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Abstract. Exact analytical expressions are found for the joint probability distribution
functions of n eigenvalues belonging to a random Hermitian matrix of order N, where n
is any integer and JV—>oc. The distribution functions, like those obtained earlier for n = 2,
involve only trigonometrical functions of the eigenvalue differences.

I. Statement of Results

A finite stretch of eigenvalues El9 E2, ...,£,. of a random Hermitian
matrix H of order N > r has a well-defined statistical behavior in the
limit as N-+GO. A convenient way to discuss this behavior is to relate the
eigenvalues Ej to the angles (9;- belonging to a certain Circular Ensemble
[1,2]. If D is the mean level-spacing of the eigenvalue series, we write

and take for the complete series of angles (^, . . . ,0^) the probability
distribution

...,0N) = CNftl\\e
ie>-eie*\e, (1.2)

j<k

where ft = 1, 2 or 4. The case /? = 1 applies to the usual physical situation
in which H is real and symmetric, in particular when H is invariant
under time-reflection and under space-rotations. The case ft = 2 would
apply when H is complex Hermitian, i.e. when there is no time-reflection
invariance. The case /J = 4 would apply when H is invariant under time-
reflection, without any rotation-invariance, for a system with half-
integer spin. Until now no interesting physical examples have been
found of the cases /? = 2 and 4. The case /? = 1 has been extensively studied
in connection with the statistics of neutron capture levels in heavy nuclei
[3-6].
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The distribution-functions QNfi are normalized so that

Qlif(61,...,eN)d61...d0N (1.3)

is the probability of finding one angle, regardless of labelling, within each
of the intervals [9p 9j + d9j]. We have then

! • • • $ Q N f ( 0 1 , . . . , e N ) d 0 1 . . . d O N = N\, (1.4)
o

with the normalization constants [1]

+ $N), (1.5)

(1.6)

(1.7)

The n-angle correlation function RNnjj is defined by

(1.8)

This gives the probability density for finding n angles at the positions
(01? . . . ,#„), regardless of the positions of the remaining angles. In par-
ticular, for the circular ensembles

) . (1.9)

The n-level correlation-function Pn/3 of the eigenvalue series Ej is defined by

1,...,9n), (1.10)

with the 6j given by Eq. (i.l). The statistical properties of the eigenvalues
are completely characterized by the functions Pnj}.

We have previously calculated the two-level correlations P2j8, and the
n-level correlation Pn{] for ft = 2. The results were as follows [2, 7]. Write

s(r) = (sin(7cr)/(7cr)), (1.11)

Ds(r) = (ds(r)/dr), (1.12)

7s(r)= \s(rf)dr', (1.13)
o

Js(r) = /s(r) - c(r), (1.14)
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where e(r) is the step-function

Then
P21(£ls E2) =

= 0, (r = 0) ,

- (s(r))2

with

Also

with

!, £2) = I>-2[1 - (s(2r))2 + /s(2r). £>s(2r)]

r = ((£t - £2)/D) .

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

In the present paper we complete the determination of eigenvalue
correlations by finding explicit formulae for all the Pnf with /? = 1,4.
The formulae turn out to be surprisingly compact and are well adapted
for practical use. The derivation of these results also gives a better insight
into the peculiar structure of the two-level correlation-functions (1.16)
and (1.18).

To state our conclusions it is convenient to use the word quaternion
as a synonym for a (2 x 2) matrix with real or complex coefficients,

The quaternion units are

0
1

and the quaternion adjoint to q is

q = (rTrq)I-q =

0
z-

d -b
— c a

(1.22)

(1.23)

(1.24)

We shall be concerned with an (N x N) matrix M whose elements Mtj are
themselves (2 x 2) matrices. To avoid confusion of language we refer to
the M[-] as quaternions rather than matrices. The matrix M is defined to
be self-dual if

Mji = Mij. (1.25)
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Let M be a self-dual matrix of quaternions. Then we can define the
quaternion-determinant

QDetM = Z(-VN-lY[(MabMbc..-Msa). (1.26)
p i

Here P is any permutation of the integers (1.2, . . . , N), consisting of /
cycles of the form

(fl-»b->c-*."->s-»a), (1.27)
and

( -1 ) N ~ Z (1.28)

is the parity of P. In words, QDetM is obtained from the ordinary
expression for the determinant of M by arranging the factors in each
monomial in an order determined by the cyclic operation of the cor-
responding permutation P. In particular, if the elements of M are scalars,
QDetM reduces to the ordinary determinant DetM.

The definition (1.26) is not yet complete, because the value of the pro-
duct on the right-hand side may depend on the order in which the /
cyclic factors are written. To make the definition unique, we require
that the same ordering of the / cyclic factors be used for the permutation
P and for the other permutations obtained from P by reversing the direc-
tion of some or all of the cycles (1.27). Since M is self-dual,

( M a s . . . McbMba) = (MabMbc...MJ . (1.29)

Thus in the sum (1.26) we may replace each factor (MabMhc...Msa) by

bc... MJ , (1.30)

by virtue of Eq. (1.24) and (1.29). Therefore the value of Eq. (1.26) after
summing over P is independent of the order of the / cyclic factors. Also
QDetM is a scalar. Strictly speaking, we should define QDetM for non-
self-dual M by inserting the operation (|Tr) before each cyclic product
in Eq. (1.26). However, we shall be concerned only with self-dual M, and
for these the definition (1.26) as it stands is preferable.

For jg = l ,4 we define the function cr^(r) as a quaternion with the
[2 x 2] matrix representation

S(r) DS(r)l
Js(r) s(r) ] '

s(2r) Ds(2r)
Is(2r) s(2r) '
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the matrix elements being given by Eq. (1.1 !)-(!. 15). For /? = 2 we take
00 (r) to be the scalar

<72(r) = s(r). (1.33)
Our main result is then

Theorem 1. The n-level correlation- function for eigenvalues defined

by the ensemble (1.2) in the limit N-»oo is

Pnp(E1,...,En) = D-"QDQtlap(rij)lJ = 1_^n, (1.34)

with vp defined by Eq. (1.3l)-(1.33) and ri} by Eq. (1.21).

Remark 1. The quaternion matrix [^(r^-)] is self-dual, since the
function s(r) is even in r while Ds(r), Js(r) and Is(r) are odd. Therefore
Pnp is a scalar.

Remark 2. Theorem 1 includes as special cases Eq. (1.16)— (1.20).

Remark 3. Theorem 1 can be further simplified by restating it in
terms of the n-level Cluster-functions [7], which are defined by

Pnp(E^..^En} = ̂ (-^rlU(Yh(r],,(EJ'J^G[)}. (1.35)
G r = l

Here G denotes any division of the indices (1, ..., n) into unordered sub-
sets (G1? . . . , Gj), h(t) is the number of indices in G r, and Ynp is the n-level
cluster-function. The determinant (1.26) is precisely of the form (1.35),
and therefore

2 1 .36)

where £ denotes a sum over the (n — 1)! distinct cyclic permutations of
p

the indices (1, 2, . . . , n). Like Pn^, Ynf} is a scalar, and its scalar character
can be made explicit for j8 = 1,4 by inserting the operation (|Tr) before
the cyclic product in Eq. (1.36). The cluster-function Ynp describes those
correlations in a cluster of n levels which are additional to the effects
of correlations in clusters of m < n levels.

Remark 4. In practical applications of the theory [5], it is most con-
venient to work with the Fourier transforms of the cluster-functions.
We write

oc

yHf(kl,...,kJS(kl + -+kl) = l - ~ j d E , . . . d E n Y n l i ( E , , . . . , E n }
(1.37)

• exp (2ni/D)
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Let then

1 = 1 (|/c|<i), (1.38)

(1.39)

g(k)=l-f(k), (1.40)

, _ [/<*) kf(mm ' (L }

(1.42)

a*W = -7t(jK} , _ , . • (1.43)

Some factors (i, — /) which do not affect the value of ynp have here been
dropped.

Eq. (1.36) gives

x [<5>(p) tf/P + fei) . . . ̂ (p + /q + • • • + &„_!)] .

The single integration in Eq. (1.44) gives at worst a rational-logarithmic
function of the variables (fe l s . . . , few).

The following sections of this paper will be occupied with the proof of
Theorem 1.

II. Quaternion-Determinants

To every (N x N) quaternion-matrix M corresponds an ordinary
(2Nx2N) matrix A(M) which is obtained by regarding each element
Mrj- of M as a [2 x 2] block of matrix elements in A(M). The operation
A( ) commutes with the matrix operations of addition and multiplication.
For M to be self-dual, it is necessary and sufficient that

[A(M)~]T = Y A ( M ) Y ~ 1
9 (2.1)

where T denotes transposition and Y is the quaternion unit given by
Eq. (1.23). The basic property of quaternion-determinants is expressed in

Theorem 2. For any self-dual quaternion matrix M,

[QDetM]2 = Det[4(M)] . (2.2)
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Remark 1. When M is self-dual, Eq. (2.1) shows that the matrix

B(M) = - YA(M) (2.3)

is antisymmetric. We have then

QDetM = Pf[J3(M)], (2.4)

where Pf denotes the Pfaffian. Theorem 2 is merely a restatement of the
well-known property of Pfaffians [8]

[PfJ5]2 = DetB. (2.5)

An elegant proof of Eq. (2.4) has been found by Balian and Brezin [9].
Here, instead of using Eq. (2.4)-(2.5), we prove Theorem 2 directly.

Remark 2. Theorem 2 is essentially a restatement in more convenient
notation of the theorem of Mehta ([2], Appendix A. 7, p. 194) on the
expansion of a Pfaffian.

Proof of Theorem 2. The Quaternion-matrix L adjoint to M is
defined by

( M i c M e f . . . M t j ) , (2.6)

where P' is restricted to permutations of (1, 2, ..., N) such that

P'(j) = i, (2.7)

and the cycle of P' containing / and j is

(i-+e-+f-*---+t-+j-*i). (2.8)

The value of Ltj is independent of the order of the / cyclic factors in
Eq. (2.6), when the sum over P' is carried out according to the same rule
as was used for Eq. (1.26). Comparison of Eq. (2.6) with (1.26) gives for
any self-dual M

ML = LM = (Q Det M) IN , (2.9)

where IN is the (N x N) unit quaternion matrix. In (2N x 2 N ] matrix
notation, Eq. (2.9) becomes

A(L) A(M) = (QDetM)/2jV . (2.10)

Suppose now Det^l(M) = 0. Then there exists a non-zero 2N -com-
ponent vector A with

(2.11)
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and Eq. (2.10) implies QDetM-0. Thus QDetM = 0 whenever
Det,4(M) = 0. But QDetM is a multilinear polynomial in the matrix
elements of A(M) with leading term

M n M 2 2 . . .M N N , (2.12)

whereas Det^4(M) is a multiquadratic polynomial with leading term

M^Mf^.M^. (2.13)

Since QDetM is symmetric under permutations of the indices (1, . . . , N),
it must either be irreducible or else be a product of N linear factors each
containing one of the M^. In either case, only the same irreducible
factors can occur in DetA(M). By Eq. (2.13) each factor must occur
squared, and Eq. (2.2) is proved.

III. Eigenvalue Distributions on a Circle

We prove Theorem 1 by finding explicit expressions for the cor-
relation-functions RNn(j defined by Eq. (1 .8). Let N be any positive integer.
We write

_ 1
~~ ' ( '

where p takes the values

p = i(l - N), i(3 - N), . . . , i(N - 3), i(N - 1) . (3.2)

The values of p are integral if N is odd, half-integral if N is even. The
function sN(9) is even in 0, and

(-l)N-1sN(0). (3.3)

We write

DsN(9) = (d/d6) sN(0] = --1- X ipe""> , (3.4)
271 p

and

l5N(0)=$sN(0')de', (3.5)
0

so that

-1eipe, JVeven (3.6)
2ni

N o d d . (3.7)
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For all N we write

J s^

where q takes the values

Then

(3.8)

(3.9)

(3.10)

is a step-function whose character depends only on the parity of N. In
fact, for any integer m with

2nm <0<2n(m + 1),
we have

Kfl(0) = m + I, JV odd .

At the points of discontinuity 0 = 2nm,

Efl(0) = 0, (TV even),

£N(0) = m, (N odd).

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The lack of uniform convergence of the series defining JsN will not cause
any difficulty. The functions D%, IsN, JsN and 8N are all odd in 0.

We define the quaternions crNp(0) for ft = 1,4 by their matrix represen-
tations

= sN(0) DsN(9]
]V1 JsN(6) sN(9)

s2N(0) Ds2N(0)

I s 2 N ( 0 ) s2N(0)

(3.16)

(3.17)

For /? = 2, ffNj8 is the scalar

ffjv2(0)

We shall study the quaternion-determinants

(3.18)

(3.19)

which are functions of n angles (01; . . . , 0,,).
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In this and the following section we prove

Theorems. For p = 1,2, 4,

with

and

(3.20)

(3.21)

given by Eq. (1.5)-(1.7).

Remark L Theorem 3 states that UNNp is the normalized joint
probability distribution for the angles (01? . . . , 6N) in the circular ensemble
discussed in Section I.

Remark 2. The case /? = 2 is well-known and simple to prove.
Remark 3. The most difficult and interesting case of Theorem 3 is

P = 1. In this case Theorem 3 shows that the use of a quaternion-deter-
minant allows us to take the "positive square-root" of the symmetric
determinant Det [%((?< — 0^)]. Previously the use of Pfaffians was restricted
to taking square-roots of antisymmetric determinants.

Proof of Theorem 3. The case /? = 2 being trivial, we suppose hence-
forth that j8 = 1 or 4. UNNp is then the quaternion-determinant of a self-
dual matrix, and Eq. (2.2) gives

where A(aN(j) is the [2N x 2A/"] matrix specified by Eq. (3.16), (3.17).
Consider first the case /? = 1, N even.
The (2N x2N) matrix product

P =
1

2n

0"

Oj - 0*)

(3.23)

has rank N, since the first factor has all even-numbered columns zero and
the second factor has all even-numbered rows zero. Therefore the value
ofDetA((rNl(9j — 9k)} is not changed when we subtract the even-numbered
rows of P from the corresponding rows of A(aNi). The subtraction gives

(3.24)

(3.25)

, - 0A)]. Det[Dsw(0,.-

by virtue of Eq. (3.10). Now Eq. (3.4) and (3.21) imply
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The quantity
(3.26)

is (i) piecewise constant with possible discontinuities only at places where
9j — 6k = 2nm with integer m, (ii) periodic with period 2n in each variable
8j, and (iii) a symmetric function of ($1? . . . , 9 N ) . It follows from these
three properties that dN must be a constant independent of (9^...,9N)9

except at the points of discontinuity where A — 0. Therefore we may
take dN = constant in Eq. (3.24). To evaluate dN we take

2n>9l>92> •- >9N>0.
Then

0
1

1
0

= 2'

(3.27)

(3.28)

-i -i -i . . .o

Eq. (1.5), (3.24), (3.25), and (3.28) give for /? = 1 and N even

Next consider f} = 1, N odd.
In this case zero appears as a value of p in Eq. (3.2), and P cannot be

defined by Eq. (3.23). Let P^ be the matrix product obtained from P by the
replacements

for the elements with p = 0, where d is any non-zero quantity. Then

9/-0*) DsN(Oj-OJ + (5/2n)
P =

IsN(9j - 9k) + (l/27i) (cT1 - (9j - 0k)) sN(9j - 9k)

is still of rank N. Instead of A(aNl(9j — 9k)} we consider the matrix

(3.31)

'sN(Oj-Ok) DsN(ej-e
J s N ( 6 j - 0 k ) sN(9,-0k)

(3.32)

The determinant of ^4^ is unchanged by subtraction of the even-numbered
rows of P6 from those of Ab. Therefore

6j - 6k) + ((9k - 6,
(3.33)
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The second factor on the right of Eq. (3.33) is

. (3.34)

In the first factor we subtract the first column from each of the remaining
columns, obtaining

(2nd)-1 Det[lN + O(d\ eN(0, - Ok) - eN(0j - 6,) + ((9k - 0,)/2nJ] , (3.35)

where 1^ means a single column of unit elements, and k labels the
remaining columns from 2 to N. We can now pass to the limit <5— »() in
Eq. (3.32), (3.33). We obtain

where now

dN = Det [1N, eN(0; - Ok) - £N(9j - 0j)] , (3.37)

the terms ((9k —9^/271) in Eq. (3.35) contributing nothing to the deter-
minant. By the same argument as was used for N even, dN is a constant
independent of (0l3 . . . , 9N) except at places where A = 0. The value of dN

is found by taking the 9j to satisfy Eq. (3.27) and is

dN = 21~N. (3.38)

Therefore Eq. (3.29) holds also for ft = t and N odd.
Finally we have the case ft = 4.
The matrix A(0N4) is a product

1 \eip°J
A(fr \ r^~lP"k in/?~lPVk~] d ^Q\

-A WIV4/ — ~A /• - 1 ' a •- ' IpC J , \J.Jy)

where now the index p takes the 2N values

p = i- _ AT, I _ N, ..., N - I. (3.40)

Therefore

Det/l((iN4) - (47c)-2 N(-i)2 N (11 P'1} Ml2 = (C*4)
2 Mf > (3-41)

by virtue of Eq. (1.7), where

A' = Detleip°J,peip0^ (3.42)

is the Confluent Alternant discussed by Mehta ([2], Appendix A. 16,
p. 208). According to Mehta

\A' =\A\\ (3.43)

and so Eq. (3.29) holds also for /? = 4.
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Eq. (3.22) and (3.29) imply

VNNft = iNftCNft\A\e, (3.44)

where r\Np = ± 1. The sign of r]Np might still depend on the 6j. However,
both sides of Eq. (3.44) are (i) symmetric functions of ( 0 ^ , . . . , 0 N ) , (ii)
periodic in each dj with period 2n, and (iii) continuous functions of 0,
except at places where A = 0. Therefore rjN^ is + 1 or — 1 independent
of (0l5 . . . , 6 N ) . This completes the proof of Theorem 3, except for the
determination of the sign of rjNp which we postpone to the following
section.

IV. Eigenvalue Correlations

Our final task is to prove

Theorem 4. For 1 ̂  n rg N and f) = 1,2,4,

R N H f = V N a l > , (4.1)

where RNnfj is the n-angle correlation function defined by Eq. (1.8), and
UNnp is the quaternion-determinant defined by Eq. (3.19).

Remark 1. Theorem 1 follows immediately from Theorem 4 by taking
the limit N-»oo and using Eq. (1.1), (1.10).

Remark 2. Theorem 3 is the special case n = N of Theorem 4. We
shall deduce Theorem 4 from Theorem 3, verifying incidentally that
riNfi = + 1 in Eq. (3.44).

Proof of Theorem 4. We consider the functions

with P summed over cyclic permutations of (1, . . . , n) as in Eq. (1.36). The
vNp are defined by Eq. (3.16)-(3.18), and VNnp is therefore a scalar. The
UNnp and VNnp are related by

i

G i = l

like the PW/J and Ynp in Eq. (1.35). Theorem 4 states that the UNnp are the
correlation-functions for the distribution (1.2), and this is equivalent to
the statement that the VNnp are the cluster-functions for the same
distribution.

For any two functions J\(0), /2(0), we define the composition
271

(/i * /2) (6) = i d<p /i M/2 (0 ~ 9} • (4.4)
o
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Then the definitions (3.1)—(3.8) give

% * % = SN , (4-5)

DsN * SN = SN * £>% = DsN , (4.6)

JsN * SN = SN * Js^ = 0 , (4.7)

JsN*DsN = DsN*JsN = Q, (4.8)

and for N even only,

IsN *SN = SN* IsN = IsN , (4.9)

/% * DsN = DsN * /% = SN . (4.10)

The definition (4.4) applies equally to the composition-product of two
quaternions. Thus Eq. (3.16) with (4.4)-(4.8) gives

<7N1 *(JNl = N N \ = GNI + EGNi-aNiE, (4.11)
Lu SN J

where
1 0

E = o or (4-12)

On the other hand, Eq. (3.17) and (3.18) with Eq. (4.5)-(4.10) give simply

<rNp*<rNp = <rNf, )8 = 2, 4 . (4.13)

Let VNnp(Qi, . . . , 6n) given by Eq. (4.2) be integrated with respect to
9n from 0 to 2n. After making use of Eq. (4.11) or (4.13), we obtain two
kinds of terms, those involving E and those not involving E. The £-terms
cancel each other exactly after summing over permutations. The non-E
terms give precisely the terms which appear in VN^n^1^(61, . . . , 0n_i) ,
each repeated (n — 1) times, since every cyclic permutation of (1, . . . , n)
can be obtained in (n — 1) ways by inserting n into a cyclic permutation of
(1, . . . , n — 1). Therefore for n = 2, 3, . . . , N,

I VNnfi(Ol9...9OJd9n = (n-l)VNin,ltft(01,...,On-1). (4.14)
o

This is precisely the recurrence relation between cluster-functions (see
Dyson [7]). On the other hand, for n = 1 we have trivially

(4.15)



Random Matrix 249

When Eq. (4.14) and (4.15) are inserted into Eq. (4.3), we find

f UNnft(0l9 . . . , 9n)dOn = (N +1 - w) UNtn.ltp(0l9..., On.i), (4.16)
o

which holds for n = 1, 2 , . . . , N if we make the convention

UNOft = l. (4.17)

We now go back to Eq. (3.44) and integrate both sides with respect to
(0n + 1, . . . ,0N). Taking account of Eq. (1.2), (1.8) and (4.16), we find for
n = 0 , l , . . . , J V ,

U N n p ( O l , . . . , O J = r i N f t R N n f t ( 0 ^ . . . , O J . (4.18)

Taking n = 0 and using Eq. (1.9) and (4.17), we obtain

f j N / , = l , (4.19)

and the proof of Theorems 3 and 4 is complete.

V. Mathematical Note

The results of this paper are based upon the use of the Circular
Ensembles [1,2] which are better known to mathematicians by the
name of Symmetric Spaces. The Circular Ensemble Ep(N) is the Sym-
metric Space

[U(N)/0(N)l ) 5 = 1 , (5.1)

U(N), /? = 2 , (5.2)

[C/(2JV)/Sp(2AO], /? = 4, (5.3)

with a probability-distribution which is defined, by the invariant measure,
to be uniform on the entire space. The points of the space Ep(N) are
unitary matrices having N eigenvalues

eie\ ...,eie*. (5.4)

It is these eigenvalues which have the joint probability-distribution
defined by Eq. (1.2) and the correlation-functions specified by Theorem 4.

The proof of Theorem 4 in this paper is a mere verification. It would
be highly desirable to find a more illuminating proof, in which the
appearance of the quaternion-determinant (3.19) might be related
directly to the structure of the symmetric space Ep(N).
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