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Abstract. It is proved that irreducible representations of CAR are determined by the
groups of implementable automorphisms of the corresponding C*-algebra. This is done
by a study of implementable canonical transformations. Some results in the same directions
for factor representations are given.

1. Introduction

Let 91 be a C*-algebra and let si be the group of all its automorphisms.
si acts in a natural way in the set of all representations of 21 and for a
representation a of 21 let sίa denote the isotropy subgroup of α, that is,
sίa is the group of all τ e si such that a ° τ is equivalent to a.

The mapping a\->sia gives a classification of representations. We
study here this mapping for irreducible representations of a uniformly
hyperfinite (UHF) algebra of Glimm, [2], and prove that in this case it is
one-to-one, that is, if sia = sih then a is equivalent to b.

This is complementary to what is found in [4] by Powers where it
is, in particular, proved that si acts on the set (of the equivalence classes)
of irreducible representations of the UHF algebra in a transitive way.

In investigations of physical systems the UHF algebra appears as
the C*-algebra of canonical anticommutation relations (CAR), [7, 5],
or as the algebra used for a description of quantum lattice systems.
In the case of CAR the C*-algebra has additional structure, namely,
there is given a linear subspace 01 which generates 21, which is invariant
with respect to involution and on which the norm of 21 is of hilbertian
type. The special automorphisms of 2Ϊ which leave £% invariant are
called canonical, or Bogoliubov, transformations. In this way every
canonical transformation gives rise to a unitary operator on 01 and
conversely: every unitary operator on 0ί which commutes with involution
extends to an automorphism of 21. The group of all canonical transforma-
tions is denoted by Jf and Jf r\sia by cfCa.



Representations of CAR 105

We study first the mapping αt->JΓΛ, which is more interesting than
as Jf is much smaller than <s/, but for which the results are not so

full.
In Section 3 we define the representation a0 and prove that if Xa = JΓαo

and a is irreducible than a is equivalent to a0. This is done by picking
out a compact subgroup of JΓαo such that in the representation space
there exist a unique one-dimensional subspace invariant with respect
to this subgroup. By a similar method we proved in [9] corresponding
result for the Fock representation.

That from stfa = j / α o and irreducibility of a follows equivalence of
a to α0 can be proved a little more simply: Section 2.10 can be shortened
and the canonical anticommutation relations need not be mentioned.
The stronger theorem is proved here for an eventual fuller investigation

Section 4 contains theorems about a\->Jfa for the irreducible case
together with generalizations to factor representations. In Section 5,
using these theorems and the Powers' theorem about the transitivity
of the action of jrf, we prove that a\->stfa is one-to-one.

Section 3 is a slight modification of § 3, Chapter III of the Thesis [8].
The rest, apart from the generalizations to factor representations of
Section 4.3, can also be found there. Other references are given in suitable
places in the following.

2. Resume on Representations of CAR

2.1. Let 01 be a complex Hubert space with involution, that is,
on 01 is defined, denoted by χ κ χ * 5 an antiunitary mapping such that
(x*)* = x. By representation of CAR over 01 in the Hubert space Jf
we mean a linear mapping x\->a(x) from 01 to bounded operators on ffl
such that

a(χ*) = α(x)*, and a{x) a{y) + a(y) a{x) = 2(x, y)

here (,) is the symmetric bilinear form defined by (x,y) = \{x*\y)\
we note the inequality \\a(x)\\ ^ ||x||.

The representation is defined uniquely by its restriction to the real
Hubert space of all vectors of 01 satisfying: x*=x; this restriction is
the starting point of [7].

Our notation is taken from the Appendix 1 of [3]. It is connected
with the "α + " formulation as follows.

Let H be a complex Hubert space and let a+ be a linear mapping
from H to the bounded operators on Jf such that if a(f): = (α+ (/))* then
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a+(f) a+(g) + a+(g) a+(f) = 0,V

Then the transition to our notation is through the following definitions:
$ = H®H, where H is the Hubert space conjugated to H, (f®g)*
: = # © / a n d a{f®g): = a+(f) + a(g). The " α + " description is used in
Section 3.10.

2.2. Let Jf denote the group of all the unitary operators on 01 that
commute with the involution. The elements of Jf* will be called canonical
transformations.

In the " α + " description, every canonical transformations is given
by a pair (A, B), ^4-linear and 5-antilinear operators in H, such that

is again a representation of the CAR over H.
We will say that k e Jf is implementable in the representation a

of CAR over $ if there exists a unitary operator U on ^Ca such that
a(kx) = Ua(x) I/" 1, Vx e M. If a is irreducible U is unique up to a factor
of modulus one. Xa will denote the subgroup of Jf of all the canonical
transformations implementable in the representation α.

The representation a will be said to be even if the canonical trans-
formation X K — x is implementable in a.

2.3. Let, for i e N, at be an even representation of CAR over 0ί{ in
the Hubert space J ^ and let Et be a unitary operator on J1^ implementing
χ h > - x such that Ef = It. Then in the infinite tensor product space
c^ = φ C ^ f t / ) , where /ιf is a normalized vector in J^, there exists

ίeN

a representation α of CAR over 0t = ^9tu such that

α(x) = αx(x)(x)/2® ..., for

and

a(x) = Eί®'" ®Ei_ί®ai(x)(g)Ii + ί® ..., for

α will be called the crossed product of a{ and will be denoted by (X)(αi5 /*/)•
ieN

If all at are irreducible then their crossed product is also irreducible.
We have the following property of the crossed product: if σ is a permuta-
tion of IN such that σ(ί)ή=ί only for a finite number of ί e N then
(X)(ασ(0, hσ(i)) is equivalent to ®(ai9 ht).
ieN ieN

Let us also remark that if a is even and irreducible then the operator
implementing XH> — x can be always chosen to be unipotent and that the
construction of the crossed product is obviousely also possible when
we have a finite sequence of representations and all, with possible
exception of the last, are even.
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2.4. Let a be an even representation with E implementing χi-> — x
and let Uk implements ) c e / f l . We will say that k is even (resp.,odd)
if Uk commutes (resp., anticommutes) with E; Jf+ will denote the set
of all even elements of Xa and C/f~ the set of odd elements. If a is irre-
ducible then JΓΛ

+ u JΓα~ = Xa and JΓα

+ is a normal subgroup of Jfα of
index two.

For irreducible representation we have the following criterium of
evenness: let h be an eigenvector of E, then k is even iff Ukh is eigenvector
of E with the same eigenvalue as h.

2.5. Let ah i e N , be even and irreducible and a: = φ ( α i 9 ht). Then if
ί e N

k{e^i w iΛ ^ί implementing /̂  such that 1 ^ = /̂  then k:=@ki

ϊ e N

is implementable in β by U = (X) L̂ .
i e N

For general theorems about implementability in infinite crossed
product see [6,8].

2.6. There exists a C*-algebra 21 and injection i : ^ - > 2 ϊ such that
i) i(β) generates 9Ϊ,

ii) i(x*) = i(x)* and i(x)i(y) + i(y)i(x) = 2(x,y),Vx,ye«,
iii) for every representation a of CAR over ^ there exists a unique

representation α of 91 such that a ° i = a.
The pair (9ί,i) is unique up to a natural isomorphism.
>From uniqueness, every canonical transformation extends to an

automorphism of 9ί. We will often identify Jf with the corresponding
subgroup of the group si of all the automorphisms of 91. Similarly,
we will often not distinguish between a and α.

sίa will denote the group of all elements of si which are implementable
in the representation a; Jfα c sta. We have:

with analogous identity for Jffl.
On 91 there exists a complex conjugation χf->3c which extends the

mapping χt-»x* on 01. To every representation a there corresponds
the conjugated representation a in the Hubert space #Ca such that
α(x)Λ = α(x*)Λ. We have: jfff = jfβ.

2.7. If ^ is of a finite and even dimension then irreducible representa-
tion of CAR is unique up to equivalence.

If a is any representation of CAR over M then a is equivalent to
a'®I, with a' irreducible.

Because of the uniqueness, every canonical transformation is in
the finite dimensional case implementable and the evenness of a canonical
transformation does not depend on the choice of the irreducible
representation.
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2.8. We draw attention to the following abuses of notation: we do
not distinguish between 0t^ and the corresponding subspace of @0tt,

iel

or between operators on Jίf and the corresponding operators on J f (x) ffl'\
the same refers to the direct products of groups. We also identify J f with
(X) J ^ if there is a natural isomorphism, in our context, between them.

E.t.c.

3. Representation with a Large Compact Group of Implementable
Canonical Transformations

From now on, the Hubert space ^ over which representations of CAR
are defined is assumed to be separable. Therefore all irreducible re-
presentations over 01 act on separable Hubert spaces and the same can be
assumed, after possible passage to quasi-equivalent representation,
about the factor representations.

3.1. Jf equiped with the strong operator topology is a topological
group and this topology we have in mind speaking about, for instance,
compact subgroups of Jf.

Lemma. Let a be irreducible and let G be a compact subgroup of tfa.
Then there exists a finite-dimensional G-inυariant subspace pf34?a.

Remark. As for an irreducible representation the operators im-
plementing canonical transformations are unique up to a factor of
modulus one, we can speak unambigously about subspaces of the
representation space invariant with respect to canonical transformations.

Proof of Lemma. Let Ug implements g e G and let 2I0 denote the
*-algebra generated by {a(x): xeffl}. If we can show that for Ae%0

the mapping g\->XJgAXJ~x is norm continuous (in fact, weak continuity
is sufficient) then the proof follows from what was said in [9], Section 1,2.
For A = a(x),UgAU~ί=a(gx), and the continuity follows from the
inequality: ||α(x)|| ^ ||x||, Vxe^?. Each element of 3I0 is a finite sum of
products a(x1)...a{xn) and therefore we have the required continuity.

3.2. Theorem. Let, for zeN, at be an irreducible representation of
CAR over 01 { in J^, let the dimension of0$t be finite and even and let Gt be
such a compact subgroup of Jf* that in J ^ there exists, and only one,
Grinvariant one-dimensional subspace. Let M\— φ ^ i s G:= Y\Gt and

ieN ieN

let a be an irreducible representation of CAR over M in which G is im-
plementable. Then a is equivalent to α o : = (^(a^hi), where ht is a nor-

ί e N

malized vector generating the one-dimensional Gfinvariant subspace of

The proof is given in Sections 3.3—3.9.
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3.3. It is easy to see that G is a compact subgroup of JΓfl. Therefore
Lemma 3.1 is applicable and we conclude the existence of a finite-
dimensional G-variant subspace tf" oϊJίfl==

I3.4. Let G denote the subgroup of G of all such g that gt — e for i > n,
n depending on g. Then we can choose Ug,ge G, in such a way that

is a representation of G continuous on each G/? Ϊ G N .
Proo/. Let U^g) be the operator on Jff implementing # e G£ such that

h^hii Ui(g) is defined uniquely and g^U^g) is a continuous
representation of Gj.

From Section 2.7 we have, for each ί e N , the unique decomposition
j f = j ^ ® ^ , with a = at®Iv. Because of the evenness of G i ; U^g)®^
implements (0i,02> ) with #j = # and #/ = e for Φf. The operators
obtained in this way commute, for a proof once more the evenness must
be used, and multiplying them we get needed representation of G.

3.5. Lemma. There exists yeJtf* and n e N such that the subspace
generated by y is Gfinvariant for all i > n.

Proof. Let us consider the restriction of the representation of G
of Section 3.4 to the finite-dimensional subspace Jtf" of Section 3.3.

Let Gh be the first subgroup from {Gt: i e]N} which acts in jtf" in a
non-trivial way. As we are dealing here with continuous representation
of a compact group we can write

where the subspaces ffl^®^* a r e Gfl-invariant, Gh acts irreducibly
in j^ά and the representations of Gh in jj% and 2tf$ are inequivalent
for ot*β.

As G( commute with G/ i ?for i + iί9Jfά®^a a r e a l s o GΓinvariant
and Gh for i =f= ix, acts in Jfα". By our choise of iγ there exists such α that
dim ^ < dim 3%". Therefore this decomposition repeated at most
dim &f" times leads to the needed vector.

3.6. For any n e N there exists a decomposition

and a representation an, of the CAR over © J^ in #Pn, such that α is
the crossed product of %,. . . , an9 an,. «>«

The groups Gf for i > n act in J ^ and Gn>: = {(g1, ^2? •)G G: gt = e
for ί ̂  w) acts in j f „,.

Proof Let ^ = ^1®^?

v be the decomposition of Section 2.7 with
α(χ) = α1(χ)(g)/r for x e ^ . As at is an irreducible representation
over 01 γ and £ x α(y), y e & Q ^ ί , commutes with α(x), x G ^ , w e conclude
that E^ a(y) = I± ®av(y\ which proves the existence of the decomposition
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for n = 1. G r acts in ^fr because the operators implementing Gr commute
with αx, and that Gx acts in ^ follows from the irreducibility of a and the
evenness of Gx.

The general case follows by induction.

3.7. Lemma. Let a be an irreducible representation over 01 in the
Hubert space ffl with a G-invariant vector h. Then a is equivalent to
ao — (X) (αP ^ί) and the G-invariant vector is unique (up to a scalar factor).

ί e N

Proof. Let J f = J ^ (x) Jf r be the decomposition of Section 3.6 for n = 1.
Then h can be written as h = h1®hv+Σvoι<g)vΛ,9 with vaλh1. Let

α

P'— j U1{g)®Ivdg, where dg denotes the normalized Haar measure

onGj P is the projection on the subspace of all Gt-invariant vectors.
Then Ph = h, Ph1=h1 and Pv(χ = 0 as hx is the unique Gx-invariant
vector in ^ and voc±h1. Therefore h = hγ®hv. Applying this decom-
position n times we get: h = h1<g) -(g)hn®hn, and suitable decompo-
sition of a. Now it is easy to see that there exists a unique unitary
mapping from Jf to (X)(J^ ,^) which maps a(x1)... a(xk)h onto

ί e N

Λ Q ^ ) ... αo(x fc)(/ι1®/z2® •••) and brings a and α0 into equivalence.
The uniqueness of h follows from the irreducibility of a and from

the fact that, as was proved above, each invariant vector defines an
isomorphism of a and a0.

3.8. Let Jf = J ^ ® ••• ®Jf n ®^bethedecompositionofSection3.6.

Lemma. The Grinvariant, i > n, vector y of Lemma 3.6 admits fac-
torization asy = u®hn,,ue J#\® (x) J4?n, hn, e 3tfn, andhn> is Gn, invariant.

Proof Let U be the continuous unitary representation of Gn> in J f
implementing the action of Gn, in M such that U(g) y = y. Such representa-
tion exists and is unique: the existence and the continuity follow from the
implementability of G and the continuity of the action of G on 3%, and the
uniqueness follows from the irreducibility of a.

As Gn, acts in ffln, the same is true about P: = J dg U(g\ where dg

denotes the normalized Haar measure on Gn>. P is the projection on
Gn'-invariant vectors and, as Py = y, P φ O . Therefore there exists in
ffln, a Gπ,-invariant vector. Applying to Gn> and (X)(αi? /*f) Lemma 3.7,

i>n

we see that the Gn, invariant vector in ffln, is unique. Denoting such a
vector by hn,, writing: y = u(x)hn, + ^Mα®Mα', with ua, 1 hn,, and applying

a

to this decomposition P we get, as in Lemma 3.7, that y = u®hn>.
3.9. To finish the proof of Theorem 3.2 let us consider h,
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where hv ...,hn are the vectors from the definition of α 0 and hn> is the
vector of Lemma 3.8. h is G invariant and therefore Lemma 3.7 is appli-
cable. Hence, theorem is proved.

3.10. We are now going to construct a triple (α, h, G) which will be
used to define a representation a0 of Theorem 3.2; in some places the
proofs are only indicated. It will be more convenient to do this in the
" α + " notation of Section 2.1.

Let & = H®H and let {f1 ...,/4} be an orthonormal basis of H.
Let us denote: a^:=a(fi) and α / :=α(/ / ) . With this notation we have

Proposition. Let a be an irreducible representation over 01 and let Ω
be a normalized vector in Jfa such that a{Ω = 0, i = 1,..., 4. Let

h: = —y=- (Ω + a\ ... a\ Ω) and let G be the group of all these canonical

transformations that leave invariant the suspace of ffla generated by h.
Then G is a compact subgroup of C^ί+ and (C/z is the unique one-dimensional
G-invariant subspace of

Proof Let E be the operator implementing X K — x such that EΩ = Ω.
Then EΩ' = Ω\ where Ω':= af ... αjΩ, and also Eh = h. If U{g) imple-
ments geG then U(g)h is proportional to h and therefore, see the end
of Section 2.4, g e Jf+. This proves that G C Jf+.

To prove the compactness of G, let us remark that the g-invariance
of the subspace generated by h is equivalent to the equalities:

(h I a{gxt)... a(gxn) h) = (h\ a(xx)... a{xn) h),

for each sequence xί,..., xn e 01, n = 1,2 ... .

As g\->(h\a(gxί)... a(gxn)h) are continuous functions on X , the
group G is a closed subset of a compact space and therefore compact.

G contains the subgroup {(A,0): AeSU(H)}, where SU(H) is the
group of all the unitary and unimodular operators on H. The only
one-dimensional subspaces of Jίfa invariant with respect to this subgroup
are those generated by vectors of the form: ocΩ + βΩ'. For, if J^n denotes
the subspace of J^a generated by a^ ... a^jΩ then

/4\

with dimJ^n = I , and this decomposition is SLr(#)-invariant. More-

over, the representation oϊSU{H) in 34?n are irreducible what follows, for

instance, from their equivalence to the representations of S U(H) in the

antisymmetrized π-th tensor product of H.
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Let us now consider the canonical transformation a+ \->b+ defined by:

K = ~yj(aΐ +a2), b\ = —γ(4-^i) ?

bί = -4-(4 + flj, 6ί = -i(fl: -a3).

Direct computation shows that bi9 i = l, . . . ,4, applied to
| ( 1 — a\a\) (1 — a\a\) Ω give zero. Therefore, an operator U im-
plementing this canonical transformation acting on Ω gives a vector
proportional to f (1 — #ί"α2 ) (1 ~ atat) Ω Fixing (7 by demanding equali-
ty here we get:

and therefore

(Ω I C/Ω) = (Ω* I UΩ') = (Ωf \ UΩ) = (Ωf \ UΩ') = | .

The vector aΩ + βΩ', |α| 2 + |/?|2 = l, generates a one-dimensional
(7-invariant subspace if, and only if,

i.e., |αα + α/? + /?α + J8j8| = 2. Now, that α = β follows from the identities:

and | α - β | 2 = 2(|α|2 + \β\2)- \a + β\2 .

Therefore only vectors proportional to —^=-(Ω + Ω') generate a

one-dimensional subspace of jfa invariant under S U(H) and the canonical
transformation just described.

4. The Correspondence

4.1. Theorem. There exists an irreducible representation a which is
determined by Jf̂ , i.e., such that if JfJ, = $Ca and b is irreducible then b
is equivalent to a.

Proof. It is enough to show that there exists a representation satisfying
the assumptions of Theorem 3.2.

Let us consider the representation ^ ) ( α f , Λ£) with (ai9hi9 Gt) being
ί e N

copies of (a,h9 G) of Section 3.10. By Section 2.5, G 1 x G 2 x is im-
plementable in (X)(αί9 ht). Theorem is proved.

4.2. The set of all irreducible representations determined by their
groups of implementable canonical transformations has the cardinality
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of real line. For the proof one can apply to the representation of Theorem
3.2 suitable canonical transformations. We will not give the details.

For the representation of Theorem 3.2, for the Fock representation
and for representations obtained from these by applying canonical
transformations we have the following situation:

if Xh = Jfa then b is equivalent either to a or to a; is this true for every
representation of CAR?

4.3. To give a generalization of Theorem 3.2 to factor represen-
tations, we let Int (JQ, for an in general non-irreducible representation a
of CAR, denote the subgroup of Xa of all canonical transformations
which are implementable by operators from the von Neumann algebra
generated by {a(x) :xe&}.

Theorem. Let 01, G, a0 be as in Theorem 3.2 and let a be such a factor
representation over 01 that G C I n t p Q . Then a is a factor type I representa-
tion, quasi-equivalent to a0.

Examination of the given proof of Theorem 3.2 shows that it is
applicable also in the case of factor representations provided that one
has a suitable generalization of Lemma 3.1. Namely, one has to prove
that it is possible to choose the operators Ug implementing G in such a
way that g\->Ug is a projective measurable representation of G. Such
result is proved in our paper [10].

Essentially the same applies to the following generalization of [9]:

Theorem. Let a be a Fock representation over 0t = H®ϊϊ and let b
be such a factor representation over 01 that Ctfa C lnt(Jfb).Then b is a factor
type I representation, quasi-equivalent either to a or to a.

Here by a Fock representation over M = H®H we mean such an
irreducible representation a that these exists ΩeJ^a,Ωή=0, with

One might ask here a question analogous to that in the end of
Section 4.2.

4.5. The group I n t p Q for the factor type Πj representation is
described in [1]. It appears that in this case Int ( jQ is contained in Jfb

for each Fock representation b. Hence, one can not expect for general
factor representations to have theorems of the type of Section 4.3.

5. The Correspondence a (->s/a

Theorem. The correspondence a\->stfa which to every irreducible
representation of the C*-algebra 91 of CAR assignes the group of all
implementable automorphisms of 91 is one-to-one.
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Proof. Corollary 3.8 of [4] states, in particular, that if a and b are

irreducible representations of 21 then there exists an automorphism τ

of 91 such that b ° τ is equivalent to a. On the other hand, sfboτ = τ j ^ τ " 1 .

Therefore it is enough to prove the following: there exists an irreducible

representation a0 of 91 such that if srfa = <srfao, and a is irreducible, than a

is equivalent to α 0.

For, let s/b = sih,, let both b and V be irreducible and let τ e srf be

such that fe°τ is equivalent to a0. Then stfaQ = jrfb and therefore

<stfb'oτ(= τs/h.τ~* = τsrfhτ~γ) is equal to j / α o . Therefore 6' ° τ is equivalent

to b ° τ and for is equivalent to fo.

But existence of such a representation α0 is assured by Theorem 4.1.

For, let a0 be one of the representations of that theorem and let

srfa — stfao. Then, as J ^ = J Γ n ^ α for every representation a, JΓα = Jf̂ 0

and therefore a is equivalent to α 0. Hence, Theorem is proved.
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