)a*(g)+a*(g)a(f)=(f1g)
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and a*(f)a"(g) +a* (@) a (/) = 0.¥ g H

Then the transition to our notation is through the following definitions:
A=H®H, where H is the Hilbert space conjugated to H, (f®g)*
:=g®f and a(f®g):=a"(f)+a(g). The “a*” description is used in
Section 3.10.

2.2. Let A denote the group of all the unitary operators on £ that
commute with the involution. The elements of #” will be called canonical
transformations.

In the “a™” description, every canonical transformations is given
by a pair (4, B), A-linear and B-antilinear operators in H, such that

fr-a"(Af)+a(Bf)

is again a representation of the CAR over H.

We will say that ke " is implementable in the representation a
of CAR over Z if there exists a unitary operator U on J#, such that
a(kx)=Ua(x) U"!,Vxe . If a is irreducible U is unique up to a factor
of modulus one. £, will denote the subgroup of #" of all the canonical
transformations implementable in the representation a.

The representation a will be said to be even if the canonical trans-
formation x+> — x is implementable in a.

2.3. Let, for ieN, a; be an even representation of CAR over £; in
the Hilbert space S and let E; be a unitary operator on #, implementing
x+>—x such that E?=1,. Then in the infinite tensor product space
H = P (#, h), where h; is a normalized vector in 4, there exists

ieN
a representation a of CAR over Z = (P 4;, such that
ieN
ax)=a,(x)®L®..., for xeX,,
and
ax)=E,® - QF,_1®a;(x)®L,;®..., for xeR;,i>1.

a will be called the crossed product of ¢; and will be denoted by (X)(a;, h;).
ieN

If all a; are irreducible then their crossed product is also irreducible.
We have the following property of the crossed product: if ¢ is a permuta-
tion of N such that o(i)%i only for a finite number of ieN then
X (@g)» ho) is equivalent to X)(a;, hy).
ieN ieN

Let us also remark that if a is even and irreducible then the operator
implementing x— — x can be always chosen to be unipotent and that the
construction of the crossed product is obviousely also possible when
we have a finite sequence of representations and all, with possible
exception of the last, are even.
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2.4. Let a be an even representation with E implementing x+ — x
and let U, implements ke 2,. We will say that k is even (resp., odd)
if U, commutes (resp., anticommutes) with E; 2,5 will denote the set
of all even elements of , and , the set of odd elements. If a is irre-
ducible then A" uA, = A, and A, is a normal subgroup of 4, of
index two.

For irreducible representation we have the following criterium of
evenness: let h be an eigenvector of E, then k is even iff U,k is eigenvector
of E with the same eigenvalue as h.

2.5. Let a;,ieN, be even and irreducible and a:= @(a;, h;). Then if

ieN
k;e #,5 with U; implementing k; such that Ujh;=h; then k:= Pk;
ieN
is implementable in a by U = (X) U,.
ieN

For general theorems about implementability in infinite crossed
product see [6, §].

2.6. There exists a C*-algebra U and injection i: #— U such that

i) i(#) generates 2,

i) i(x*) = i(x)* and i(x)i(y)+i(y) i(x)=2(x,y),Yx,ye &,

iii) for every representation a of CAR over £ there exists a unique
representation d@ of A such that d-i=a.

The pair (2U,i) is unique up to a natural isomorphism.

From uniqueness, every canonical transformation extends to an
automorphism of A. We will often identify »# with the corresponding
subgroup of the group &/ of all the automorphisms of . Similarly,
we will often not distinguish between a and 4.

o, will denote the group of all elements of o/ which are implementable
in the representation a; 4, C o,. We have:

o,

aot

=1 lo/ 1, for ted

with analogous identity for .

On A there exists a complex conjugation x+—-Xx which extends the
mapping x—x* on #. To every representation a there corresponds
the conjugated representation @ in the Hilbert space #, such that
a(x) h = a(x®) h. We have: 4, = .

2.7. If # is of a finite and even dimension then irreducible representa-
tion of CAR is unique up to equivalence.

If a is any representation of CAR over £ then a is equivalent to
a' ®1I, with a’ irreducible.

Because of the uniqueness, every canonical transformation is in
the finite dimensional case implementable and the evenness of a canonical
transformation does not depend on the choice of the irreducible
representation.

8%
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2.8. We draw attention to the following abuses of notation: we do
not distinguish between #; and the corresponding subspace of (P %,

iel
or between operators on # and the corresponding operators on # ® H#;
the same refers to the direct products of groups. We also identify # with

&), if there is a natural isomorphism, in our context, between them.

1
E.t.c.

3. Representation with a Large Compact Group of Implementable
Canonical Transformations

From now on, the Hilbert space £ over which representations of CAR
are defined is assumed to be separable. Therefore all irreducible re-
presentations over & act on separable Hilbert spaces and the same can be
assumed, after possible passage to quasi-equivalent representation,
about the factor representations.

3.1. A" equiped with the strong operator topology is a topological
group and this topology we have in mind speaking about, for instance,
compact subgroups of .

Lemma. Let a be irreducible and let G be a compact subgroup of A,.
Then there exists a finite-dimensional G-invariant subspace of #,.

Remark. As for an irreducible representation the operators im-
plementing canonical transformations are unique up to a factor of
modulus one, we can speak unambigously about subspaces of the
representation space invariant with respect to canonical transformations.

Proof of Lemma. Let U, implements ge G and let U, denote the
*-algebra generated by {a(x): xe £}. If we can show that for 4e A,
the mapping g U, AU, ! is norm continuous (in fact, weak continuity
is sufficient) then the proof follows from what was said in [9], Section 1,2.
For A=a(x), UyAU,; ' =a(gx), and the continuity follows from the
inequality: ||a(x)|| < |/x||, Vx € #&. Each element of %, is a finite sum of
products a(x,)...a(x,) and therefore we have the required continuity.

3.2. Theorem. Let, for ieNN, a; be an irreducible representation of
CAR over &, in #,, let the dimension of X; be finite and even and let G; be
such a compact subgroup of A" that in #, there exists, and only one,
Grinvariant one-dimensional subspace. Let #:= (P #;,G:= [] G, and

ieN ieN
let a be an irreducible representation of CAR over & in which G is im-
plementable. Then a is equivalent to ay:= (X)(a;, h;), where h; is a nor-
ieN
malized vector generating the one-dimensional G-invariant subspace of .

The proof is given in Sections 3.3—3.9.
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3.3. It is easy to see that G is a compact subgroup of . Therefore
Lemma 3.1 is applicable and we conclude the existence of a finite-
dimensional G-variant subspace #"' of # | = (X)(#;, h;)).

ieN

3.4. Let G denote the subgroup of G of all such g that g, =e for i > n,
n depending on g. Then we can choose U, ge G, in such a way that
g U, is a representation of G continuous on each G;,ieN.

Proof. Let U;(g) be the operator on #; implementing g € G, such that
U,(g9) h;=h;; U(g) is defined uniquely and gr—U,(g) is a continuous
representation of G;.

From Section 2.7 we have, for each i €N, the unique decomposition
H = H,Q H, with a=a;®I,,. Because of the evenness of G;, U;(9)®I;
implements (g;,¢,,...) with g;=g and g;=e for j+i. The operators
obtained in this way commute, for a proof once more the evenness must
be used, and multiplying them we get needed representation of G.

3.5. Lemma. There exists ye # and nelN such that the subspace
generated by y is Gi-invariant for all i>n.

Proof. Let us consider the restriction of the representation of G
of Section 3.4 to the finite-dimensional subspace #’ of Section 3.3.

Let G;, be the first subgroup from {G;:ieN} which acts in #' in a
non-trivial way. As we are dealing here with continuous representation
of a compact group we can write

H' =D A,

where the subspaces ¢, ® /#,' are G, -invariant, G; acts irreducibly
in #, and the representations of G; in #, and #; are inequivalent
for o = B.

As G; commute with G; , for i4i,, #, ®#, are also G;-invariant
and G,, for i i;, acts in #,". By our choise of i; there exists such « that
dim s#, <dim s#'. Therefore this decomposition repeated at most
dim s’ times leads to the needed vector.

3.6. For any neN there exists a decomposition

H=HQ - QHRH,

and a representation a,, of the CAR over (P 4, in #, such that a is
the crossed product of ay, ..., a,, a, . i>n

The groups G; for i>n act in #; and G, := {(9,,9,,...)EG:g;=e
for i<n)actsin #,,.

Proof. Let # = #, ® #,. be the decomposition of Section 2.7 with
a(x)=a,(x)®1I,. for xe #;. As a, is an irreducible representation
over £, and E, a(y), y € Z6 #,, commutes with a(x), x € #,, we conclude
that E; a(y) = I, ® a,.(y), which proves the existence of the decomposition
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for n=1. G;. acts in . because the operators implementing G, commute
with a,, and that G, acts in J# follows from the irreducibility of @ and the
evenness of G; .

The general case follows by induction.

3.7. Lemma. Let a be an irreducible representation over # in the
Hilbert space s with a G-invariant vector h. Then a is equivalent to
ao = (X)(a;, h;) and the G-invariant vector is unique (up to a scalar factor).

ieN

Proof. Let # = #, ® #,. be the decomposition of Section 3.6 forn=1.
Then h can be written as h=h, ®h, +Zv ®v,, with v, Lh;. Let

P:.= f U,(9)®1,.dg, where dg denotes the normalized Haar measure

on G1 ; P is the projection on the subspace of all Gl-mvarlant vectors.
Then Ph=h, Phy=h, and Pv,=0 as h; is the unique G,-invariant
vector in #; and v, L h,. Therefore h=h, ®h,.. Applying this decom-
position n times we get: h=h, ® --®h,®h, and suitable decompo-
sition of a. Now it is easy to see that there exists a unique unitary
mapping from # to (X)(H#,h;) which maps a(x,)...a(x,)h onto
ieN
ap(x) ... ag(x) (hy ®h,® ---) and brings a and a, into equivalence.
The uniqueness of h follows from the irreducibility of a and from
the fact that, as was proved above, each invariant vector defines an
isomorphism of a and a,.
38. Let# =HQ -+ Q #,R H#, be the decomposition of Section 3.6.

Lemma. The G;-invariant, i>n, vector y of Lemma 3.6 admits fac-
torizationasy=u®h, ,ue 4 Q --- Q #,, h, € #, and h,, is G, invariant.

Proof. Let U be the continuous unitary representation of G, in #
implementing the action of G,. in £ such that U(g) y = y. Such representa-
tion exists and is unique: the existence and the continuity follow from the
implementability of G and the continuity of the action of G on £ and the
uniqueness follows from the irreducibility of a.

As G, acts in #, the same is true about P:= j dg U(g), where dg

denotes the normalized Haar measure on G, . P 1s the projection on

G,-invariant vectors and, as Py=y, P+0. Therefore there exists in

#, a G,-invariant vector. Applying to G, and (X)(a;, h;) Lemma 3.7,
i>n

we see that the G, invariant vector in J#, is unique. Denoting such a

vector by h,,, writing: y=u®h, + Y u,®u,,, with u, L h,., and applying

to this decomposition P we get, as in Lemma 3.7, that y=u®Hh,, .
3.9. To finish the proof of Theorem 3.2 let us consider A,

h:=h1® Tt ®hn®hn”
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where h,. ..., h, are the vectors from the definition of a, and h,, is the
vector of Lemma 3.8. h is G invariant and therefore Lemma 3.7 is appli-
cable. Hence, theorem is proved.

3.10. We are now going to construct a triple (a, h, G) which will be
used to define a representation a, of Theorem 3.2; in some places the
proofs are only indicated. It will be more convenient to do this in the
“a*” notation of Section 2.1.

Let Z#=H@®H and let {f; ..., f,} be an orthonormal basis of H.
Let us denote: af := a(f;) and a;:= a(f;). With this notation we have

Proposition. Let a be an irreducible representation over & and let Q
be a normalized vector in #, such that a;Q=0,i=1,...,4. Let

h:= —%(Q+a;‘ ...a; Q) and let G be the group of all these canonical

transformations that leave invariant the suspace of #, generated by h.
Then G is a compact subgroup of A+ and Ch is the unique one-dimensional
G-invariant subspace of #,.

Proof. Let E be the operator implementing x+— — x such that EQ =Q.
Then EQ' =, where Q' :=aj ... a} Q, and also Eh=h. If U(g) imple-
ments g € G then U(g) h is proportional to h and therefore, see the end
of Section 2.4, ge ™" . This proves that GC A"+,

To prove the compactness of G, let us remark that the g-invariance
of the subspace generated by & is equivalent to the equalities:

(hlalgxy) ... algx,) b) = (k] a(x,) ... a(x,) B),

for each sequence xq, ..., x,eZ,n=1,2... .

As g—(hla(gx,)... a(gx,) h) are continuous functions on X", the
group G is a closed subset of a compact space and therefore compact.

G contains the subgroup {(4,0): Ae SU(H)}, where SU(H) is the
group of all the unitary and unimodular operators on H. The only
one-dimensional subspaces of #, invariant with respect to this subgroup
are those generated by vectors of the form: aQ + fQ'. For, if #, denotes
the subspace of #, generated by aj, ... a; Q then

Hy=H @AM D - DA,

4
with dim J#, = (n)’ and this decomposition is SU(H)-invariant. More-

over, the representation of SU(H) in ##, are irreducible what follows, for
instance, from their equivalence to the representations of SU(H) in the
antisymmetrized n-th tensor product of H.
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Let us now consider the canonical transformation a* +b* defined by:

N 1

b-l'—= l/i(a-f+a2)a b;= I/z(a;_al),

1 1
by = l—/?(a;f +ay), bi= 17—5(“1—03%

Direct computation shows that b;, i=1,...,4, applied to
i(1—ajfa3)(1 —ajal)Q give zero. Therefore, an operator U im-
plementing this canonical transformation acting on Q gives a vector
proportional to 3(1—aj a3) (1 —aj al) Q. Fixing U by demanding equali-
ty here we get:

UQ =3(1+ajal)(1+ala})Q

and therefore
(QIUQ=Q*|UQ)=(Q|UQ)=(Q|UQ)=3.

The vector aQ+ B, |a|*>+|B|> =1, generates a one-dimensional
U-invariant subspace if, and only if,

(@2 + Q| U@+ p2) =1,
ie., 0% +of + fa + BBl = 2. Now, that a = f§ follows from the identities:

0% + BB +of + fal =loa+ B> and o~ B> =2(lu* +|BI7) — o+ BI -

Therefore only vectors proportional to ——12—(Q+Q/) generate a

one-dimensional subspace of #, invariant under S U(H) and the canonical
transformation just described.

4. The Correspondence a7,

4.1. Theorem. There exists an irreducible representation a which is
determined by A, i.e., such that if A, = A, and b is irreducible then b
is equivalent to a.

Proof. Itis enough to show that there exists a representation satisfying
the assumptions of Theorem 3.2.
Let us consider the representation (X)(a;, ;) with (a;, h;, G;) being
ieN
copies of (a, h, G) of Section 3.10. By Section 2.5, G; X G, X --- is im-
plementable in (X)(a;, h;). Theorem is proved.

ieN
4.2. The set of all irreducible representations determined by their
groups of implementable canonical transformations has the cardinality
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of real line. For the proof one can apply to the representation of Theorem
3.2 suitable canonical transformations. We will not give the details.

For the representation of Theorem 3.2, for the Fock representation
and for representations obtained from these by applying canonical
transformations we have the following situation:

if A}, = A, then b is equivalent either to a or to a; is this true for every
representation of CAR?

4.3. To give a generalization of Theorem 3.2 to factor represen-
tations, we let Int (¢7), for an in general non-irreducible representation a
of CAR, denote the subgroup of , of all canonical transformations
which are implementable by operators from the von Neumann algebra
generated by {a(x): xe #}.

Theorem. Let %, G, a, be as in Theorem 3.2 and let a be such a factor
representation over & that G C Int(,). Then ais a factor type I representa-
tion, quasi-equivalent to a,.

Examination of the given proof of Theorem 3.2 shows that it is
applicable also in the case of factor representations provided that one
has a suitable generalization of Lemma 3.1. Namely, one has to prove
that it is possible to choose the operators U, implementing G in such a
way that gi—U, is a projective measurable representation of G. Such
result is proved in our paper [10].

Essentially the same applies to the following generalization of [9]:

Theorem. Let a be a Fock representation over #=H®H and let b
be such a factor representation over & that A, CInt(4,).Then b is a factor
type I representation, quasi-equivalent either to a or to a.

Here by a Fock representation over #=H@® H we mean such an
irreducible representation a that these exists Qe J#,, 20, with
a(x)Q=0,Yxe H.

One might ask here a question analogous to that in the end of
Section 4.2.

4.5. The group Int(A,) for the factor type II, representation is
described in [1]. It appears that in this case Int(:£}) is contained in %,
for each Fock representation b. Hence, one can not expect for general
factor representations to have theorems of the type of Section 4.3.

5. The Correspondence a2/,

Theorem. The correspondence a—>.sf, which to every irreducible
representation of the C*-algebra W of CAR assignes the group of all
implementable automorphisms of W is one-to-one.
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Proof. Corollary 3.8 of [4] states, in particular, that if a and b are
irreducible representations of A then there exists an automorphism t
of A such that be 7 is equivalent to a. On the other hand, &/,,,=t/,7t"".
Therefore it is enough to prove the following: there exists an irreducible
representation a, of A such that if o/, = o/, , and a is irreducible, than a
is equivalent to a,.

For, let &/, = <4, let both b and b’ be irreducible and let 7€ o/ be
such that bot is equivalent to a,. Then «/, =/, and therefore
Ay, (=117 = 14,17 ") is equal to 7, . Therefore b’ 7 is equivalent
to bo 1 and b’ is equivalent to b.

But existence of such a representation qa,, is assured by Theorem 4.1.
For, let a, be one of the representations of that theorem and let
A, =st,,. Then, as A, = A N, for every representation a, KA, = A,
and therefore a is equivalent to a,. Hence, Theorem is proved.
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