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Abstract. We present a complete mathematical theory of two-body quantum mechanics
for a class of potentials which is larger than the usual L2-classes and which includes potentials
with singularities as bad as r~2 + ε. The basic idea is to define H0 4- V as a sum of quadratic
forms rather than as an operator sum.

§ 0. Introduction

After one has established the connection between quantum mechanics
and Hubert space objects [1], a host of nontrivial mathematical questions
arise. These involve establishing the self-adjointness of the Hamiltonian,
studying qualitative properties of bound states, investigating the question
of the existence of the limits needed for scattering theory, and proving
the physically expected properties of the S-matrix. For the two-body
case, H=-Δ + V, with V in one of the four classes, L2 + L°°, L2 + (L00),1,
L2, Z^nL1 there is a fairly complete theory of these questions [2] going
back to the famous paper of Kato [3]. Our purpose here is to extend this
theory to a larger class of potentials than the L2 classes. While one can
establish some π-body results for these larger classes (e.g. Hunziker's
theorem on the position of the continuum [4] goes through), we only
discuss the two-body case here - a case for which a complete theory
exists. A fuller discussion of this theory can be found in [5] in this note
we wish to emphasize the main results and the physics behind these
results.

Before describing the classes we treat in detail, let us explain why
such larger classes should exist. Consider a potential V = r~α. This is in
an I2 class only if 0 ̂  α < 3/2 but physically there is nothing singular
about — Δ — r ~3/2. It is only at α = 2 that singular things begin to happen.
At α = 2, the uncertainty principle "proof that H is bounded below
breaks down (and in fact — A— cr~2 is not bounded below if c> 1/4).

* Based on a thesis submitted to Princeton University in partial fulfillment of the
degree of Doctor of Philosophy.

1 X + (L°°)ε = {/1 (Vε)/ = xε + ge with xε e X; \\gε\\ao<ε}; e.g. r'1 e L2 + (L°°)β on R3.
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There are indications that a quantum mechanical particle in an r~2 force
field "falls into the origin" ([6], pp. 118-121) and these indications are
borne out by a detailed investigation of the Feynman Path Integral for
such a potential [7]. In summary, one expects there to be an extended
theory which will include potentials r~ α ;3/2^α<2. In fact, using
special properties of central potentials, one can already establish a great
deal of physics for such potentials [8].

In producing such a generalized theory, the first thing we must give
up is the method of defining — A + Vasa sum of operators on D( — Δ\
for Strichartz [9] has shown a multiplication operator V(x) has D(V)
D D( — Δ) if and only if V is "uniformly locally L2" in which case —A + V
is self-adjoint on D( — A) by Kato's theorem [3]. To find a suitable sub-
stitute for definition as an operator sum, let us return to the basic quantum
mechanical meaning of the statement C = "A + B" for observables
A, B, C. Given the physical interpretation for "observable", we should
demand only that (ψ, Cψy = (ip, Aψy + (ιp9 Bψy, i.e. interpret the sum
in an expectation value sense. Thus letting Q(A) = {ψ \ <ιp, Aψy < 00}2,
we will attempt to define H — — A + V as follows. Define "H" as a
quadratic form on Q(A)r\Q(V) and then show this quadratic form is the
quadratic form of some self-adjoint operator. Such a procedure has
already been suggested by Nelson and Paris [10] (and applied to the
case Fe L3/2). A related technique can be found in [43].

We will deal with the classes, # + L°°, R + (L°°)£, R, KnL1 where R
is the set of F's obeying

\\V\\i = f \ x - y \ - 2 \ V ( x ) \ \ V ( y ) \ d * x d 3 y « x > .

This condition has been independently isolated by several authors [11]
and studied, although not systematically, by several others [12]. In
Appendix 1, we study the relation of this Rollnik condition3 to other
conditions we remark that the class R + L°° is nearly maximal in the
class of potentials for which Q(-A)cQ(V) and for which -A + V can be
defined as a sum of forms and that r~α(0^α<2)eR + L°°. The property
that distinguishes R from other conditions one might pick is that
V\]/2(H0 + E±iQ)~lV112 is an integral operator with Hubert-Schmidt
kernel if VeR.4

After discussing the definition of the Hamiltonian in § 1 we turn to
establishing qualitative properties of bound states in § 2. Our main tools
in this study are a certain integral equation and the approximation of
V with L2 potentials. In § 3, we discuss the existence and unitarity of the

2 In terms of spectral projections this means J \λ\ d(ψ, Eλy>y < oo.
3 We name the condition after the individual who was the first to isolate it (at least

to our knowledge).
4 Let P|}/2(x) = |F(x)|1/2; F1/2(x) = 7(x)/7,}/2(x) = Vj}'2(x)
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S-matrix. As one might expect the difference between the R and L2

classes which is a difference in finite singularities is not important; in
fact, one major result is that once one can prove existence and unitarity
for bounded potentials with a certain behavior at oo, one can prove
existence and unitarity for locally-jR potentials with the same behavior
at oo. Finally, in §4 we establish eigenfunction expansions in the sense
of Ikebe [13] when VeRnL1.

Let us try to summarize what we regard as the major result of the note.
Because of simple physical arguments and because of Khuri's work on
forward dispersion relations [8], most physicists regard a potential as
singular only if it has a singularity as bad as r~2. On the other hand,
people who concern themselves with foundational questions5 often set
the line only at r~3/2. Our goal here is to bring the two standards into
line at r~2. All that changes at r~3 / 2 is the interpretation of — A + V as
an operator sum; all the physics is unchanged.

§ 1. Definition of the Hamiltonian

The definition and self-adjointness of the Hamiltonian for the L2-
classes depends on the basic theorem:

Theorem 1 ( Kato-Rellίch [3, 14]). Let H0 be self-adjoint and suppose
V is a symmetric operator with D(V) D D(H0) so that for some a<l and b

\\Vφ\\£a\\H0φ\\+b\\φ\\

for all φ e D(H0). Then H0 + V defined on D(H0)πD(V) = D(H0) is self-
adjoint. If H0 is bounded below, so is H = H0 + V.

For the Rollnik classes, one needs the analogous theorem:

Theorem 2 (KLMN6 theorem). Let H0 be a positive self -adjoint
operator and suppose V(φ, ψ) is a symmetric bilinear form with Q(V)
3 Q(H0) so that for some a < 1 and b,

for all φεQ(H0). Then the quadratic form φ-*(φ,H0φy + <
defined on Q(H0)r\Q(V) = Q(H0) is the form of a self -adjoint operator,
H, which is bounded below.

Proof. See Appendix 2. Q.E.D.

5 E.g. Grossman and Wu [11] who prove forward dispersion relations for Vεl}r\R
add an L2 condition when they wish to worry about foundational questions.

6 Cannon [15] gives this name to a slightly generalized version of this theorem. The
letters stand for Kato, Lions, Lax-Milgram, Nelson [16].
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We will write H = H0 + V in contradistinction to the "usual" con-
vention which reserves " -f " for an operator sum.

The KLMN theorem can be used to define the Hamiltonian, for:

Theorem 3. Let VeR + L™. Then for any a<\, there is ab so that

for all φ e Q(H0) where H0 = —A. Then — A + V defined as the sum of
quadratic forms is the form of a self -adjoint Hamiltonian operator.

Proof1. Let E = k2 < 0 and suppose first VeR. Then
is an integral operator with Hubert-Schmidt norm

This goes to 0 as k-+ao since VeR. Thus ||V|}/2(£ + #0)~1/2|i <α if E is
taken large enough. For such an E, and any φ e Q(H0)

\<Φ,

For
V=W+V00; WeR; V^eL™,

we find

Remarks. 1. There exist VeR with D(V)nD(H0) = {0}. Thus, while
the Hamiltonian operator we have defined is an extension of the operator
sum, it may be defined on a much larger domain!

2. D(H) can be described explicitly. Let φ e Q(H^}. It is not hard to
prove — Δφ and Vφ both make sense as distributions; D(H) is just those
φ for which — Aφ + Vφ e I2. This can happen when —Δφ, Vφ e L2 but
also if there are cancellations.

3. Theorem 2 does not require V to be the form of an operator. For

example, in one dimension, Q — —-y contains only bounded continuous

functions and for any α<l, |/(0)|2 ^α||/'||2 -f b| |/| |2 for some b. Thus

——2~ +δ(x) can be defined as we have defined our Hamiltonian. The
a x

cancellations alluded to in Remark 2 can be seen explicitly in this example.

A core for — -τ~γ + <Hχ) are £2-functions, /, C°° on 1R— {0}, continuous
a x

at 0 with left and right derivatives at 0 with φ'(Q + ) — φ'(Q — ) = φ(0).
1 We are a little vague about certain technical details involving the meaning of

/2, etc. See [5] for these details.
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For L2 -potentials the formula

is often useful. In the Rollnik case, D(V) may not include Ran((E + //J"1)
= D (H0\ so such an expression may not make sense. However,
(E + H0)~1/2 V(E + H0)~1/2 not only makes sense, it is Hubert-Schmidt
when VeR. This suggests:

Theorem 4. Let Fe# + (L°°)ε. Suppose -EφspQc(H) where
H = H0+V in the forms sense. Then \+(E + H0Γ

1/2 V(E + H0Γ
1/2 has

an inverse and 8 :

Proof. We sketch a proof: for details, see [5]. Take E so negative that
[1 +(E + H0)~i/2 V(E + H0)~112^"1 exists as a geometric series. Treating
the various maps as maps between the scale spaces ^±1

9 one verifies
Tiktopoulos' formula. The extension to all points where the inverse
exists follows by analytic continuation. That the inverse exists when
— E φ spQc(H) follows from our discussion in § 2. Q.E.D.

As a typical application of this theorem, we note

Corollary 5. Let FejR + (L°°)ε. Then H = H0 + V has only discrete
spectrum 10 in (—00, 0).

Proofn. (E + H0Γ
112 V(E + H0Γ

ίβ is Hubert-Schmidt and analytic
in the cut plane if Ve R. If Fe R + (L°°)ε it is analytic and a limit of Hubert-
Schmidt operators, hence compact. By a standard theorem [17] on
analytic compact families [1 + (E + /%)~1/2 V(E + H0)~1/2^~1 exists
except for a discrete set and is meromorphic with finite rank residues 12.
The theorem follows from Tiktopoulos' formula. Q.E.D.

§ 2. Bound States

There are two main techniques for carrying over the qualitative
theory of bound states from the L2 to the Rollnik classes. One is to prove
results directly. The second is to approximate FeR + (L°°)ε by

8 Such a formula was first suggested to the author by G. Tiktopoulos (private com-
munication) originally as a method for defining H. We call this expression Tiktopoulos'
formula.

9 See Appendix 2.
10 That is, only isolated eigenvalues of finite multiplicity.
11 The idea of the proof parallels an idea of Hunzίker [4].
12 This theorem also requires the inverse to exist somewhere. Since

as £->oo, we know this condition is met.
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Vn e L2 + (L°°)£ and use the following elementary consequence of Tikto-
poulos' formula:

Theorem 6. Let Vn, VeR + (L°°)ε and suppose \\ Vn - V\\R^Q as n-»oo.
Then for any E φ spec H (H = H0 + V in the form sense) .

(Hn-EΓί^(H-EΓl (norm topology) .

In particular

(a) eιHnt_+eιHt (stγong topology) ,

(b) E[aίb}(Hn)-+E[a,b}(H) (in || ||;

if a < b< 0 aren't eigenvalues ofH and EΩ (A) is a spectral projection of A.

(c) £[α, «,)(#„) -» E[flj „) (H) ( strong topology)

if a > 0 0πd z'sn'ί arc eigenvalue.

Proof, (a) follows from the norm convergence of the resolvents by
the Trotter-Kato theorem [21, p. 511]. (b) and (c) follow by elementary
theorems [21, p. 432] and [22, p. 372]. Q.E.D.

Any VeR + (L™)ε can be || ^-approximated by Vn E L2 + (L00),. We
can thus use (b) of Theorem 6 to carry over any bounds on the number
of bound states proven for Ve L2 + (L°°)ε in particular:

Theorem?. Let VeR + (L™)ε. Let N(V) be the number of negative
energy bound states. If V is central, let n^V) be the number of such states
of angular momentum I (not counting multiplicity). Then

(b) N(V) ^ I V(x) V(y) \x - y\~ 2 dx dy ( Ghirardi-Rimini [23]; ,

(c) nt(V) ^ (21 + I)'1 J r\V(r)\dr (Bargmann [24]; ,

(d) nt(V) ^ — $\V(r)\1/2dr (Calogero [25]; .

In our study of the Tiktopoulos formula, we have already met the
question of when solutions of [_V\\/2(E — H0)~l F1/2]φ = ψ exist.
Formally, this equation is equivalent to (E — H0)~1Vφ = φ with
ψ = V^/2φ and this latter equation is equivalent to Hφ = Eφ. These
formal equivalences depend on writing H = H0 + F, and expression
which is not true in the operator sense. Nevertheless, a careful argument
allows one to prove:

Theorems. Let VeR + (LCG)ε and let E be in the complex plane cut
by [0, oo). Then
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has a solution if and only if

has a solution φ e D(H). The solutions φ, ψ are related by:

In particular, V^/2(E — H0)~1V1/2 cannot have eigenvalue 1 if

Proof. See [5], Section III.2.
This integral equation form of the ψ equation, viz.

- f dx Vl}
/2(x) (47ΓΓ1 eίklx~yl V 1 / 2 ( y ) ψ(y) = ψ(x) [Imfc > 0; k2 = E]

can be used to prove Sch winger's bound directly; in fact a careful argu-
ment shows 0 energy bound states can be included in the inequality [5].
As Scadron etal [11] have noted Vl}

/2(E±iO-H0Γ
lVi/2 are well-

defined Hubert-Schmidt integral operators when VeR even if £ is real
and positive. This leads one to suspect an integral equation might hold
for positive energy bound states. One does:

Theorem 9. LeίVeR and E ̂  0. Suppose Hφ = Eφ and let ψ = V\\'2φ.
Then:

v •"' J " v"' |x-j;|

/« particular:
(a) /f | |F| | j R<4π, // has no positive bound states.
(b) // \eA^eA^\x-y\-2\V(x)\\V(y)\dxdy<oo far some A>0, H

has at worst finitely many bound states.
(c) H cannot have positive energy bound states for arbitrary large E.

Proof. See [5], Section III.4. Q.E.D.
We note that (b) holds because Vl]

/2(E + ίO -H0Γ^ F1/2 can be con-
tinued to a strip ImE>—C, some C>0. By the analytic Fredholm
theorem [17], the integral equation only has solutions for discrete E.
In the general case, a Reimann-Lebesgue lemma argument [26] shows
Vl\

/2(E + iO < H0)~1 F1/2 has norm less than 1 for E large and thereby (c)
is proven.

Remarks. 1. While the existence of a positive energy eigenvalue
implies the existence of a solution of the integral equation, the converse
is not always true. For example, if F is a square well with a zero energy
5-wave resonance, the integral equation has a solution for E = 0 but
Hφ = 0 has no (square integrable) solutions. Whether a like occurrence
can occur for E > 0 is an open question.
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2. The results (a)-(c) above are very weak. However, unlike the
"usual" results on positive energy eigenvalues [27] they require no
smoothness conditions. We note, however, that Kato [12] has proven
(a) by a method employing time-independent scattering theory.

§ 3. Scattering and the Kato-Birman Theorem

In studying scattering theory, the first goal must be to establish the
existence of the strong limits13 Ω± = lim e

+iHt

e~
iHot jn passing we

ί-» +00

note that Kupsch and Sandas [28] have shown how the Hack-Cook
proof [29] of the existence of this limit can be modified to handle "singu-
lar" potentials which are Oίr"1"*) at oo. While such a result could be
applied to a class of Rollnik potentials, we will recover stronger results
below.

In addition to the existence of Q±, one would like to prove J^n = J^out

where J^n =RanΩ±. This equality is equivalent to unitarity of the
out

S-matrix14 S = (Ω~)*Ω+ and we will call this equality weak asymptotic
completeness (WAC).

WAC was first proven for Vεl} r\ll by Kuroda [30] who actually
proved the stronger set of equalities ̂ n = Jfout = J â c where Jfa c is the
space of absolutely continuous vectors for H15. Kuroda's completeness
proof has been abstracted as follows:

Definition. Let Hl9 H2 be self-adjoint and let Pl9 P2 be the projections
onto their absolutely continuous spaces. We say Ω±(H2,H1) exist if
lim e+ίH2te-iHι tp^ eχist if ^eir ranges areP23F then we say Ω± (#2> #ι)

f-* ±00

obey (KC) [for Kato-Kuroda completeness].

Theorem 10. (Kato-Birman [31],). // either:
(a) H2 — Hi is trace class or
(b) (H2 + EΓ1 - (#ι + EΓ1 is trace class for some E then Ω± (H2, HJ

exist and are complete.

Proof. See [21], pp. 535-546. Q.E.D.
The Kato-Birman theorem is a precise mathematical form of the

general feeling that Ω±(H2,Hί) should exist if H2-Hί is a "gentle"
perturbation of H^ Physically, a perturbation is "gentle" viz. a viz.
scattering if it falls off rapidly at oo i.e. we expect perturbation by a

13 We follow the physicist's conversion derived from ± ϊ'ε equations of calling the
limit as ί-> + oo, Ω±.

14 Contrary to folklore, unitarity is not merely a consequence of conservation of
probability.

15 See [5], Appendix (b), [21], pp. 516-517 or §4 below for the definition of Jfa.c>.
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potential with "bad" finite singularities but which is well behaved at oo
to have little effect on existence questions for scattering. In fact

Theorem 11. Let Vl9 F 2 ejR + L°° and suppose Ω±(H0 + V1,H0) exist
and obey (KC). If F 1 -F 2 eL 1 nK, then Ω±(H0+V2,H0) exist and
obey (KC).

Proof. By a straightforward but gory computation employing
Tiktopoulos' formula as starting point one shows (H0+ V2 + E)~l

- (H0 + Fi + EΓ1 is trace class if V2 - V1 e L1 n# (see [5], Section IV.3).
By the Kato-Birman theorem, Ω± (H0 + F2, H0 + Fx) exist and obey (KC).
The chain rule ([21], p. 532) which is easy to prove says that Ω±(H3, HJ
exist and obey (KC) if Ω±(H2,HJ\ Ω±(H3,H2) exist and obey (KC) so
the theorem is proven. Q.E.D.

Theorem 11 is an exact form of the fact that only long distance
behavior should matter in the existence of scattering. Once someone else
has done the hard work of proving existence and unitarity of S for a class
of potentials with some behavior at oo but with restricted behavior at
finite points, we can extend the result to that behavior at oo with arbitrary
locally Rollnik finite point behavior. Let us consider some examples:

(1) VetinR. Take V2 = V\ V ί = 0 . Conclude in this case that
Kuroda's Z/nL2 result extends "easily" to Z^nK.

(2) Ve R. Kato [12] has proven that Ω± are unitary equivalences of
H0 and H0 + W if || W\\R < 4π. Take V2 = V 9 V 1 = Vχx where χx is the
characteristic function for {jc|x|>X} and X is chosen so ||Fχx|| <4π.
Then V2 — V1 is in R and of compact support, thus in L1 ΠjR so Ω± exist
and are complete in this case.

(3) FeR-fL 0 0 ; V = 0(r~1-ε) at oo. Kato and Kuroda [32] have
proven (KC) for potentials W with \W(r)\ ^ C(l + r)~1~ε for all r.
Taking V2 = V and Vί = V at large distances, we obtain (KC) for this
class.

(4) V = γr~ί + W; WεllπR. Dollard [33] has shown Ω± don't
exist in this case but the following modified scattering theory works.
There exists an "approximately free" dynamics UD(t) (dependent on y)
so that UD(t)f and e~

ίHotf have identical probability distributions in x
and p-space as ί-> ± oo. Moreover for V1 = yr"1, Ω^ = s-lime + iHtUD(t)

tr> + 00

exist and are complete. We conclude that for the V considered above, we
have modified wave operators Ω^ which obey (KC).

(5) v=γr~β+W; 1 <β<f; WetinR. Amrein, Martin, and Misra
[34] have shown a modified dynamics UD(t)16 exist in the case (V± =yr~β)

16 Amrein et al only show UD(t)f and e iH°*f have asymptotically identical p-space
probability distributions, but simple computation shows this is true in x-space as well.
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and that Ω% exist and are complete. We extend their result to γr~β + W
directly.

Before leaving time-dependent scattering theory, let us discuss the
question of continuity of Ω± as a function of V. Kuroda [30] proved
that Ω^-ϊΩ* (strongly) if Vn^V in L1 and if \\Vn\\2 are bounded (all
Vn9 FeL1nL2).Kato[21,p. 551] abstracted this theorem to the following:
If (Hn + E}~*-+(H + E)~1 in trace-class norm and if each (Hn + E)~l

— (H0 -f E)~ί is in trace class, then Ω* ->Ω* (strongly). Another gory but
straightforward computation ([5], Section IV.4) shows:

Theorem 12. Let Vn, VelϊnR and let Vn-+V in both \\ \\^ and \\ \\R.
Then ΩΪ-+Ω* (strongly) and Sn-+S (strongly).

Proof. See [5], Section IV.4. We only remark that the strong con-
vergence of the Ω's implies weak convergence of the S-matrices and
unitarity of the 5-matrices then implies strong convergence. Q.E.D.

Remarks. 1. At first sight Theorem 12 does not appear to generalize
Kuroda's result since we require convergence in || ||Λ and Kuroda only
requires boundedness in (| ||2. However, the inequality (appendix 1)
| |F| |Λ^31 / 2(2π)1 / 3 | |F| |^ / 3 | |F| |i / 3 shows that convergences in || ^ and
boundedness in || ||2 implies || ^-convergence. Thus, Theorem 12 does,
in fact, generalize Kuroda's result.

2. Like Kuroda's result, Theorem 12 is essentially a theorem in time-
dependent scattering theory. However, unlike Kuroda's result, it has an
immediate interpretation in terms of time-independent scattering theory.
For, if we are to accept the fundamental notions of time-independent
scattering theory, scattering is described by the on-shell Γ-matrix:

TΎk Jr'\ — nπ\~3 f rp-ik x τ/1/2/ yi rτ/ l/2/ γ \ j^/r,/ γ\η j3 γ
J ^/V, rV J — \jL JlJ 1 j_c V \-^/J L ' 1 1 \*^/ Ψ \ 5 ^/J ^ "̂

where φ(k',x) is the Lippman-Schwinger in-wave function. As we shall
see below (Section 4), V\]/2φ solves an L2-integral equation whose kernel
is V^l2(k2 + ϊO- JTJ-x F1/2 and whose homogeneous term is V^2(x)eik>'x.
Thus Fn-^F(|| ||i) tells us the inhomogeneous terms converge and
Fπ-» F(|| | |R) tells us the first bracket in the T(fc, k') integral converges in
L2. Thus, modulo technical points and the fact that we have not yet
justified the formulae of time-independent scattering theory, we can also
prove Theorem 12 in the context of the time-independent theory.

§ 4. Eigenfunction Expansions

In order to have a physical interpretation for all states of an inter-
acting two-body system, we must demand more than J^n = «^ut. We
must also know J^n = Jfout - (J^bolιnά)

λ where J^bound is the space of
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eigenfunctions for H. For physically one expects any state which has no
bound component to "decay" asymptotically in the past and future. We
will call this stronger condition J^in = J^ut = (^bound)

λ asymptotic com-
pleteness (AC).

To see how much stronger (AC) is than (KC), we recall the definition
of singular spectrum. The spectral theorem tells us every self-adjoint
operator, A, is (unitarily equivalent to) a multiplication operator on L2

of some measure on R Any measure can be decomposed uniquely into
a sum of three pieces: a pure point part (i.e. a measure which is a sum of
delta functions), a measure absolutely continuous with respect to Lebesgue
measure (i.e. v(A) = J/(x) dx, f locally U(dx)) and a continuous singular

A

measure (i.e. a measure, like the Cantor measure, which has no pure
points and which lives on a set of Lebesgue measure 0). Correspondingly
the base Hubert space jtf breaks up into a direct sum ^.P.Θ^.C.
θ^Cing so tnat ^ leaves each space invariant and A ΓJ^p has only
pure point spectrum (i.e. its spectral measure is a pure point measure),
etc. Since Ω± is a unitary equivalence of H0 and H Γ J^n(out), ^n(out)

C^fa.c., so if (AC) holds we must have Jfsing = 0 and (KC). Conversely
(KC) and JTsing - 0 implies (AC).

In the two-body case, Ikebe [35] has proven (AC) for Holder con-
tinuous F which are 0(r~2~ε) at oo. His proof depends crucially on the
existence of an eigenfunction expansion for H, i.e. a generalized Fourier
transform with elk'x replaced by an "eigenfunction" for H. Such an
expansion is of great interest in and of itself. First, it gives us an explicit
handle on H. Secondly, since the eigenfunctions can be chosen as Lipp-
mann-Schwinger wave functions, this approach provides the connection
between time dependent and time independent scattering theory.

The eigenfunction expansion with which Ikebe deals is not merely an
expansion in an abstract rigged Hubert space setting. The eigenfunctions
are constructed in x-space as perturbations of the H0 eigenfunctions. As
such, they allow comparison of various spectral properties of H and H0.
On the other hand, a rigged Hubert space expansion of the simplest type
deals only with H: since the spectral theorem says H is a multiplication
operator on some L2-space, it is easy to realize H as a multiplication
operator on a distribution space with (5-functions as eigenfunctions. Thus,
such an eigenfunction expansion is essentially a form of the spectral
theorem and as such cannot restrict spectral properties. More compli-
cated riggings usually require strong conditions on H and H0 such as the
existence of a dense domain for HnH™ (each n, m). In the more prosaic
approach of Ikebe, no such conditions are needed.

In this section, we develop an Ikebe-type eigenfunction expansion
for arbitrary VellπR. In case Fhas exponential fall off, we can use this
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expansion to prove Jfsing = 0 and thus also (AC). Our proof essentially
follows that of Ikebe with three crucial differences: (1) We do not need to
introduce any auxiliary spaces; by using the trick of "factorized" integral
equations, we only deal with objects in L2. We thus need no smoothness
assumptions but as a result can only treat FeL1 rather than 0(r~2~ε).
(2) We are only able to prove (AC) under the strong condition that V
falls off exponentially. However, we provide a new proof of (KC). More
importantly, we do not require any a priori information on the non-
existence of positive energy bound states (pebs) to obtain this weak result.
In contrast, Ikebe depends on a result of Kato on pebs. In the many-
body case, Hepp's results [36] are weakened because he too must first
show no pebs exist and no strong results on pebs exist in the many-body
case. It is our hope that an analogue of the proof we give here will enable
one to prove (AC) in the many-body case without any a priori knowledge
of pebs. (3) We correct a minor error (described in detail in [5], Section V.2)
in Ikebe's proof. Ikebe17 has found an alternate way of correcting this
error18.

We start with the formal Lippman-Sch winger equation φ = eίk ' x

+ (E -HO - H0)~l Vφ. Letting ψ = F,}/2φ, we see

As long as the kernel has no homogeneous solution, we can solve for
ψ (and thus φ) since the kernel is Hubert-Schmidt and the inhomo-
geneous term is L2. The crucial fact is:

Theorem 13. Let <!> be the set of real positive E for which

V}}
/2(E + zΌ - H0Γ* V1/2η = η

has an I2 -solution η. Then:
(a) // V e Rr\l}, $ is a closed set of Lebesgue measure 0.
(b) If\\V\\R<4π,£ = φ.
(c) // j eA w eA M |x - y \~ 2 \ V(x)\ \ V(y)\ dxdy<ao for some A>Q, then

$ is a finite set.

Proof, (a) The kernel in question is the boundary value of a kernel
analytic in the cut plane continuous on the two lips of the cut. By a
modified Fredholm argument δ is the set of zeros of a function analytic
in the upper half-plane, continuous on the lips. By a general theorem
[37], δ is closed of measure 0.

(b) In this case, | |Fjf / 2(E-HO- H0Γ
l V1/2\\ <1.

17 T, Ikebe, private communication and work in preparation.
18 However, Ikebe's correction utilizes smoothness and won't carry over to the

L1 n R case we consider.

15 Commun. math. Phys., Vol 21
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(c) In this case, the kernel extends onto a second sheet so $ is the
zeros of an analytic function extendable to a second sheet. By a Klein-
Zemach argument [26] S is bounded, so it is finite. Q.E.D.

We can now establish the eigenfunction expansion.

Theorem 14. Let φ(x, k) be the Lippmann-Schwίnger eίgenfunctίons
defined for k2 φ S, all x. Then^_ _

(a) f(k) = Li.m.(2πΓ3/2 J φ(x9 k)f(x) dx exist for all fε L2.
(b) Li.m.(2πΓ3/2 $ φ ( x , k ) f ( k ) d k exists and equals (E&mCJ)(x) where

EΆ c is the projection onto J"fa>c..
' (c) Let [α, β]n<£ = φ, with 0 ̂  α < β. Then

\\EM]f\\2 = J \f(k)\2dk
a<k2<β

where E[θί>β] is a spectral projection for H.
(d) feD(H) if and only if EsϊnsfeD(H) and J |/c|4 \f(k)\2dk<oo. In

that case Hf(k) = k2f(k).
(e) ^ is a unitary map of j^& c and L2(k) i.e. ^ P)* = 1 (i.e. Λ is onto)

Proof. See [5], Sections IV.5 and V.4. We remark that the crucial
idea [13] is to relate φ to a boundary value of the Fourier transform of
the interacting Green's function. We also note that the proofs of (e) and
(d) depend on the scattering theory connection discussed below
(Theorem 16) and, in particular, depend on the existence of the wave
operators. Q.E.D.

Remark. This result is more or less provable also using new and
general methods of Koroda [38].

By (c), the spectrum of H is absolutely continuous in [α, /?]. Since
[α, β~] is arbitrary except for its disjointness from S, we conclude
σsing C S. Since σsing must support a measure with no pure points if it is
non-empty, σsing must be uncountable or empty. We thus conclude:

Theorem 15. Let Fe L1. // || V\\R < 4π, σsing - φ. Or, if

1 1 V(x)\ I V(y)\ eAM eA^ \x - y\2 dxdy<vo

for some A>0, then σsing = φ. In both cases, (AC) holds.

Remark. By a different but related method, Kato [12] has proven
(AC) when | |F| | j R<4π without the extra VeL1 condition. See also [44].

19 For x-space integrals, l.i.m. means the L2(/c) limit as jR-»oo of the integral over
[x\ \x\ < R}. For /c-space integrals, l.i.m. means the L2(x) limit as #->• oo, ε->0 of the integral
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The eigenfunctions φ that we have used were not chosen at random;
they are the Lippmann-Schwinger in-functions. As a result we expect
Ω+ to take φ(x,k) into elk'x in some sense. The link between ^ and
scattering is provided by:

Theorem 16. Let VeLlnR. Let /0(Λ) = (2π)"3/2l.i.m.J/(x)β- ίJk χ

be the ordinary Fourier transform. Then:

(b) ///, g are such that /0,<7o are C°° °f compact support so that all
k2 <Ξ$ are disjoint from the supports (such fs and g's are dense), then:

</, (S-1)<7> = -(2nί) J d 3 k d3k' T(k, k') δ(k2 - k'2)

where
T(k9 k'} = (2π)~3 j e~ik'x V(x) φ(x9 k')dχ .

Proof. See [5], Sections V.3-V.5. Q.E.D.
Remarks. 1. For Holder continuous V of 0(r~2~ε) at r = oo, Ikebe

[13, 39] has proven similar results to those of Theorem 16. Hunziker
[40] has discussed results of the form of Theorem 16 for the L1 nR case
we consider, but without technical details.

2. (a) is used in proving ^ is onto (Theorem 14(e)). It depends on the
fact that Ω+ exists but does not require (KC). (a) and Theorem 14(b)
provide and alternate proof of (KC). There is little hope of a Kato-
Birman theorem proof of (KC) extending to a multi-channel n-body
case, but a proof of (KC) via eigenfunction expansions may extend.

3. Theorem 16 is basic to the rigorous study of "advanced" topics in
scattering theory for it provides the connection between first principles
time-dependent scattering theory and the useful formulae of time-
independent scattering theory, a connection which is usually sloughed
over in the physics literature.

On the basis of Theorem 16, one can present a "from-first-principles"
proof of various dispersion relations. Using the method of Grossman-Wu
[11], one can prove forward dispersion relations for VeUnR20. The
only change from the Grossman-Wu result and proof involves the set <ί.
So far as we know, one can only prove T(fc, k) is the boundary value of an
analytic function for k2φ$. In dispersion integrals "Im/" must be
viewed as a distribution which is a continuous function (equal to Im/!)
onIR-<f.

Using methods of Hunziker [41] and Grossman-Wu [11], one can
prove non-forward dispersion relations and analyticity in a Lehmann
ellipse when V has exponential fall-off. In this case, one can show the

G. Tiktopoulos, private communication and [5], Chap. VI.
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possible a priori singularities at k2 e $ are removable. The basic idea is as
follows: in the case of exponential fall-off the scattering amplitude can be
continued to a strip below the real axis. By a Fredholm theory argument,
the only singularities allowed are poles. Using Lehmann ellipse analy-
ticity, one obtains partial wave amplitudes with the same energy analy-
ticity properties as the full amplitude. Partial wave unitarity doesn't
allow poles in the partial wave amplitudes and thereby in the full
amplitude21.

Acknowledgments. It is a pleasure to thank many individuals for their aid and sug-
gestions. George Tiktopoulos first pointed out to me the gap between the L2 classes and
physically singular potentials. He also suggested the Z/nR class since this class obeys
forward dispersion relations. Ed Nelson taught me that it was honorable to define H0 + V
as a sum of forms. I have profited from discussions with V. Bargmann, C. Fefferman,
J. Kohn, M. Reed, and E. Stein and from valuable correspondence with T. Kato and
T. Ikebe. Finally, I should like to especially thank A. S. Wightman for his wisdom, encour-
agement and constructive criticism.

Appendix 1
The Rollnik Condition

In this appendix, we wish to discuss the relation of the Rollnik con-
dition to various other and related conditions. First, we note the con-
nection to the Lp spaces:

Proposition l.L3/2 C R.

Proof. Follows from the Sobolev inequality [42].
From Proposition 1 follows the following lattice of containment :

L2 + L°°
u

L2 + (L-)ε

U

L2

u
L2nL1

C

C

C

R + L°
u

R + (L
u
R
u

RπL1

Remarks. 1. Note that L2 CR does not hold.
2. Think of the lattice as follows. As one goes up, worse behavior

at oo is allowed. As one goes to right, worse behavior at finite points is
allowed.

21 The fact that the position of the poles is independent of angle is critical in this proof.
See [5], Section V.4.
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3. Not only is Z^nL1 CR; one can prove

| |F| | Λ ^3 1 / 2 (2π) 1 / 3 | |Fi |PHF| |P

([5], Section I.I).
Secondly, we consider the p-space forms of R:

Proposition 2. Let V ̂  0. Then Fe R if and only if J d3p < oo

(V is the ordinary Fourier transform22). In any event if FeK,

$p~ί\V(p)\2d3p<oo and $d3pd*qp-2q

For pathological V which wiggle a lot one can have

without VE R. Pathologies of this sort and of potentials with singularities
on "thin" sets prevent various other relations from always holding so
we can only state our final result for monotonic central potentials. As
preparation let us define or recall several conditions:

(CB) (for "convergence of Bom series"). The integrals

and £ λnBn has a non-zero radius of convergence.
n = l

(Wp) (weak Lp). A measurable function / has a distribution function
mf(t) = μ({χ\ \f(χ)\ > t}). We say /e Wp if mf(t) < CΓP for some C and
allί.

(KLMN small). We say A < J5(KLMN) if Q(A) D Q(B) and

for some a and b.

Proposition 3. Let V(r) be central and monotone and consider the
conditions:

(a) Vobeys(CB),
(b) FePF^nL1,
(c) Ve L1 and V< - A (KLMN),
(d) VenandQ(V)-}Q(-Δ\
(e) Fe L1 αnrf F,{/2(E + HJ"1 ^{/2 is foownί/erf /or some £ > 0,
(f) Fe L1 and |F(r)| ^ Cr~2 +D for some C, D.

00 00

(g) (Khun Conditions) J r|F(r)| dr <oo; J r2|F(r)| dr<oo,
o o

We have changed conventions from Section 4.
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(h) FeZ/nL 3/ 2,
(i) VεRnL1.

Then (a), (b), (c), (d), (e), (f) are equivalent and (g) => (h) => (i) => (a) - (f). For
arbitrary F, we Aαt e (Scadron et al. [11]J (i)=>(a).

Proo/. See [5], Chapter I. Q.E.D.
(g), (h), (i) and (a)-(f) differ only logarythmically in the central mono-

tone case. The potential VΛ(r) = r~2(logr)~α for small r (say V vanishes
if r > e"1) has Fα obey (g) if and only if α > 1 Fα obeys (h) if and only if
α > 2/3 Fα obeys (i) if and only if α > 1/2 and obeys (a)-(f) if and only if
α>0.

Appendix 2
KLMN Theorem

Since it is so basic to our whole approach, we present, for the reader's
con venience, a sketch of the proof of the KLMN theorem. Even though
this theorem looks similar to the Kato-Rellich theorem (Theorem 1) its
proof is completely different and is related to the proofs of the Freidrichs
extension [18] particularly the proof of Freudenthal [19] (see also [16]).

Let H0 be self-adjoint and positive. Norm Q(H0) with the norm
l l v l l + i = (V^C^o + !)¥*>• Q(H0) then becomes a Hubert space, J^+ί.
Suppress the usual identification of Jf+1 and its dual, ^_15 and instead
imbed ^f+ ί in J^L x by associating ψ e 3Ίf+ 1 with the functional φ -> <ιp, φ>
(inner product in Jf, not J^+1). Thereby jf+l CJί? C JfLj. The norm on

Jf_i is || V|| -i = <v9(ί(, + !)">> (for VeJf) 2 3.

Proposition 4. Lei ^4 : jjf. V j -> J^_ 1 be a bijection which is symmetric,
i.e. <φ, Aipy = (Aφ, φ> for all φ, ψ e J>f+1. L^ί

Then A = A Γ D(A) is a self -adjoint operator on Jf.

Proof. Consider A'1 Γ J^ : 2tf ->D(A). It is an everywhere defined
symmetric operator; hence, it is self-adjoint. Since it has no kernel,
A = (A'1 Γ $eγv is self-adjoint.

Proof of Theorem 2. By using a modified ||φ||+1 = (ψ, (H0 + £)t/?>,
we see \V(φ, φ)\ ̂  a\\φ\\ 2

+1. A Cauchy- Schwartz argument shows \V(φ, ψ)\
i I I 0 I I + 1 - Using this, one shows H0 + V + E is a bijection of
! which is symmetric. Thus H0+V on the domain D(H)

tf} is self-adjoint.
23 For H0= —A, this "scale of spaces" is just the beginning of the chain of ordinary

Sobolev spaces.
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