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Abstract. The field equations of general relativity with electromagnetic stress tensor
and zeromass scalar meson field are investigated. The metric coefficients are assumed to
be functions of three variables only. It is then shown that, if one assumes a functional relation
between some one of the metric coefficients and the electromagnetic potentials, that one
can find a solution of the coupled Einstein-Maxwell equations in terms of a solution of the
Einstein equations with zeromass scalar meson field as source.

1. Introduction

In this note we have investigated the nonempty field equations of
general relativity where the stress-energy tensor of electrodynamics and
zeromass meson field is taken as the source. Although the physical
implications to be drawn from the study of zeromass meson fields suffer
from the lack of any experimental support, nevertheless, it has been
shown by Janis et al. [1] that a zeromass meson field interacting with a
static, spherically symmetric and asymptotically flat gravitational field
has some very interesting and surprising features. We have also in-
vestigated, elsewhere, the interaction of zeromass meson field with
charged incoherent matter in a stationary axially symmetric gravitational
field and have found that the spacetime is basically modified and leads
to some interesting consequences [2]. Further, exact solutions of the
field equations are scarce, and it is always worthwhile to obtain analytic
solutions of a problem with more than one field coupled nonlinearly.

However, we shall not derive here any explicit solutions of the field
equations corresponding to the problem stated above, rather, we shall
discuss a procedure which will enable one to construct exact electro-
magnetic solutions from a given solution of the field equations with
massless scalar meson field as source. It has been shown by Harrison [3]
and others [4, 5] that one can generate a solution of the coupled Einstein-
Maxwell equations with a nonvanishing electromagnetic field from a
given vacuum solution of the field equations in which the metric co-
efficients are functions of not more than three variables. This result is a



Einstein-Maxwell and Scalar Fields 325

consequence of the assumption of functional dependence between some
of the metric coefficients and the electromagnetic potentials. Several
authors have made use of this functional relationship for generating
solutions of the field equations [6]. In this note we present a theorem
which may be considered in a sense, a generalisation of the previous
result referred to above. We assume that the metric coefficients gVp

electromagnetic field Ftj and the scalar meson field φ are functions of
x1, x2 and x3 only. It is then shown that if one assumes a functional
relationship between g00 and the electromagnetic potentials that one
can find a solution of the coupled gravitational-electromagnetic equations
in terms of a solution of the field equations with massless scalar field as
source.

In Section 2 we obtain the Maxwell and Einstein equations in suitable
form by assuming a functional relationship between g00 and electro-
magnetic potentials. The desired result is obtained in Section 3. The
last section contains some concluding remarks.

2. The Field Equations

The equations under consideration are1

(1)

Fίj

;j = 0, (2)

% * ] = <>, (3)

φ1*. f = 0 (4)
with

and

Φi = Φ,ι (5)
where

1
Mij = φiφj- -TrgijφkΦ", (6)

4π4 = î  AΛ-ift/^1 (7)
1 The range of Latin indices is from 0 to 3 whereas Greek indices vary from 1 to 3,

unless otherwise stated. Summation convention is assumed throughout. Comma and
semicolon followed by a suffix denote ordinary and covariant differentiation, respectively.
[ ] is the symbol for skewsymmetrisation.
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Further, we choose the line element in the following form

ds2 = e2U(dx0)2 + e-2Uyaβdxadxβ . (8)

This metric is the general static line element and admits a hypersurface
orthogonal Killing vector. The three dimensional metric yaβ satisfies the
following

yaβy
aλ = δ}

β. (9)

The nonvanishing components of the Ricci tensor for the metric (8) are
given by

R00 = e*uA2(U), (10)

#0α = 0, (11)

where we have introduced differential parameters of first and second
order defined as [7].

Δί(U) = y*βUtaU,β, (13)

Δ^U, V) = y*βU aViβ, (14)

Σ'zβ and Paβ are the Christoffel symbols and Ricci tensor, respectively,
defined with respect to yaβ.

Next we consider Maxwell Eqs. (2) and (3) which may be expressed
in the following form

],α = 0, (16)

1 = 0, (Π)

FΛQ,β + Foβ,Λ = 0, (18)

pctβy f — π (]Q\

where εaβy is 3-index indicator, taking values + 1 or — 1 if α, β, y are even
or odd permutations of 1, 2 and 3, respectively, and zero otherwise. If
one now defines the potentials A and B in the following manner

λ,
(20)
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Eqs. (17) and (18) are identically satisfied. Further making use of Eqs. (13),
(14), (15), (20), and (21) in (16) and (19) we get

Δ2{A)-2Δι(U,A) = 0, (22)

Δ2(B)-2Δι{U,B) = 0. (23)

We now obtain the components of / I ; . We get

(24 a)

(25 a)

OTC

The symmetrical form of Eqs. (22), (23), (24 a), and (26 a) with respect to
potentials A and B enables one to introduce a new potential C defined
as [8]

A = C Cos α , (27 a)

B = C Sin α (27 b)

α being a constant. In view of (27) we may write Eqs. (22) and (23) as a
single equation

Δ2(Q-2Δί(U9Q = 0. (28a)

Further, the components of / ι ; assume the following form

/ = e2υΔι(C), (24b)

/o* = 0, (25b)

(26b)

In a similar manner, we may obtain the components of Mi7 .
Now the field equations can easily be set up and one obtains

Δ2(U)=-e-2UΔ1{C), (29a)

Plβ + 2Ut.Utβ= -&πφaφβ-2e-2VC.ΛCιβ (30a)

and Eqs. (28) and (4).
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3. Derivation of the Electromagnetic Solutions

We now assume that U and C are functionally related i.e.

U =U(Θ\ C = C{Θ). (31)

However, a more manageable form of the field equations results if we
write

V=eϋ. (32)

As a result of this transformation, we obtain

Hence the Eqs. (28a)-(30a) are obtained as

Δ(C)Δ(VX) 0
2(C)Δ1(VX) = 0, (28 b)

Δ2(V)--yΔ1(V)=--yAί(Q, (29b)

Now we use the following form of the functional dependence (31)

V=V{Θ), C = C{Θ) (33)

where θ = ^(x1, x2, x3). Thus, we obtain

Δ1(V)=V'2Aι(θ),

Δ1(V,Q=V'C'Δ1(Θ),

Δ2(V)=V'Δ2{Θ)+VA1{Θ)

and similar expressions with respect to C. Here an overhead prime
indicates differentiation with respect to θ. Substitution of the above
expressions in Eqs. (28b)-(30b) yields

) W = 0, (34)

V'2 - C'2 \
jMΘ) O (35)

£τ(C'2+V'2)θιaθιfi. (36)
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If we now assume that ^(0)4=0, we observe that the Eqs. (34) and (35)
become identical provided that

(38)V -

The solution of these equations may be taken as

(39)

(40)

where λ is a constant. In the case, thus, we have a linear differential
equation for 0 so that we may readily obtain a solution of Eqs. (28 a) and
(29 a) with two arbitrary functions.

If we now substitute (39) and (40) in (36), we find the equations

PΛβ=-ZπφΛφβ-2θtaθtβ. (41)

But if we took the field equations with meson field only i.e. C = 0 and
put F=exp(0) we would obtain Eqs. (4), (29 a) with right hand side
absent and (41) (of course in (29 a) U replaced by 0). Thus we have
established that

"For every solution V = exp(0) and yaβ of the field equations with the
energy tensor of a massless scalar meson as source we may also form a
solution of the coupled Einstein-Maxwell equations with a nonvanishing
electromagnetic field with the same yaβ and the functions V = λ sech 0,
C = tanh0".

This result may be stated in an alternative simple form. Suppose, the
metric

ds2 = V2dt2 + V-2yaβdx*dxβ (42)

with Fand yaβ functions of x1, x2 and x3 satisfied the field equations with
massless meson field as source. Then the metric

jyT^ \ j ^ β (43)

and the potentials

satisfy the Einstein-Maxwell equations.



σ = 2(U'2

= 0 and

tθ,j

- i )

u = 17(0).

(45)

(46)

(47)
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In the derivation of the above results we have assumed that all the
functions are independent of x°. However, the results are quite general
and hold good with appropriate modifications when the absent co-
ordinate may be any of the four variables. Further, we have also not
assumed any functional relationship between the field φ and the metric
coefficient. But if this is done, and x3 is taken as the absent coordinate 2

further interesting results are obtained. Obviously, in this case the
gradient of θ may be taken as a null vector. In view of this fact and since
φ and θ are functionally related, Mtj turns out to be the energy-momentum
tensor for the unidirectional flow of pure radiation. If, for the moment we
assume that the electromagnetic field is absent, then it has been shown by
Misra [9] that if V — exp(θ) and yaβ is a vacuum solution of the field
equations, then exp((7) and yaβ is a solution of the field equations for
unidirectional flow of pure radiation i.e. for

where

and

We are now in a position to generalise this result.
For every vacuum solution V = exp(#) and yaβ of the field equations,

we may also form a solution of the pure radiation field equations with
same yaβ and U = U(θ) such that the density of the pure radiation is given
by (46), and a solution of the coupled Einstein-Maxwell equations, with
a nonvanishing electromagnetic field and the functions V = λ sech 0,
C = λtanhθ.

4. Concluding Remarks

Aside from the immediate utility of these investigations in generating
electromagnetic solutions of the field equations, one may also use the
results obtained here in discussing the singularities of the two fields. One
may easily observe that, yaβ being the same in both cases, the two spaces
will have the same singularities if any, present in yaβ. Further, the same
is also true for the singularities V = 0 if V2 <̂  1. Thus we see that there is
one to one correspondence between the singularities in both cases except
when V is large (since V2/(V2 -f 1) tends to zero).

In conclusion we hope that these results will lead to deeper under-
standing of gravito-electrodynamics.

2 In fact the absent coordinate may be taken as any one of x1, x2 and x3 and the results
hold.
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